CHARACTERIZATIONS OF UNIQUE MAXIMAL SUBMODULE AND STRONG m-SYSTEM

G.N. SUDHARSHANA*, D. SIVAKUMAR
Department of Mathematics, Annamalai University, Annamalai Nagar, Chidambaram, 608002, Tamil Nadu, India
Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we have introduced the concept of strong m-system in modules over non-commutative rings. Using the strong m-system, the existence of unique maximal submodule is proved. In fact we have shown that if I is a submodule and S is a strong m-system with $I \cap S=\emptyset$ then there exists a unique maximal submodule P with $I \subset P$ such that $P \cap S=\emptyset$. We have also obtained a characterization for unique maximal submodule.

Keywords: unique maximal submodule; strong m-system.
2010 AMS Subject Classification: 06F25.

1. Introduction

Throughout this paper R stands for a ring with identity and M stands for a unital left R module. Prime submodules over the rings which are not necessarily commutative have been studied in a number of paper, for example [5],[1]. The notion of prime submodules was first introduced by J. Dauns in [2]. A proper submodule P of M is called a prime submodule, if for any ideal A of R and for any submodule N of $M, A N \subseteq P$ implies either $N \subseteq P$ or $A M \subseteq P$. David Ssevviiri[[4], Proposition 4.1.1] has shown that as in ring theory, a prime submodule P of M, is defined equivalently as, for any a in R and for any m in $M, a R m \subseteq P$ implies $m \in P$ or

[^0]$a M \subseteq P$. So as in ring theory an m-system in a module should have been defined as follows. A nonempty subset S of M is said to be an m-system if for any m in S and for any a in R with $a k \in S$ for some k in M then there exists an r in R such that $\operatorname{arm} \in S$. One can easily prove that a submodule P of M is prime submodule if and only if $C(P)$, the compliment of P is an m-system. But David Ssevviiri[4] has defined m-system in modules by taking sum of two submodules instead of taking two elements. Ofcourse they have shown that a submodule is prime if and only if it's compliment is an m-system. Following David Ssevviiri[4] we have the definition of an m-system for modules as follows. A subset $S \subseteq M \backslash\{0\}$ of M is an m-system if for any submodules K, L and if $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$ then $(K+A L) \cap S \neq \emptyset$. In this paper, we have introduced the notion of strong m-system in modules.

We have shown that a strong m-system in modules is always an m-system but the converse need not to be true. We have given an example of an m-system which is not a strong m-system. Using strong m-system we have proved the existence of a unique maximal submodule.

We have shown that if I is a submodule and S is a strong m-system with $I \cap S=\emptyset$ then there exists a unique maximal submodule P with $I \subset P$ such that $P \cap S=\emptyset$. If A, B are the submodules of M, one can easily check that $(A: B)=\{r \in R: r B \subseteq A\}$ is an ideal of R. For any $a \in R,\langle a\rangle$ denotes the ideal generated by a.

2. Preliminaries

If R is any ring with unity, we say that M is a unital left R-module if, for any $r \in R$ and $m \in M$, an element $r m \in M$ is defined such that the following conditions hold for all $m, n \in M$ and r, $s \in R:$

$$
\begin{aligned}
& r(m+n)=r m+r n \\
& (r+s) m=r m+s m \\
& (r s) m=r(s m) \\
& 1 m=m
\end{aligned}
$$

A subset N of M is called an R-submodule if the following conditions are satisfied:
N is a subgroup of the (additive, abelian) group M.
$r n$ is in N for all $r \in R$ and $n \in N$.

A proper submodule P of M is called a prime submodule, if for any ideal A of R and for any submodule N of $M, A N \subseteq P$ implies either $N \subseteq P$ or $A M \subseteq P$.

The definition of an m-system for modules as follows[4]. A subset $S \subseteq M \backslash\{0\}$ of M is an m-system if for any submodules K, L and if $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$ then $(K+A L) \cap S \neq \emptyset$.

