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Abstract. In this article, we introduce a new iterative algorithm called Picard-S∗ iterative algorithm. We show that

the Picard-S∗ iterative algorithm can be used to approximate fixed points of generalized α-nonexpansive mappings.

We discuss the convergence results of generalized α-nonexpansive mappings in the framework of CAT(0) spaces

using Picard S∗ iteration process and demiclosed principle for the aforementioned class of mappings in CAT(0)

spaces. This is the nonlinear version of some known results that have been demonstrated in Banach spaces. Some

useful examples are obtained to illustrate facts. Some known iteration processes are also compared using numerical

calculations. Our results broaden and improve the corresponding recent results announced by many authors.
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1. INTRODUCTION

Let E be CAT(0) space and K a nonempty closed convex subset of E. It is well known that

a mapping T : K→ K is said to be nonexpansive whenever d(T x,Ty)≤ d(x,y) for all x,y ∈ K.

It is called quasi-nonexpansive mapping if F(T ) 6= φ and d(T x, p) ≤ d(x, p) for all x ∈ K and
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p ∈ F(T ), where F(T ) is the set of fixed points of T, i.e., F(T ) = {x ∈ K : T x = x}. A num-

ber of extensions and generalization of nonexpansive mappings have been considered by many

mathematicians, in recent years. In 2008, Suzuki[16] introduced the concept of generalized

nonexpansive mappings and obtained some existence and convergence theorems for such map-

pings. A mapping T : K → K is said to satisfy condition(C) if 1
2d(x,T x) ≤ d(x,y) implies

d(T x,Ty)≤ d(x,y) for all x,y ∈ K.

Aoyama and Kohsaka [7] introduced the class of α-nonexpansive mappings in Banach spaces.

A mapping T : K→ K is said to be α-nonexpansive if there exists an α ∈ [0,1) such that for all

x,y ∈ K,

d(T x,Ty)2 ≤ αd(T x,y)2 +αd(x,Ty)2 +(1−2α)d(x,y)2.

It is interesting to note that nonexpansive mappings are continuous on their domains but Suzuki-

type generalized nonexpansive mapping and α-nonexpansive mapping do not have to be con-

tinuous. Therefore, these figures are more important from a theoretical and application perspec-

tive. Pant and Shukla[11] launched a new class of mappings that includes both the Suzuki-type

generalized nonexpansive mapping and α-nonexpansive mappings. A mapping T : K → K

is said to be generalized α-nonexpansive if there exist α ∈ [0,1) such that for all x,y ∈ K,
1
2d(x,T x)≤ d(x,y)⇒ d(T x,Ty)≤ αd(T x,y)+αd(Ty,x)+(1−2α)d(x,y).

By time, many iteration processes have been developed and it is impossible to cover them all.

There exist some iteration processes that are often used to approximate fixed points of nonex-

pansive mappings.

The one-step Mann[22] iteration process for approximating fixed points follows.

x1 ∈ K

xn+1 = (1−αn)xn +αnT xn, n ∈ N,

where {αn} is a sequence in (0,1).

In 1974, Ishikawa [14] generalized Mann iteration process for lipschitzian pseudo-contractive

maps from one step to two steps defined as:

x1 ∈ K

yn = (1−αn)xn +αnT xn

xn+1 = (1−βn)xn +βnTyn, n ∈ N,
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where {βn} and {αn} are sequences in (0,1).

In 2007, Agarwal et al.[10] introduced the following iteration process, known as S iteration

process for nearly asymptotically nonexpansive mappings.

x1 ∈ K

xn+1 = (1−βn)T xn +βnTyn

yn = (1−αn)xn +αnT xn, n ∈ N,

where {βn} and {αn} are sequences in (0,1).

In 2013, Karahan and Ozdemir[6] used the following S∗ iteration procedure to approximate the

fixed point of nonexpansive mappings.

x1 ∈ K

zn = (1− γn)xn + γnT xn

yn = (1−βn)T xn +βnT zn

xn+1 = (1−αn)T xn +αnTyn, n ∈ N,

where {γn}, {βn} and {αn} are sequences in (0,1).

