

Available online at http://scik.org J. Math. Comput. Sci. 11 (2021), No. 3, 2999-3009 https://doi.org/10.28919/jmcs/5622 ISSN: 1927-5307

Q₈ DIFFERENCE CORDIAL LABELING

A. LOURDUSAMY^{1,*}, E. VERONISHA^{2,†}

¹Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai - 627002, India
²PG and Research Department of Mathematics, St. Xavier's College(Autonomous), Palayamkottai - 627002, Manonmaniam Sundaranar University, Abisekapatti - 627012, Tamilnadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let Q_8 be a quaternion group. Let G = (V, E) be a graph. Let $f : V(G) \to Q_8$. For each edge xy assign the label 0 when |o(f(x)) - o(f(y))| = 0 and 1 otherwise. The function f is called Q_8 cordial difference labeling of G if $|v_f(x) - v_f(y)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(x), v_f(y)$ denote the total number of vertices labeled with x, y in Q_8 and $e_f(0), e_f(1)$ denote the total number of edges labeled with 0,1 respectively. A graph G which admits a group Q_8 difference cordial labeling is called Q_8 difference cordial graph. In this paper, we prove the existence of this labeling to the graphs viz., path, ladder related graphs and snake related graphs. Keywords: group Q_8 cordial; cordial labeling; quaternion group labeling.

2010 AMS Subject Classification: 05C78.

1. INTRODUCTION

The concept of graph labeling was introduced by Rosa [4] in 1967. The cordial labeling of graph was introduced by Cahit [2]. For standard terminology and notation related to graph

^{*}Corresponding author

E-mail address: lourdusamy15@gmail.com

[†]Research Scholar, Reg. No: 19211282092009

Received February 28, 2021

theory we follow Balakrishnan and Ranganathan [1]. Lourdusamy et. al., introduced the concept of S_3 remainder cordial labeling [3]. In this paper, we discussed the concept of group Q_8 difference cordial labeling.

2. MAIN RESULTS

Definition 2.1. Consider the quaternion group Q_8 . Let the elements of Q_8 be $\pm 1, \pm i, \pm j, \pm k$. Now $o(1) = 1, o(-1) = 2, o(\pm i) = o(\pm j) = o(\pm k) = 4$.

Definition 2.2. Let G = (V, E) be a graph. Let $f : V(G) \to Q_8$. For each edge xy assign the label 0 when |o(f(x)) - o(f(y))| = 0 and 1 otherwise. The function f is called Q_8 difference cordial lebeling of G if $|v_f(x) - v_f(y)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(x), v_f(y)$ denote the total number of vertices labeled with x, y in Q_8 and $e_f(0), e_f(1)$ denote the total number of edges labeled with 0,1 respectively. A graph G which admits a group Q_8 difference cordial labeling is called Q_8 difference cordial graph.

Theorem 2.3. The path P_n is group Q_8 - difference cordial graph.

Proof. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of P_n .

Let the vertex label $f: V(P_n) \to Q_8$ be defined as follows: for n = 8s and $s \ge 1$,

$$f(v_{\beta}) = \begin{cases} i, & \beta = 8s - 7 \\ -i, & \beta = 8s - 6 \\ 1, & \beta = 8s - 5 \\ j, & \beta = 8s - 4 \\ -j, & \beta = 8s - 3 \\ k, & \beta = 8s - 2 \\ -1, & \beta = 8s - 1 \\ -k, & \beta = 8s \end{cases}$$

Now we see that $|v_f(x) - v_f(y)| \le 1$. This implies that

$$|e_f(0) - e_f(1)| = \begin{cases} 0, & \text{if } n \text{ is odd} \\ 1, & \text{if } n \text{ is even} \end{cases}$$

Hence the path P_n is group Q_8 - difference cordial graph.

Theorem 2.4. Let G be the comb graph $P_n \odot K_1$. Then G is group Q_8 -difference cordial graph.

