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Abstract. In this paper we have introduced the concept of strong m-system in modules over non-commutative

rings. Using the strong m-system, the existence of unique maximal submodule is proved. In fact we have shown

that if I is a submodule and S is a strong m-system with I∩S = /0 then there exists a unique maximal submodule P

with I ⊂ P such that P∩S = /0. We have also obtained a characterization for unique maximal submodule.
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1. INTRODUCTION

Throughout this paper R stands for a ring with identity and M stands for a unital left R-

module. Prime submodules over the rings which are not necessarily commutative have been

studied in a number of paper, for example [5],[1]. The notion of prime submodules was first

introduced by J. Dauns in [2]. A proper submodule P of M is called a prime submodule, if for

any ideal A of R and for any submodule N of M, AN ⊆ P implies either N ⊆ P or AM ⊆ P.

David Ssevviiri[[4],Proposition 4.1.1] has shown that as in ring theory, a prime submodule P of

M, is defined equivalently as, for any a in R and for any m in M, aRm ⊆ P implies m ∈ P or

∗Corresponding author

E-mail address: sudharshanasss3@gmail.com

Received March 03, 2021
3095



3096 G.N. SUDHARSHANA, D. SIVAKUMAR

aM ⊆ P. So as in ring theory an m-system in a module should have been defined as follows.

A nonempty subset S of M is said to be an m-system if for any m in S and for any a in R with

ak ∈ S for some k in M then there exists an r in R such that arm ∈ S. One can easily prove that a

submodule P of M is prime submodule if and only if C(P), the compliment of P is an m-system.

But David Ssevviiri[4] has defined m-system in modules by taking sum of two submodules

instead of taking two elements. Ofcourse they have shown that a submodule is prime if and

only if it’s compliment is an m-system. Following David Ssevviiri[4] we have the definition

of an m-system for modules as follows. A subset S ⊆M \ {0} of M is an m-system if for any

submodules K, L and if (K +L)∩ S 6= /0 and (K +AM)∩ S 6= /0 then (K +AL)∩ S 6= /0. In this

paper, we have introduced the notion of strong m-system in modules.

We have shown that a strong m-system in modules is always an m-system but the converse

need not to be true. We have given an example of an m-system which is not a strong m-system.

Using strong m-system we have proved the existence of a unique maximal submodule.

We have shown that if I is a submodule and S is a strong m-system with I∩S = /0 then there

exists a unique maximal submodule P with I ⊂ P such that P∩S = /0. If A, B are the submodules

of M, one can easily check that (A : B) = {r ∈ R : rB⊆ A} is an ideal of R. For any a∈ R, < a >

denotes the ideal generated by a.

2. PRELIMINARIES

If R is any ring with unity, we say that M is a unital left R-module if, for any r ∈ R and m∈M,

an element rm ∈ M is defined such that the following conditions hold for all m, n ∈ M and r,

s ∈ R:

r(m+n) = rm+ rn

(r+ s)m = rm+ sm

(rs)m = r(sm)

1m = m

A subset N of M is called an R-submodule if the following conditions are satisfied:

N is a subgroup of the (additive, abelian) group M.

rn is in N for all r ∈ R and n ∈ N.
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A proper submodule P of M is called a prime submodule, if for any ideal A of R and for any

submodule N of M, AN ⊆ P implies either N ⊆ P or AM ⊆ P.

The definition of an m-system for modules as follows[4]. A subset S ⊆ M \ {0} of M is

an m-system if for any submodules K, L and if (K + L)∩ S 6= /0 and (K +AM)∩ S 6= /0 then

(K +AL)∩S 6= /0.

3. MAIN RESULTS

Theorem 3.1. For a proper submodule P of M, the axioms that follows are equivalent

(i) P is the unique maximal submodule.

(ii) For any ideal A of R and for submodules K 6= M, N of M such that

K∩N = {0} and if A(K +N)⊆ P, then either K +N ⊆ P or

K +AM ⊆ P.

(iii) For all a ∈ R and for a submodule K 6= M and for all m in M such

that K∩Rm = {0} and if a(K +Rm)⊆ P, then either

K +Rm⊆ P or K +aM ⊆ P.

(iv) For all a ∈ R, submodule K 6= M and for all m in M such that K∩Rm = {0}

and if < a > (K +Rm)⊆ P, then either K +Rm⊆ P or K+< a > M ⊆ P.

(v) For every left ideal A⊆ R, submodule K 6= M and for all m in M

such that K∩Rm = {0} and if A(K +Rm)⊆ P, then either K +Rm⊆ P

or K +AM ⊆ P.