Very recently, in 2019, Panwar and Reena introduced a hybrid iterative scheme named Pi-

card Noor-type hybrid iterative scheme to approximate the fixed points of a multivalued ρ-

quasinonexpansive mappings.

Encouraged by the above work, in this article, we introduce a new hybrid iterative algorithm,

Picard S∗ iterative algorithm with CAT(0) space setting described as:

(1)



x1 ∈ K

wn = (1− γn)xn
⊕

γnT xn

zn = (1−βn)T xn
⊕

βnTwn

yn = (1−αn)T xn
⊕

αnT zn

xn+1 = Tyn, n ∈ N,

where {γn}, {βn} and {αn} are sequences in (0,1). Our Picard S∗ hybrid iterative algorithm

gives faster convergence results than existing iterative algorithms. Then, we establish a number

of existence and convergence theorems. Some useful examples are also presented to clarify
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facts. Finally, we present a comparison between some known iteration processes using numeri-

cal calculations. In this way, we display the efficiency of our proposed algorithm.

2. PRELIMINARIES

”For the sake of simplicity , we recall a few definitions, exceptions and conclusions.

Let (E,d) be a metric space and x,y∈E with d(x,y)= l. A geodesic path from x to y is a isometry

c : [0, l]→ X such that c(0) = x and c(l) = y. The image of a geodesic path is called a geodesic

segment. A metric space E is a (uniquely) geodesic space, if every two points of E are joined

by only one geodesic segment. A geodesic triangle ∆(x1,x2,x3) in a geodesic space E consists

of three points x1,x2,x3 of E and three geodesic segments joining each pair of vertices. A com-

parison triangle of a geodesic triangle ∆(x1,x2,x3) is the triangle ∆(x1,x2,x3) := ∆(x1,x2,x3) in

the Euclidean space R2 such that

d(xi,x j) = dR2(xi,x j), ∀ i, j = 1,2,3.

A geodesic space E is a CAT(0) space, if for each geodesic triangle ∆(x1,x2,x3) in E and its

comparison triangle ∆ := ∆(x1,x2,x3) in R2, the CAT(0) inequality

d(x,y) = dR2(x,y)

is satisfied for all x,y ∈ ∆ and x,y ∈ ∆.

A thorough discussion of these spaces and their important role in various branches of mathe-

matics are, for example, given in [3, 9].

One approach is due to the famous mathematician Kirk[17, 18] who established a more general

result to study the fixed point results in the setting of complete CAT(0) space. Among other

things, he proved that every nonexpansive mapping defined on a bounded closed convex subset

of a complete CAT(0) space has a fixed point. In this paper, we write (1−t)x
⊕

ty for the unique

point z in the geodesic segment joining from x to y such that

d(z,x) = td(x,y), d(z,y) = (1− t)d(x,y).

We also denote by [x,y] the geodesic segment joining from x to y, i.e., [x,y] = {(1− t)x
⊕

ty :

t ∈ [0,1]}.

A subset of a CAT(0) space is convex if [x,y] ⊂C for all x,y ∈C. For elementary facts about

CAT(0) spaces, we refer the readers to [3, 4, 8, 9].
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Lemma 2.1. [9] Let E be a CAT(0) space. Then

d((1− s)x
⊕

sy,z)≤ (1− s)d(x,z)+ sd(y,z) for all x,y,z ∈ E and s ∈ [0,1].

Lemma 2.2. [9] Let E be a CAT(0) space. Then

d((1−s)x
⊕

sy,z)2≤ (1−s)d(x,z)2+sd(y,z)2−s(1−s)d(x,y)2, for all x,y,z∈E and s∈ [0,1].

In 1976. Lim[15] introduced the concept of ∆-convergence in a general metric space. In

2008, Kirk and Panyanak[19] specialized Lim’s concept to CAT(0) spaces and proved that it is

similar to the weak convergence in Banach space setting. Since the notion of ∆-convergence

has been widely studied.

We now give the concept of ∆-convergence and collect some of its basic properties.

Let {xn} be a bounded sequence in a CAT(0) space E. For x ∈ E, we set

r(x,{xn}) = limsupn→∞d(x,{xn}).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = in f{r(x,{xn}) : x ∈ E}.