Proof. Let the vertex set be $V(G) = \{v_{\gamma}^{\beta}/1 \le \gamma \le n, \beta = 1, 2\}$. Let the edge set be $E(G) = \{v_{\gamma}^{1}v_{\gamma}^{2}/1 \le \gamma \le n\} \cup \{v_{\gamma}^{1}v_{\gamma+1}^{1}/1 \le \gamma \le n-1\}$. Define $f: V(G) \to Q_{8}$ as follows.

$$f(v_{\gamma}^{1}) = \begin{cases} 1, & \gamma \equiv 1 \pmod{4} \\ -i, & \gamma \equiv 2 \pmod{4} \\ -j, & \gamma \equiv 3 \pmod{4} \\ -k, & \gamma \equiv 0 \pmod{4} \end{cases}$$

and

$$f(v_{\gamma}^2) = \begin{cases} i, & \gamma \equiv 1 \pmod{4} \\ j, & \gamma \equiv 2 \pmod{4} \\ k, & \gamma \equiv 3 \pmod{4} \\ -1, & \gamma \equiv 0 \pmod{4} \end{cases}$$

Clearly we see that $|v_f(x) - v_f(y)| \le 1$.Let $s = \left\lceil \frac{n}{2} \right\rceil$. Then

$$e_f(1) = \begin{cases} n, & s \text{ is odd} \\ n-1, & s \text{ is even} \end{cases}$$

and

$$e_f(0) = \begin{cases} n-1, & s \text{ is odd} \\ n, & s \text{ is even} \end{cases}$$

It is obvious that $|e_f(0) - e_f(1)| \le 1$. Therefore comb $P_n \odot K_1$ is group Q_8 -difference cordial graph.

Theorem 2.5. Let G be the ladder graph L_n . Then G is group Q_8 -difference cordial graph.

Proof. Let $V(L_n) = \{v_1^1, v_2^1, v_3^1, \dots, v_n^1, v_1^2, v_2^2, v_3^2, \dots, v_n^2\}$ and $E(L_n) = \{v_\gamma^1 v_\gamma^2 / 1 \le \gamma \le n\} \cup \{v_\gamma^1 v_{\gamma+1}^1, v_\gamma^2 v_{\gamma+1}^2 / 1 \le \gamma \le n-1\}.$

Define a map $f: V(L_n) \to Q_8$ as follows: for $n = 4s, s \ge 1$,

$$f(v_{\gamma}^{1}) = \begin{cases} 1, \ \gamma = 1, 5, 9, \dots, 4s - 3, \\ -i, \ \gamma = 2, 6, 10, \dots, 4s - 2, \\ -j, \ \gamma = 3, 7, 11, \dots, 4s - 1, \\ k, \ \gamma = 4, 8, 12, \dots, 4s. \end{cases}$$

and

$$f(v_{\gamma}^2) = \begin{cases} i, \ \gamma = 1, 5, 9, \dots, 4s - 3, \\ j, \ \gamma = 2, 6, 10, \dots, 4s - 2, \\ -1, \ \gamma = 3, 7, 11, \dots, 4s - 1, \\ -k, \ \gamma = 4, 8, 12, \dots, 4s. \end{cases}$$

We can verify that $|v_f(x) - v_f(y)| \le 1$. This implies that

$$e_f(0) = \begin{cases} \left\lfloor \frac{n}{2} \right\rfloor - 1 + n, & \text{if } n \text{ is odd} \\ \left(\frac{n}{2} - 1 \right) + n, & \text{if } n \text{ is even} \end{cases}$$

and

$$e_f(1) = \begin{cases} \left\lfloor \frac{n}{2} \right\rfloor + n, & \text{if } n \text{ is odd} \\ \left(\frac{n}{2} - 1 \right) + n, & \text{if } n \text{ is even} \end{cases}$$

Thus the ladder L_n is group Q_8 -difference cordial graph.

Theorem 2.6. Let G be the slanting ladder graph SL_n . Then G is group Q_8 -difference cordial graph.

Proof. Let $V(SL_n) = \{v_{\gamma}^{\beta}/1 \le \gamma \le n, \beta = 1, 2\}$ and $E(SL_n) = \{v_{\gamma}^1 v_{\gamma+1}^1, v_{\gamma}^2 v_{\gamma+1}^2, v_{\gamma}^1 v_{\gamma+1}^2/1 \le \gamma \le n-1\}.$

Define $f: V(SL_n) \to Q_8$ by $f(v_{4s-3}^1) = i, f(v_{4s-2}^1) = 1, f(v_{4s-1}^1) = -i, f(v_{4s}^1) = -1, f(v_{4s-3}^2) = j, f(v_{4s-2}^2) = -j, f(v_{4s-1}^2) = k, f(v_{4s}^2) = -k$. It is obvious that $|v_f(x) - v_f(y)| \le 1$. It is observed as

$$e_f(0) = \begin{cases} \left\lfloor \frac{n}{2} \right\rfloor - 1 + n, & \text{if } n \text{ is odd} \\ \left(\frac{n}{2} \right) - 1 + n, & \text{if } n \text{ is even} \end{cases}$$

and

$$e_f(1) = \begin{cases} \lfloor \frac{n}{2} \rfloor - 1 + n, & \text{if } n \text{ is odd} \\ \\ \left(\frac{n}{2}\right) - 2 + n, & \text{if } n \text{ is even} \end{cases}$$

Hence the slanting ladder SL_n is group Q_8 - difference cordial graph.