3. Main Results

Theorem 3.1. For a proper submodule P of M, the axioms that follows are equivalent
(i) P is the unique maximal submodule.
(ii) For any ideal A of R and for submodules $K \neq M$, N of M such that
$K \cap N=\{0\}$ and if $A(K+N) \subseteq P$, then either $K+N \subseteq P$ or
$K+A M \subseteq P$.
(iii) For all $a \in R$ and for a submodule $K \neq M$ and for all m in M such that $K \cap R m=\{0\}$ and if $a(K+R m) \subseteq P$, then either
$K+R m \subseteq P$ or $K+a M \subseteq P$.
(iv) For all $a \in R$, submodule $K \neq M$ and for all m in M such that $K \cap R m=\{0\}$
and if $\langle a\rangle(K+R m) \subseteq P$, then either $K+R m \subseteq P$ or $K+<a>M \subseteq P$.
(v) For every left ideal $A \subseteq R$, submodule $K \neq M$ and for all m in M
such that $K \cap R m=\{0\}$ and if $A(K+R m) \subseteq P$, then either $K+R m \subseteq P$
or $K+A M \subseteq P$.
(vi) For every right ideal $B \subseteq R$, submodule $K \neq M$ and for all
m in M such that $K \cap R m=\{0\}$ and if $B(K+R m) \subseteq P$, then either
$K+R m \subseteq P$ or $K+B M \subseteq P$.

Proof $(i) \Longrightarrow(i i)$ Let A be an ideal of R and let $K \neq M, N$ be the submodules of M such that $K \cap N=\{0\}$ and $A(K+N) \subseteq P$. As P is the unique maximal submodule, we have $K \subseteq P$. Suppose $K+N \nsubseteq P$. Then $(K+N)+P=M$. Let $m \in M$. Then there exists $k \in K, n \in N$ and $p \in P$ such that $m=(k+n)+p$. Let $a \in A$ and $k_{1} \in K$. Then $k_{1}+a m=k_{1}+a(k+n)+a p \in P$ since $k_{1} \in K \subseteq P, a\left(k_{1}+n\right) \in A(K+N) \subseteq P$ and $a p \in A P \subseteq P$. Hence $K+A M \subseteq P$.
$(i i) \Longrightarrow(i)$ First let us show that P is a maximal submodule. Suppose there exists a submodule K such that $P \subseteq K \subseteq M$ with $K \neq M$. If $A=\{0\}$ and $N=\{0\}$ then $A(K+N) \subseteq P$ and hence by assumption $K \subseteq P$. Thus $P=K$.

Suppose L is any other maximal submodule of M. By taking $A=\{0\}$ and $N=\{0\}$ we have $\{0\}(L+\{0\}) \subseteq P$. Hence by (ii) $L \subseteq P$. Hence P is the unique maximal submodule.
(ii) $\Longrightarrow(i i i)$ Let $a \in R$. Let $K \neq M$ be a submodule and let $m \in M$ be such that $K \cap R m=\{0\}$. Suppose $a(K+R m) \subseteq P$. Now, RaR $(K+R m) \subseteq R a(K+R m) \subseteq R P \subseteq P$. Hence $(K+R m) \subseteq P$ or $K+(R a R) M \subseteq P$. Thus $(K+R m) \subseteq P$ or $K+a M \subseteq P$.
$($ iii $) \Longrightarrow($ ii $)$ Let A be an ideal of R. Suppose $K \neq M, N$ are submodules of M in such a way that $K \cap N=\{0\}$ and $A(K+N) \subseteq P$. Let $a \in A$ and $n \in N$. Clearly $K \cap R n=\{0\}$ and we have $a(K+R n) \subseteq A(K+N) \subseteq P$. This implies that $K+R n \subseteq P$ or $K+a M \subseteq P$. Hence $K+N \subseteq P$ or $K+A M \subseteq P$.
(iii) $\Longrightarrow(i v)$ Let $a \in R$. Let $K \neq M$ be a submodule and let $m \in M$ such that $K \cap R m=\{0\}$. Suppose $\langle a>(K+R m) \subseteq P$. Then for all $x \in<a>, x(K+R m) \subseteq<a>(K+R m) \subseteq P$ and from (iii), $K+R m \subseteq P$ or $K+x M \subseteq P$. This is true for all x in $\langle a\rangle$. Hence (iv) holds.
$(i i i) \Longrightarrow(v)$ and $(i i i) \Longrightarrow(v i)$ are similar to the above proof.
$(i v) \Longrightarrow(i i i)$ Let $a \in R$. Let $K \neq M$ be a submodule and let $m \in M$ be such that $K \cap R m=\{0\}$. Suppose $a(K+R m) \subseteq P$. Then $a \in(P: K+R m)$. As P and $K+R m$ are submodules of $M,(P:$ $K+R m)$ is an ideal of R. It follows that $\langle a>\subseteq(P: K+R m)$ and hence $<a>(K+R m) \subseteq P$. Hence $K+R m \subseteq P$ or $K+<a>M \subseteq P$. Hence it is clear that $K+R m \subseteq P$ or $K+a M \subseteq P$.
$(v) \Longrightarrow(i i i)$ Let $a \in R$. Let $K \neq M$ be a submodule and let $m \in M$ be such that $K \cap R m=\{0\}$. Suppose $a(K+R m) \subseteq P$. Then $a \in(P: K+R m)$. It follows that $<a>\subseteq(P: K+R m)$ since
$(P: K+R m)$ is an ideal of R. Then $\langle a\rangle(K+R m) \subseteq P$.
As $<a>$ is an ideal of $R,<a>$ is a left ideal also. Hence $K+R m \subseteq P$ or $K+<a>M \subseteq P$. Hence $K+R m \subseteq P$ or $K+a M \subseteq P$.
$(v i) \Longrightarrow(i i i)$ Similar to the above proof.
This completes the proof .