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ E is given by

rC({xn}) = in f{r(x,{xn}) : x ∈C}.

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ E : r(x,{xn}) = r({xn})}.

And the asymptotic center AC({xn}) of {xn} with respect to C ⊂ E is the set

AC({xn}) = {x ∈C : r(x,{xn}) = rC({xn})}.

Proposition 2.3. [13] Let E be a complete CAT(0) space, {xn} be a bounded sequence in E and

K be a closed convex subset of E. Then

(1) there exists a unique point u ∈ K such that

r(u,{xn}) = in fx∈Kr(x,{xn});

(2) A({xn}) and AK({xn}) are both singleton.

Definition 2.4. [19, 15] Let E be a CAT(0) space. A sequence {xn} in E is said to ∆-converge

to p ∈ E, if p is the unique asymptotic center of {un} for each subsequence {un} of {xn}. In

this case we write ∆− limn→∞ xn = p and call p the ∆-limit of {xn}.
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Lemma 2.5. Let E be a complete CAT(0) space, K be closed convex subset of E.

(1) If {xn} is a bounded sequence in K, then the asymptotic center of {xn} is in K. [12]

(2) Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subse-

quence [19]

3. GENERALIZED α -NONEXPANSIVE MAPPINGS

We present some basic properties of generalized α-nonexpansive mappings.

Proposition 3.1. Any mapping satisfying condition(C) is a generalized α-nonexpansive map-

ping, but the converse is not true.

When α = 0, a generalized α-nonexpansive mapping reduces to a mapping satisfying condi-

tion(C). The following example shows that the reverse implication does not hold.

Example 3.1. Let K = [0,2] be a subset of R endowed with the euclidean norm. Define

T : K→ K by:

T x =


0, if x 6= 2,

1, if x = 2.

Then for x ∈ (1, 4
3 ] and y = 2,

1
2d(x,T x) ≤ d(x,y) and d(T x,Ty) = 1 > d(x,y), and T does not satisfy condition(C). Again

for x ∈ (1, 4
3 ] and y = 2, 1

2d(y,Ty) ≤ d(x,y) and d(T x,Ty) > d(x,y), hence, T does not satisfy

condition(C). However, T is an α-nonexpansive with α ≥ 1
4 and a generalized α-nonexpansive

mapping with α ≥ 1
6 .

As d(T x,Ty) = d(0,1) = 1 and

αd(T x,y)+αd(Ty,x)+(1−2α)d(x,y)≤ αd(0,2)+αd(1,2)+(1−2α)d(1,2)

= 2α +α +(1−2α).1 = 1+α

clearly, d(T x,Ty) = 1≤ 1+α = αd(T x,y)+αd(Ty,x)+(1−2α)d(x,y)

Example 3.2. Let X = {0,2,4,5} be a subset of R. Define a mertic d on X by d(x,y) = |x− y|.

Define a mapping T : X → X by:

T(0)= 0, T(2)= 0, T(4)= 2 and T(5)= 0.
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We note that for α = 1
2 ,

1
2d(x,T x)≤ d(x,y)⇒ d(T x,Ty)≤ αd(T x,y)+αd(Ty,x)+(1−2α)d(x,y).

if x,y 6= 4,5. In the case x =4 and y = 5, we have
1
2d(x,T x) = 1 = d(x,y) and here, d(T x,Ty) = 2≤ 1

2d(T x,y)+ 1
2d(Ty,x)

and for y, we have 1
2d(y,Ty) = 5

2 > d(x,y)

Therefore, T is generalized 1
2 -nonexpansive mapping.

However, for x = 4,y = 5,
1
2d(x,T x) = 1 = d(x,y) but d(T x,Ty) = d(T 4,T 5) = 2 > d(x,y) = 1.

Thus, T is not a Suzuki-type generalized nonexpansive mapping.

Proposition 3.2. [1] Let K be a nonempty subset of a CAT(0) space E and T : K→ K a gener-

alized α-nonexpansive mapping with a fixed point y ∈ K. Then T is a quasi-nonexpansive.