(vi) For every right ideal B⊆ R, submodule K 6= M and for all

m in M such that K∩Rm = {0} and if B(K +Rm)⊆ P, then either

K +Rm⊆ P or K +BM ⊆ P.

Proof (i) =⇒ (ii) Let A be an ideal of R and let K 6= M, N be the submodules of M such

that K∩N = {0} and A(K +N)⊆ P. As P is the unique maximal submodule, we have K ⊆ P.

Suppose K +N * P. Then (K +N)+P = M. Let m ∈M. Then there exists k ∈ K, n ∈ N and

p ∈ P such that m = (k+n)+ p. Let a ∈ A and k1 ∈ K. Then k1 +am = k1 +a(k+n)+ap ∈ P

since k1 ∈ K ⊆ P, a(k1 +n) ∈ A(K +N)⊆ P and ap ∈ AP⊆ P. Hence K +AM ⊆ P.
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(ii) =⇒ (i) First let us show that P is a maximal submodule. Suppose there exists a sub-

module K such that P⊆ K ⊆M with K 6= M. If A = {0} and N = {0} then A(K +N)⊆ P and

hence by assumption K ⊆ P. Thus P = K.

Suppose L is any other maximal submodule of M. By taking A = {0} and N = {0} we have

{0}(L+{0})⊆ P. Hence by (ii) L⊆ P. Hence P is the unique maximal submodule.

(ii) =⇒ (iii) Let a∈ R. Let K 6= M be a submodule and let m∈M be such that K∩Rm = {0}.

Suppose a(K +Rm)⊆ P. Now, RaR(K +Rm)⊆ Ra(K +Rm)⊆ RP⊆ P. Hence (K +Rm)⊆ P

or K +(RaR)M ⊆ P. Thus (K +Rm)⊆ P or K +aM ⊆ P.

(iii) =⇒ (ii) Let A be an ideal of R. Suppose K 6= M, N are submodules of M in such a

way that K ∩N = {0} and A(K +N) ⊆ P. Let a ∈ A and n ∈ N. Clearly K ∩Rn = {0} and

we have a(K +Rn) ⊆ A(K +N) ⊆ P. This implies that K +Rn ⊆ P or K + aM ⊆ P. Hence

K +N ⊆ P or K +AM ⊆ P.

(iii) =⇒ (iv) Let a ∈ R. Let K 6= M be a submodule and let m ∈M such that K∩Rm = {0}.

Suppose < a > (K +Rm) ⊆ P. Then for all x ∈< a >, x(K +Rm) ⊆< a > (K +Rm) ⊆ P and

from (iii), K +Rm⊆ P or K + xM ⊆ P. This is true for all x in < a >. Hence (iv) holds.

(iii) =⇒ (v) and (iii) =⇒ (vi) are similar to the above proof.

(iv) =⇒ (iii) Let a∈ R. Let K 6=M be a submodule and let m∈M be such that K∩Rm = {0}.

Suppose a(K +Rm)⊆ P. Then a ∈ (P : K +Rm). As P and K +Rm are submodules of M, (P :

K +Rm) is an ideal of R. It follows that < a >⊆ (P : K +Rm) and hence < a > (K +Rm)⊆ P.

Hence K +Rm⊆ P or K+< a > M ⊆ P. Hence it is clear that K +Rm⊆ P or K +aM ⊆ P.

(v) =⇒ (iii) Let a∈ R. Let K 6= M be a submodule and let m∈M be such that K∩Rm = {0}.

Suppose a(K +Rm) ⊆ P. Then a ∈ (P : K +Rm). It follows that < a >⊆ (P : K +Rm) since
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(P : K +Rm) is an ideal of R. Then < a > (K +Rm)⊆ P.

As < a > is an ideal of R, < a > is a left ideal also. Hence K+Rm⊆ P or K+< a > M ⊆ P.

Hence K +Rm⊆ P or K +aM ⊆ P.

(vi) =⇒ (iii) Similar to the above proof.

This completes the proof .

4. UNIQUE MAXIMAL SUBMODULES IN TERMS OF STRONG m-SYSTEM

A nonempty set S⊆M \{0} is said to be a m-system in the sense of David Ssevviiri[4] if, for

each ideal A ⊆ R and for all submodules K, L of M, if (K +L)∩ S 6= /0 and (K +AM)∩ S 6= /0

then (K +AL)∩S 6= /0.

Now we define the notion of strong m-system.

Definition 4.1. A nonempty set S⊆M\{0} is called strong m-system if for each ideal A⊆R and

for all submodules K, L of M such that K∩L = {0} and if (K+L)∩S 6= /0 and (K+AM)∩S 6= /0

then A(K +L)∩S 6= /0.