4. Unique Maximal Submodules in Terms of Strong m-System

A nonempty set $S \subseteq M \backslash\{0\}$ is said to be a m-system in the sense of David Ssevviiri[4] if, for each ideal $A \subseteq R$ and for all submodules K, L of M, if $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$ then $(K+A L) \cap S \neq \emptyset$.

Now we define the notion of strong m-system.

Definition 4.1. A nonempty set $S \subseteq M \backslash\{0\}$ is called strong m-system if for each ideal $A \subseteq R$ and for all submodules K, L of M such that $K \cap L=\{0\}$ and if $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$ then $A(K+L) \cap S \neq \emptyset$.

For let us show that every strong m-system is an m-system. Let S be a strong m-system. Suppose A is an ideal of R and K, L are submodules of M such that $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$. If $K \cap L=\{0\}$, then $A(K+L) \cap S \neq \emptyset$. Since $A(K+L) \subseteq(K+A L)$, we have $(K+A L) \cap S \neq \emptyset$.

If $K \cap L \neq\{0\}$, let $K^{\prime}=K+L$ and $L^{\prime}=\{0\}$. Then $K^{\prime} \cap L^{\prime}=\{0\},\left(K^{\prime}+L^{\prime}\right) \cap S \neq \emptyset$ and $\left(K^{\prime}+A M\right) \cap S \neq \emptyset$. Since S is a strong m-system $A\left(K^{\prime}+L^{\prime}\right) \cap S \neq \emptyset$. Since $A(K+L) \subseteq K+A L$ we have $(K+A L) \cap S \neq \emptyset$ and it follows that S is an m-system.

Hence every strong m-system is an m-system. But the converse need not to be true. The following example shows that a m-system need not be a strong m-system.

Let $R=\mathbb{Z}_{6}$ be the ring and let the R-module be R_{R}. Then the subset $S=\{1,3,5\}$ is an m-system but not a strong m-system. Since $A(K+L) \cap S=\emptyset$ where $A=\{0,2,4\}$ is an ideal of $R=\mathbb{Z}_{6}, K=\{0,3\}$ and $L=\{0,2,4\}$ are submodules of $M=R_{R}$ with $K \cap L=\{0\}$ and $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$.

In the case of prime submodules, a submodule P of M is prime and $M \backslash P$ is an m-system are both equivalent. Now, let us extend the result to unique maximal submodules.

Theorem 4.2. Let M be an R-module and let P be a submodule of M. Then P is a unique maximal submodule if and only if $M \backslash P$ is a strong m-system.

Proof Let P be a unique maximal submodule. Let $S=M \backslash P$. Let A be an ideal of R. Let K, L be the submodules of M with $K \cap L=\{0\}$ and $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$. If $A(K+L) \cap S=\emptyset$, then $A(K+L) \subseteq P$. By Theorem 3.1, we have $K+L \subseteq P$ or $K+A M \subseteq P$. Hence $(K+L) \cap S=\emptyset$ or $(K+A M) \cap S=\emptyset$, leads a contradiction.