Lemma 3.3. Let K be a nonempty subset of a CAT(0) space E and T : K→ K a generalized α-

nonexpansive mapping. Then F(T) is closed. Moreover, if E is strictly convex and K is convex,

then F(T) is also convex.

Proof. Let {zn} be a sequence in F(T) such that {zn} converges to a point z ∈ K.

Since 1
2d(zn,T zn) = 0≤ d(zn,z)

By definition of generalized α-nonexpansive mapping and continuity of metric on E, we have

limn→∞d(zn,T z) = limn→∞d(T zn,T z)

≤ limn→∞[αd(T zn,z)+αd(T z,zn)+(1−2α)d(zn,z)]

= αd(T z,zn)+(1−α)d(zn,z)]

=limn→∞d(zn,T z)≤ αlimn→∞d(T z,zn)+(1−α)limn→∞d(zn,z).

Since (1−α)> 0, the above inequality reduces to

limn→∞d(zn,T z)≤ limn→∞d(zn,z) ,

and T z = z. Therefore F(T) is closed.

Next, we assume that E is strictly convex and K is convex. Fix λ ∈ (0,1) and x,y ∈ F(T ) with

x 6= y,

Put z = λx+(1−λ )y ∈ K. (due to convexity of K)

Since 1
2d(x,T x) = 0≤ d(x,z)
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Also, we have

d(T x,T z)≤ αd(T x,z)+αd(T z,x)+(1−2α)d(x,z)

= αd(x,z)+αd(T z,x)+(1−2α)d(x,z)

= αd(T z,x)+(1−α)d(x,z)

This implies that

(1−α)d(T x,T z)≤ (1−α)d(x,z)

Since (1−α)> 0, we get d(T x,T z)≤ d(x,z)

By a similar argument, we have d(Ty,T z)≤ d(y,z)

Therefore

d(x,y)≤ d(x,T z)+d(T z,y) = d(T x,T z)+d(T z,Ty)

≤ d(x,z)+d(z,y)≤ d(x,y)

From strict convexity of E, there exists µ ∈ [0,1] such that T z = µx+(1−µ)y

Now (1−µ)d(x,y) = d(T x,T z)

≤ d(x,z)

≤ (1−λ )d(x,y)

and µd(x,y) = λd(x,y)

Also x 6= y implies that d(x,y) 6= 0

⇒ λ = µ and hence z = T z

Therefore z ∈ F(T ). �

4. EXISTENCE RESULTS

In this section, we present some existence theorems for generalized α-nonexpansive map-

pings.

Theorem 4.1. Let K be a nonempty closed convex subset of a complete CAT(0) space E. Let

T : K→ K be a generalized α-nonexpansive mapping. Then, F(T ) 6= φ if and only if {T nx} is

a bounded sequence for some x ∈ K.

Proof. Suppose that {T nx} is a bounded sequence for some x ∈ K. Define {xn} = {T nx} for

all n ∈ N. Then there exists a unique z ∈ K such that A(K,{xn}) = {z}. Now, we show that

{d(xn,xn+1)} is a nonincreasing sequence.
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Since 1
2d(xn,T xn) =

1
2d(xn,xn+1)≤ d(xn,xn+1),

As T is generalized α-nonexpansive mapping, we get

d(xn+1,xn+2) = d(T xn,T xn+1)≤ αd(T xn,xn+1)+d(xn,T xn+1)+(1−2α)d(xn,xn+1)

≤ αd(xn,xn+2)+(1−2α)d(xn,xn+1)

≤ αd(xn,xn+1)+d(xn+1,xn+2)+(1−2α)d(xn,xn+1).

This implies that

d(xn+1,xn+2)≤ d(xn,xn+1) (4.1)

Now for all n ∈ N, we claim that

either d(xn,xn+1)≤ 2d(xn,z) or d(xn+1,xn+2)≤ 2d(xn+1,z)

Arguing by contradiction, we suppose that for some n ∈ N,

2d(xn,z)< d(xn,xn+1) and 2d(xn+1,z)< d(xn+1,xn+2).