Theorem 2.7. Let G be the triangular ladder graph TL_n . Then G is group Q_8 -difference cordial graph.

Proof. Let $V(TL_n) = \{v_{\gamma}^{\beta}/1 \le \gamma \le n, \beta = 1, 2\}$ and $E(TL_n) = \{v_{\gamma}^1 v_{\gamma+1}^1, v_{\gamma}^1 v_{\gamma+1}^2, v_{\gamma}^2 v_{\gamma+1}^2/1 \le \gamma \le n-1\} \cup \{v_{\gamma}^1 v_{\gamma}^2/1 \le \gamma \le n\}$. Define a function $f: V(TL_n) \to Q_8$ as follows.

$$f(v_{\gamma}^{1}) = \begin{cases} 1, & \gamma \equiv 1 \pmod{4} \\ i, & \gamma \equiv 2 \pmod{4} \\ -1, & \gamma \equiv 3 \pmod{4} \\ -i, & \gamma \equiv 0 \pmod{4} \end{cases}$$

and

$$f(v_{\gamma}^2) = \begin{cases} j, & \gamma \equiv 1 \pmod{4} \\ -j, & \gamma \equiv 2 \pmod{4} \\ k, & \gamma \equiv 3 \pmod{4} \\ -k, & \gamma \equiv 0 \pmod{4} \end{cases}$$

Clearly, $|v_f(x) - v_f(y)| \le 1$. This implies that $e_f(0) = 2n - 2$ and $e_f(1) = 2n - 1$. Therefore triangular ladder TL_n is group Q_8 -difference cordial graph.

Theorem 2.8. Let G be the braid graph B_n . Then G is group Q_8 -difference cordial graph.

Proof. Let $V(B_n) = \{v_{\gamma}^{\beta}/1 \le \gamma \le n, \beta = 1, 2\}$ and $E(B_n) = \{v_{\gamma}^1 v_{\gamma+1}^1, v_{\gamma}^2 v_{\gamma+1}^2, v_{\gamma}^1 v_{\gamma+1}^2, /1 \le \gamma \le n-1\} \cup \{v_{\gamma}^2 v_{\gamma+2}^1/1 \le \gamma \le n-2\}$. Define a map $f: V(B_n) \to Q_8$ as follows.

$$f(v_{\gamma}^{1}) = \begin{cases} 1, & \gamma \equiv 1 \pmod{4} \\ i, & \gamma \equiv 2 \pmod{4} \\ -1, & \gamma \equiv 3 \pmod{4} \\ -i, & \gamma \equiv 0 \pmod{4} \end{cases}$$

and

$$f(v_{\gamma}^2) = \begin{cases} j, & \gamma \equiv 1 \pmod{4} \\ -j, & \gamma \equiv 2 \pmod{4} \\ k, & \gamma \equiv 3 \pmod{4} \\ -k, & \gamma \equiv 0 \pmod{4} \end{cases}$$

It follows that $|v_f(x) - v_f(y)| \le 1$. This implies that $e_f(0) = 2n - 3$ and $e_f(1) = 2n - 2$. Hence braid graph B_n is group Q_8 -difference cordial graph.

Theorem 2.9. Let G be the open triangular ladder graph OTL_n . Then G is group Q_8 -difference cordial graph.