Thus $A(K+L) \cap S \neq \emptyset$ and hence S is a strong m-system.
Conversly, let $S=M \backslash P$ be a strong m-system. Suppose $A(K+L) \subseteq P$ where A is an ideal of R and $K \neq M, L$ are the submodules of M be such that $K \cap L=\{0\}$.

If $K+L \nsubseteq P$ and $K+A M \nsubseteq P$, then $(K+L) \cap S \neq \emptyset$ and $(K+A M) \cap S \neq \emptyset$. As S is a strong m-system, we have $A(K+L) \cap S \neq \emptyset$. Then $A(K+L) \nsubseteq P$, leads a contradiction. Hence P is a unique maximal submodule.

The well known fact is, if $S \subseteq M$ is an m-system and if P is a submodule of M such that $P \cap S=\emptyset$ is maximal in concert with this property, then P is prime submodule. A similar result does hold for strong m-system.

Theorem 4.3. Let $S \subseteq M$ be non-void strong m-system in M and I, a submodule of M with $I \cap S=\emptyset$. Then I is contained in a unique maximal submodule P with $P \cap S=\emptyset$.

Proof Let $\mathscr{A}=\{J: J$ is a submodule of M with $I \subseteq J$ and $J \cap S=\emptyset\}$. Clearly $I \in \mathscr{A}$. Then by Zorn's lemma, \mathscr{A} contains a maximal element say P with $P \cap S=\emptyset$. Now to claim that P is unique maximal submodule of M.

If $A(K+L) \subseteq P$ where A is an ideal of R and $K \neq M, L$ are the submodules of M in such a manner that $K \cap L=\{0\}$. Suppose $K+L \nsubseteq P$ and $K+A M \nsubseteq P$. Then by the maximality of P, we have $P+(K+L)$ and $P+(K+A M)$ are submodules and $P+(K+L) \cap S \neq \emptyset$ and $P+(K+A M) \cap S \neq$ \emptyset. Now, let $L^{\prime}=\{0\}$, the zero submodule of M. Then $\left((P+K+L)+L^{\prime}\right) \cap S \neq \emptyset$. Since $(P+K+A M) \cap S \neq \emptyset$, this implies $(P+K+L+A M) \cap S \neq \emptyset$. Let $P+K+L=K^{\prime}$. Then $\left(K^{\prime}+L^{\prime}\right) \cap S \neq \emptyset$ and $\left(K^{\prime}+A M\right) \cap S \neq \emptyset$ with $K^{\prime} \cap L^{\prime}=\{0\}$. Since S is a strong m-system,
$A\left(K^{\prime}+L^{\prime}\right) \cap S \neq \emptyset$. Thus $A((P+K)+L) \cap S \neq \emptyset$.
Since $A(P+(K+L)) \subseteq A P+A(K+L) \subseteq P$, a contradiction to the fact that $P \cap S=\emptyset$.
Hence P is a unique maximal submodule of M containing I.

CONCLUSION

In this paper, the properties of unique maximal submodules related with m-system is studied. We have estabilished the concept of strong m-system in modules over non-commutative rings and the existence of unique maximal submodule using the strong m-system. As a future work we will extend the results in semimodules over semirings.

ACKNOWLEDGEMENT

The authors thank Dr. P. Dheena, Professor, Department of Mathematics, Annamalai University, for suggesting the problem and going through the proof.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

References

[1] P.K. Beiranvand, R. Beyranvand, Almost prime and weakly prime submodules, J. Algebra Appl. 18 (2019), 1950129, DOI: 10.1142/S0219498819501299.
[2] J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156-181.
[3] N.H. McCoy, The Theory of Rings, Macmillan, New York, 1964.
[4] D. Ssevviiri, On Prime modules and radicals of modules, Nelson Mandela Metropolitan University, South Africa, 2011.
[5] G.N. Sudharshana, D. Siva Kumar, On Von Neumann regular modules, Adv. Math. Sci. J. 9 (2020), 19211931.
[6] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

[^0]: *Corresponding author
 E-mail address: sudharshanasss3@gmail.com
 Received March 03, 2021