By the triangle inequality and (4.1),

d(xn,xn+1)≤ d(xn,z)+d(xn+1,z)

< 1
2d(xn,xn+1)+

1
2d(xn+1,xn+2)

≤ 1
2 [d(xn,xn+1)+d(xn,xn+1)]

= d(xn,xn+1),

which is a contradiction. Thus for all n ∈ N,

either 1
2d(xn,xn+1)≤ d(xn,z) or 1

2d(xn+1,xn+2)≤ d(xn+1,z).

In the first case, 1
2d(xn,xn+1) =

1
2d(xn,T xn)≤ d(xn,z),

Also, we have

d(T xn,T z)≤ αd(T xn,z)+αd(xn,T z)+(1−2α)d(xn,z).

This implies that

limsup
n→∞

d(T xn,T z)≤ α limsup
n→∞

d(T xn,z)+α limsup
n→∞

d(xn,T z)+(1−2α) limsup
n→∞

d(xn,z)

Thus,

limsup
n→∞

d(xn,T z)≤ limsup
n→∞

d(xn,z).
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Consequently, T z ∈ A(K,{xn}), ensuring that T z = z. Similarly, in the second case, we can

deduce that T z = z. Conversely, suppose that F(T ) 6= φ . So, there exists some w ∈ F(T ) and

T nw = w for all n ∈ N. Therefore, {T nw} is bounded. �

Theorem 4.2. Let K be a compact subset of a complete CAT(0) space E and S a family of

commutative generalized α-nonexpansive mappings on K. Then S has a common fixed point.

Proof. It may be completed following the proof of Theorem 4.[20] �

5. CONVERGENCE RESULTS

Lemma 5.1. [1] Let K be a nonempty subset of a CAT(0) space E and T : K→ K a generalized

α-nonexpansive mapping. Then, for all x,y ∈ K:

(1) d(T x,T 2x)≤ d(x,T x).

(2) Either 1
2d(x,T x)≤ d(x,y) or 1

2d(T x,T 2x)≤ d(T x,y).

(3) Either d(T x,Ty)≤ αd(T x,y)+αd(x,Ty)+(1−2α)d(x,y) or

d(T 2x,Ty)≤ αd(T x,Ty)+αd(T 2x,y)+(1−2α)d(T x,y).

Lemma 5.2. [1] Let K be a nonempty subset of a CAT(0) space E and T : K→ K a generalized

α-nonexpansive mapping. Then, for all x,y ∈ K

d(x,Ty)≤ (3+α)
(1−α)d(x,T x)+d(x,y)

The demiclosed principle plays an important role in reading the asymptotic behavior for non-

expansive mappings. In [5], Xu proved the demiclosed principle for asymptotically nonexpan-

sive mappings in uniformly convex Banach space. we are now demonstrating the demiclosed

principle for generalized α-nonexpansive mappings in CAT(0) spaces that extends the result of

Xu to CAT(0) spaces.

Proposition 5.3. (Demiclosedness principle)

Let K be a nonempty subset of a complete CAT(0) space E with the opial property and T : K→K

a generalized α-nonexpansive mapping. If {xn} converges weakly to z and limn→∞ d(T xn,xn) =

0, then T(z) = z. i.e. (I-T) is demiclosed at 0.
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Proof. By lemma 5.2, for all n ∈ N, we have

d(xn,T z)≤ (3+α)
(1−α)d(xn,T xn)+d(xn,z)

This implies that

liminf
n→∞

d(xn,T z)≤ liminf
n→∞

d(xn,z)

By the opial property, we get T(z) = z. �

Proposition 5.4. Let K be a nonempty closed and convex subset of a complete CAT(0) space E

and T : K→ K a generalized α-nonexpansive mapping. Let {xn} be a bounded sequence in K

such that limn→∞d(xn,T xn) = 0 and ∆− limn→∞xn = w. Then Tw = w.

Lemma 5.5. Let K be a nonempty closed and convex subset of a complete CAT(0) space E and

T : K→ K a generalized α-nonexpansive mapping. Let {xn} be a sequence defined by (1). Let

z ∈ F(T ), then the following assertions hold:

(1) max{d(xn+1,z),d(yn,z),d(zn,z),d(wn,z)} ≤ d(xn,z).