Proof. Let $V(OTL_n) = \{v_{\gamma}^{\beta}/1 \le \gamma \le n, \beta = 1, 2\}$. Let $E(OTL_n) = \{v_{\gamma}^1 v_{\gamma+1}^1, v_{\gamma}^2 v_{\gamma+1}^2, v_{\gamma}^1 v_{\gamma+1}^2/1 \le \gamma \le n-1\} \cup \{v_{\gamma}^1 v_{\gamma}^2/2 \le \gamma \le n-1\}$. Define $f: V(OTL_n) \to Q_8$ as follows.

$$f(v_{\gamma}^{1}) = \begin{cases} 1, & \gamma \equiv 1 \pmod{4} \\ i, & \gamma \equiv 2 \pmod{4} \\ -1, & \gamma \equiv 3 \pmod{4} \\ -i, & \gamma \equiv 0 \pmod{4} \end{cases}$$

and

$$f(v_{\gamma}^2) = \begin{cases} j, & \gamma \equiv 1 \pmod{4} \\ -j, & \gamma \equiv 2 \pmod{4} \\ k, & \gamma \equiv 3 \pmod{4} \\ -k, & \gamma \equiv 0 \pmod{4} \end{cases}$$

Clearly, $|v_f(x) - v_f(y)| \le 1$. It is observed as

$$e_f(0) = \begin{cases} 2n-2, & \text{if } n \text{ is odd} \\ \\ 2n-3, & \text{if } n \text{ is even} \end{cases}$$

and

$$e_f(1) = \begin{cases} 2n-3, & \text{if } n \text{ is odd} \\ \\ 2n-2, & \text{if } n \text{ is even} \end{cases}$$

It can be easily verified that the open triangular ladder OTL_n is group Q_8 -difference cordial graph.

Theorem 2.10. Let G be the open diagonal ladder graph $ODTL_n$. Then G is group Q_8 -difference cordial graph.

Proof. Let $V(ODTL_n) = \{v_{\gamma}^{\beta}/1 \le \gamma \le n, \beta = 1, 2\}$. Let $E(ODTL_n) = \{v_{\gamma}^1 v_{\gamma+1}^1, v_{\gamma}^2 v_{\gamma+1}^2, v_{\gamma}^1 v_{\gamma+1}^2, v_{\gamma+1}^1 v_{\gamma+1}^2, v_{\gamma+1}^1 v_{\gamma+1}^2, v_{\gamma+1}^1 v_{\gamma+1}^2, v_{\gamma+1}^1 v_{\gamma+1}^2 v_{\gamma+1}^2, v_{\gamma+1}^1 v_{\gamma+1}^2 v_{\gamma+1$

$$f(v_{\gamma}^{1}) = \begin{cases} 1, & \gamma \equiv 1 \pmod{4} \\ i, & \gamma \equiv 2 \pmod{4} \\ -1, & \gamma \equiv 3 \pmod{4} \\ -i, & \gamma \equiv 0 \pmod{4} \end{cases}$$

and

$$f(v_{\gamma}^2) = \begin{cases} j, & \gamma \equiv 1 \pmod{4} \\ -j, & \gamma \equiv 2 \pmod{4} \\ k, & \gamma \equiv 3 \pmod{4} \\ -k, & \gamma \equiv 0 \pmod{4} \end{cases}$$

It is easy to show that $|v_f(x) - v_f(y)| \le 1$. This implies that

$$e_f(0) = \begin{cases} 5 \lfloor \frac{n}{2} \rfloor, & \text{if } n \text{ is odd} \\ 5 \lfloor \frac{n}{2} \rfloor - 3, & \text{if } n \text{ is even} \end{cases}$$

and

$$e_f(1) = \begin{cases} 5 \lfloor \frac{n}{2} \rfloor - 1, & \text{if } n \text{ is odd} \\ 5 \lfloor \frac{n}{2} \rfloor - 3, & \text{if } n \text{ is even} \end{cases}$$

Hence the open diagonal ladder $ODTL_n$ is group Q_8 -difference cordial graph.

Theorem 2.11. Let G be the alternate double triangular snake graph $DA(TS_n)$. Then G is group Q_8 -difference cordial graph.

Proof. Let the vertex set be $V(DA(TS_n)) = \{v_{\gamma}^{\beta}/1 \le \gamma \le n, \beta = 1, 2, 3\}$. Let the edge set be $E(DA(TS_n)) = \{v_{\gamma}^2 v_{\gamma+1}^2/1 \le \gamma \le n-1\} \cup \{v_{\gamma}^2 v_{\lceil \frac{\gamma}{2} \rceil}^1, v_{\gamma}^2 v_{\lceil \frac{\gamma}{2} \rceil}^3/1 \le \gamma \le n\}$. Define a function $f: V(DA(TS_n)) \to Q_8$ as follows:

For n = 4s and $s \ge 1$,

$$f(v_{\gamma}^{1}) = \begin{cases} i, & \gamma \text{ is odd} \\ -i, & \gamma \text{ is even} \end{cases}$$

$$f(v_{\gamma}^{2}) = \begin{cases} j, & \gamma = 4s - 3, \\ -j, & \gamma = 4s - 2, \\ 1, & \gamma = 4s - 1, \\ -k, & \gamma = 4s. \end{cases}$$

and

$$f(v_{\gamma}^3) = \begin{cases} -1, & \gamma \text{ is odd} \\ k, & \gamma \text{ is even} \end{cases}$$

It can be easily verified that $|v_f(x) - v_f(y)| \le 1$. Therefore

$$e_f(0) = \begin{cases} \lfloor \frac{n}{2} \rfloor \times 3, & \text{if } n \text{ is odd} \\ n + 2\left(\lceil \frac{n}{4} \rceil - 1 \right), & \text{if } n \text{ is even} \end{cases}$$

and

$$e_f(1) = \begin{cases} \left\lfloor \frac{n}{2} \right\rfloor \times 3, & \text{if } n \text{ is odd} \\ \left(\left\lfloor \frac{n}{4} \right\rfloor \times 2 \right) + n, & \text{if } n \text{ is even} \end{cases}$$

Thus the alternate double triangular snake $DA(TS_n)$ is group Q_8 -difference cordial graph. \Box

Theorem 2.12. Let G be the alternate quadrilateral snake graph $A(QS_n)$. Then G is group Q_8 difference cordial graph.

Proof. Let $V(A(QS_n)) = \{v_1^1, v_2^1, v_3^1, \dots, v_n^1, v_1^2, v_2^2, v_3^2, \dots, v_n^2\}$ be the vertex set. Let the edge set be $E(A(QS_n)) = \{v_{\gamma}^1 v_{\gamma}^2 / 1 \le \gamma \le n\} \cup \{v_{\gamma}^2 v_{\gamma+1}^2 / 1 \le \gamma \le n-1\} \cup \{v_{\gamma}^1 v_{\gamma+1}^1 / 1 \le \gamma \le n-1\} \cup \{v_{\gamma}^1 v_{\gamma+1}^1 / 1 \le \gamma \le n-1\}$ and γ is odd $\}$.

Define a map $f: V(A(QS_n)) \to Q_8$ as follows.

$$f(v_{\gamma}^{1}) = \begin{cases} i, & \gamma \equiv 1 \pmod{4} \\ -i, & \gamma \equiv 2 \pmod{4} \\ -j, & \gamma \equiv 3 \pmod{4} \\ -k, & \gamma \equiv 0 \pmod{4} \end{cases}$$

and

$$f(v_{\gamma}^{2}) = \begin{cases} 1, & \gamma \equiv 1 \pmod{4} \\ j, & \gamma \equiv 2 \pmod{4} \\ k, & \gamma \equiv 3 \pmod{4} \\ -1, & \gamma \equiv 0 \pmod{4} \end{cases}$$

We can show that $|v_f(x) - v_f(y)| \le 1$. This implies that

 $e_f(0) = \begin{cases} \lfloor \frac{n-2}{4} \rfloor + n, & \text{if } n \text{ is odd} \\ \\ n + \lfloor \frac{n}{4} \rfloor, & \text{if } n \text{ is even} \end{cases}$

and

$$e_f(1) = \begin{cases} \left(n + \left\lfloor \frac{n}{4} \right\rfloor\right) - 1 & \text{if } n \text{ is odd} \\ \left(n + \left\lceil \frac{n}{4} \right\rceil\right) - 1, & \text{if } n \text{ is even} \end{cases}$$

Hence the alternate quadrilateral snake graph A(QS) is group Q_8 -difference cordial graph. \Box

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

- Balakrishnan, Rangaswami, Kanna Ranganathan, A textbook of graph theory, Springer Science & Business Media, New York, 2012.
- [2] I. Cahit, Cordial graphs-a weaker version of graceful and harmonious graphs, Ars Comb. 23 (1987), 201-207.
- [3] A. Lourdusamy, S.J. Wency, F. Patrick, Group S₃ Cordial Remainder Labeling, Int. J. Recent Technol. Eng. 8(4) (2019), 8276-8281.

[4] A. Rosa, On certain valuations of the vertices of a graph. In: Theory of graphs. Proc. Internat. Symp., Rome 1966 (P. Rosentiehl, ed.). Dunod, Paris, 1967, pp. 349-355.