For let us show that every strong m-system is an m-system. Let S be a strong m-system.

Suppose A is an ideal of R and K, L are submodules of M such that (K + L)∩ S 6= /0 and

(K+AM)∩S 6= /0. If K∩L = {0}, then A(K+L)∩S 6= /0. Since A(K+L)⊆ (K+AL), we have

(K +AL)∩S 6= /0.

If K ∩ L 6= {0}, let K′ = K + L and L′ = {0}. Then K′ ∩ L′ = {0}, (K′+ L′)∩ S 6= /0 and

(K′+AM)∩S 6= /0. Since S is a strong m-system A(K′+L′)∩S 6= /0. Since A(K +L)⊆ K +AL

we have (K +AL)∩S 6= /0 and it follows that S is an m-system.

Hence every strong m-system is an m-system. But the converse need not to be true. The

following example shows that a m-system need not be a strong m-system.

Let R = Z6 be the ring and let the R-module be RR. Then the subset S = {1,3,5} is an

m-system but not a strong m-system. Since A(K +L)∩ S = /0 where A = {0,2,4} is an ideal

of R = Z6, K = {0,3} and L = {0,2,4} are submodules of M = RR with K ∩ L = {0} and

(K +L)∩S 6= /0 and (K +AM)∩S 6= /0.
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In the case of prime submodules, a submodule P of M is prime and M \P is an m-system are

both equivalent. Now, let us extend the result to unique maximal submodules.

Theorem 4.2. Let M be an R-module and let P be a submodule of M. Then P is a unique

maximal submodule if and only if M \P is a strong m-system.

Proof Let P be a unique maximal submodule. Let S = M \P. Let A be an ideal of R. Let

K, L be the submodules of M with K ∩L = {0} and (K +L)∩S 6= /0 and (K +AM)∩S 6= /0. If

A(K +L)∩ S = /0, then A(K +L) ⊆ P. By Theorem 3.1, we have K +L ⊆ P or K +AM ⊆ P.

Hence (K +L)∩S = /0 or (K +AM)∩S = /0, leads a contradiction.

Thus A(K +L)∩S 6= /0 and hence S is a strong m-system.

Conversly, let S = M \P be a strong m-system. Suppose A(K+L)⊆ P where A is an ideal of

R and K 6= M, L are the submodules of M be such that K∩L = {0}.

If K +L * P and K +AM * P, then (K +L)∩ S 6= /0 and (K +AM)∩ S 6= /0. As S is a strong

m-system, we have A(K +L)∩S 6= /0. Then A(K +L)* P, leads a contradiction. Hence P is a

unique maximal submodule.

The well known fact is, if S ⊆ M is an m-system and if P is a submodule of M such that

P∩S = /0 is maximal in concert with this property, then P is prime submodule. A similar result

does hold for strong m-system.

Theorem 4.3. Let S ⊆ M be non-void strong m-system in M and I, a submodule of M with

I∩S = /0. Then I is contained in a unique maximal submodule P with P∩S = /0.

Proof Let A = {J : J is a submodule of M with I ⊆ J and J∩S = /0}. Clearly I ∈A . Then

by Zorn’s lemma, A contains a maximal element say P with P∩S = /0. Now to claim that P is

unique maximal submodule of M.

If A(K+L)⊆P where A is an ideal of R and K 6=M, L are the submodules of M in such a manner

that K∩L = {0}. Suppose K +L * P and K +AM * P. Then by the maximality of P, we have

P+(K+L) and P+(K+AM) are submodules and P+(K+L)∩S 6= /0 and P+(K+AM)∩S 6=

/0. Now, let L′ = {0}, the zero submodule of M. Then ((P+K + L) + L′)∩ S 6= /0. Since

(P+K +AM)∩ S 6= /0, this implies (P+K + L+AM)∩ S 6= /0. Let P+K + L = K′. Then

(K′+ L′)∩ S 6= /0 and (K′+AM)∩ S 6= /0 with K′ ∩ L′ = {0}. Since S is a strong m-system,
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A(K′+L′)∩S 6= /0. Thus A((P+K)+L)∩S 6= /0.

Since A(P+(K +L))⊆ AP+A(K +L)⊆ P, a contradiction to the fact that P∩S = /0.

Hence P is a unique maximal submodule of M containing I.

CONCLUSION

In this paper, the properties of unique maximal submodules related with m-system is studied.

We have estabilished the concept of strong m-system in modules over non-commutative rings

and the existence of unique maximal submodule using the strong m-system. As a future work

we will extend the results in semimodules over semirings.
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