(2) limn→∞d(xn,z) exists.

Proof. By (1) and proposition (3.4)

d(wn,z) = d((1− γn)xn
⊕

γT xn,z)

≤ (1− γn)d(xn,z)+ γnd(T xn,z)

≤ (1− γn)d(xn,z)+ γnd(xn,z)

= d(xn,z).

Now, d(zn,z) = d((1−βn)T xn
⊕

βnTwn,z)

≤ (1−βn)d(T xn,z)+βnd(Twn,z)

≤ (1−βn)d(xn,z)+βnd(wn,z)

≤ (1−βn)d(xn,z)+βnd(xn,z)

= d(xn,z).

Again, d(yn, p) = d(T ((1−αn)T xn
⊕

αnT zn),z)

≤ d((1−αn)T xn
⊕

αnT zn,z)

≤ (1−αn)d(xn,z)+αnd(zn,z)

≤ (1−αn)d(xn,z)+αnd(xn,z)

= d(xn,z)
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d(yn, p)≤ d(xn,z).

d(xn+1,z) = d(Tyn,z)≤ d(yn,z)≤ d(xn,z)

Thus, the sequence {d(xn,z)} is nonincreasing and bounded. Hence, limn→∞d(xn,z) exists. �

Lemma 5.6. [21] Suppose that E is a complete CAT(0) space and x ∈ E. {tn} is a sequence in

[b,c] for some b,c∈ (0,1) and {xn}, {yn} are sequences in E such that, for some r≥ 0, we have

lim
n→∞

supd(xn,x)≤ r, lim
n→∞

supd(yn,x)≤ r

and

lim
n→∞

supd(tnxn
⊕

(1− tn)yn,x)≤ r;

then

lim
n→∞

d(xn,yn) = 0

Theorem 5.7. Let K be a nonempty closed and convex subset of a complete CAT(0) space E

and T : K → K a generalized α-nonexpansive mapping. Let {xn} be a sequence with x1 ∈ K

defined by (1). Then F(T ) 6= φ iff {xn} is bounded and limn→∞d(T xn,xn) = 0.

Proof. Suppose {xn} is a bounded sequence and limn→∞d(T xn,xn) = 0. Since E is complete

CAT(0) space, A(K,{xn}) 6= φ . Let z ∈ A(K,{xn}).

By definition of asymptotic radius, we have

r(T z,{xn}) = limn→∞supd(xn,T z).

Using lemma 5.2, we get

r(T z,{xn})≤ (3+α)
(1−α) limsupn→∞ d(T xn,xn)+ limsupn→∞ d(xn,z)

= r(z,{xn})

By the uniqueness of asymptotic center of {xn}, we have Tz=z.

Conversely, let F(T ) 6= φ and z ∈ F(T ). Then from above lemma limn→∞d(xn,z) exists.

Suppose limn→∞d(xn,z) = r

Also limsupn→∞ d(yn,z)≤ r, limsupn→∞ d(zn,z)≤ r

and limsupn→∞ d(wn,z)≤ r

By proposition (3.2), we get

limsupn→∞ d(T xn,z)≤ limsupn→∞ d(xn,z) = r,
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limsupn→∞ d(Tyn,z)≤ r, limsupn→∞ d(T zn,z)≤ r

and limsupn→∞ d(Twn,z)≤ r

Now

r = limn→∞ d(xn+1,z) = d(Tyn,z)

⇒ limn→∞ d(Tyn,z) = r

As limn→∞ d(Tyn,z) = r ≤ limn→∞ d(yn,z)

This implies that limn→∞ d(yn,z) = r

By (1), we have

r = limn→∞ d(yn,z) = limn→∞ d(T ((1−αn)T xn
⊕

αnT zn),z)

In view of Lemma (5.6), we get

limn→∞ d(T xn,T zn) = 0

Now, r = d(Tyn,z)≤ d(Tyn,T xn)+d(T xn,z)

≤ d(Tyn,T xn)+ r

So, we get

limn→∞ d(Tyn,T xn).

Again, r = d(Tyn,z)≤ d(Tyn,T xn)+d(T xn,T zn)+d(T zn,z)

≤ 0+0+d(T zn,z)

hence, r ≤ liminfn→∞ d(T zn,z)

So, we have

r = limn→∞ d(T zn,z) = limn→∞ d((1−βn)T xn
⊕

βnTwn,z)

Again in view of Lemma 5.6, we have

limn→∞ d(T xn,Twn) = 0

Also, we observe that,

d(Tyn,z)≤ d(Tyn,T xn)+d(T xn,Twn)+d(Twn,z)

Letting n→ ∞, we get

r ≤ liminfn→∞ d(Twn,z)

⇒ limn→∞ d(Twn,z) = r

and r = limn→∞ d(Twn,z)≤ liminfn→∞ d(wn,z)

This implies that
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limn→∞ d(wn,z) = r

Also, by (1)

r = limn→∞ d(wn,z) = d((1− γn)xn
⊕

γT xn,z)

Now, again in view of Lemma 5.6, we have the required result i.e.

limn→∞ d(T xn,xn) = 0.

�

Theorem 5.8. Let K be a nonempty closed and convex subset of a complete CAT(0) space E

and T : K→ K a generalized α-nonexpansive mapping with F(T ) 6= φ . Let {xn} be a sequence

with x1 ∈ K defined by (1). Then the sequence {xn} converges strongly to a fixed point of T if

liminfn→∞ d(xn,F(T )) = 0.

Proof. Suppose that liminfn→∞ d(xn,F(T )) = 0. Then there exists a subsequence {un} of {xn}

such that limn→∞ d(un,F(T )) = 0.

Let {un j} be a subsequence of sequence {un} such that d(un j , p j)≤ 1
2 j for all j≥ 1, where {p j}

is a sequence in F(T). By Lemma 5.5, we have

d(un j+1, p j)≤ d(un j , p j)≤ 1
2 j .

By triangle inequality, we conclude that

d(p j+1, p j)≤ d(p j+1,un j+1)+d(un j+1, p j)

≤ 1
2 j+1 +

1
2 j <

1
2 j−1

A standard argument shows that {p j} is a cauchy sequence in F(T). By Lemma 3.5, F(T) is

closed, so {p j} converges to some p ∈ F(T ).

Now, by triangle inequality, we have

d(un j , p)≤ d(un j , p j)+d(p j, p).

Letting j→ ∞ implies that pn j converges strongly to p. By Lemma 5.5, limn→∞d(xn, p) exists

so the sequence {xn} converges strongly to p. �
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6. NUMERICAL RESULTS

Example 6.1. Let the set K = [0,∞] be equipped with the euclidean norm and T : K → K be

defined as:

T x =


x
2 , if x > 2,

0, if x = [0,2].

Then,

(1) T does not satisfy condition(C);

(2) T is a generalized α-nonexpansive mapping.

Proof. (1) For x = 5
2 and y = 9

2 , we have
1
2d(x,T x) = 1

2d(5
2 ,0) =

5
4 < |x− y|= 2 but d(T x,Ty) = |T x−Ty|= 9

4 > |x− y|= 2. Hence, T

does not satisfy condition(C).

(2) With α = 1
2 , we consider the following different modes.

Case(I). Let x > 2 and 0≤ y≤ 2, we have
1
2d(T x,y)+ 1

2d(x,Ty) = 1
2 |T x− y|+ 1

2 |x−Ty|

= 1
2 |

x
2 − y|+ 1

2 |x|

≥ 1
2 |x|

= |T x−Ty|= d(T x,Ty).

Case(II). Let x > 2 and y > 2, we have
1
2d(T x,y)+ 1

2d(x,Ty) = 1
2 |T x− y|+ 1

2 |x−Ty|

= 1
2 |

x
2 − y|+ 1

2 |x−
y
2 |

≥ 1
2 |

x
2 −

y
2 + x− y|

≥ 1
2 |

3
2x− 3

2y|

≥ 1
2 |x− y|

= |T x−Ty|= d(T x,Ty).

Case(III). Let 0≤ x≤ 2 and 0≤ y≤ 2, then it is obvious that
1
2d(T x,y)+ 1

2d(x,Ty)≥ d(T x,Ty) = 0.

Hence, we conclude that T is a generalized 1
2 -nonexpansive mapping. �
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Example 6.2. [11] Let the set K = [−1,1] be equipped with the euclidean norm and T : K→ K

defined as:

T x =


x
2 , if x ∈ [−1,0) = A,

−x, if x ∈ [0,1]/{1
2}= B,

0, if x = 1
2 .

Then

(1) T does not satisfy condition(C);

(2) T is a generalized α-nonexpansive mapping.

Karahan and Ozdemir[6] introduced a new iteration process, namely the S∗ iteration process

and they also used a numerical example to demonstrate that the S∗ iteration process is faster than

the Picard, Mann and S-iterative processes for contractions. To show efficiency of Picard S∗

iteration process for generalized α-nonexpansive mapping, we use example 6.2 with parametrs

αn =
1√
n+1

,βn =
√

n
n+1 ,γn =

1
n+1 and with the initial value x1 =−0.6. Set the stop parameter to

d(xn,x∗)< 10−15 for Ishikawa, S, S∗ and Picard S∗ iteration processes. All iterations converge

to the fixed point 0. The convergence behavior of these algorithms is shown in Figure (1). Table

1 and graphical representation given below show that our iterative process (1) converges faster

than all of Ishikawa, S, and S∗ processes.
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TABLE 1. Sequences generated by Picard S∗ , S∗, S and Ishikawa iteration processes.

n Picard S∗ iteration S∗ S iteration Ishikawa iteration

1 -0.6 -0.6 -0.6 -0.6

2 -0.075 -0.15 -0.225 -0.312867966

3 -0.010948999 -0.034420996 -0.085983496 -0.14826831

4 -0.001839544 -0.008861794 -0.033683761 -0.068015733

5 -0.000332469 -0.00248377 -0.013473505 -0.030796599

6 -6.28692E-05 -0.000740652 -0.005481433 -0.013870635

7 -1.2265E-05 -0.000231478 -0.002261191 -0.006236351

8 -2.44846E-06 -7.50626E-05 -0.000943641 -0.002803945

9 -4.9758E-07 -2.50784E-05 -0.000397681 -0.001261854

10 -1.02577E-07 -8.58845E-06 -0.000169014 -0.000568665

11 -2.13971E-08 -3.00332E-06 -7.23601E-05 -0.000256695

12 -4.5079E-09 -1.06924E-06 -3.11803E-05 -0.000116075

13 -9.57821E-10 -3.86652E-07 -1.3513E-05 -5.25817E-05

14 -2.05022E-10 -1.41749E-07 -5.88646E-06 -2.38617E-05

15 -4.41704E-11 -5.26031E-08 -2.57614E-06 -1.08474E-05

16 -9.5711E-12 -1.9735E-08 -1.13218E-06 -4.93948E-06

17 -2.08463E-12 -7.47711E-09 -4.99489E-07 -2.25292E-06

18 -4.56154E-13 -2.8583E-09 -2.21141E-07 -1.02918E-06

19 -1.00236E-13 -1.10159E-09 -9.82256E-08 -4.70864E-07

20 -2.21109E-14 -4.27736E-10 -4.37608E-08 -2.15738E-07

21 -4.89466E-15 -1.67234E-10 -1.95506E-08 -9.89826E-08

22 -1.08705E-15 -6.5802E-11 -8.75721E-09 -4.54747E-08

31 . . . .

32 -3.63815E-22 -7.67289E-15 -3.18789E-12 -2.0277E-11

33 -8.27909E-23 -3.16881E-15 -1.45733E-12 -9.42433E-12

34 . . . .

38 -5.1639E-26 -3.97815E-17 -2.96561E-14 -2.06873E-13

40 -2.72209E-27 -7.03269E-18 -6.29507E-15 -4.51355E-14
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FIGURE 1. Convergence of Picard S∗ , S and Ishikawa iterations to the fixed

point 0.
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