
                

*Corresponding author 

E-mail address: kassas@biust.ac.bw 

Received March 04, 2021 

2955 

 

     Available online at http://scik.org 

     J. Math. Comput. Sci. 11 (2021), No. 3, 2955-2980 

https://doi.org/10.28919/jmcs/5641 

ISSN: 1927-5307 

 

 

MULTI-PARAMETRIC APPROACH FOR MULTILEVEL MULTI-LEADER-

MULTI-FOLLOWER GAMES USING EQUIVALENT REFORMULATIONS 

ADDIS BELETE ZEWDE1, SEMU MITIKU KASSA2,* 

1Department of Mathematics, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia 

2Department of Mathematics and Statistical Sciences, Botswana International University of Science and 

Technology, Palapye, Botswana 

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: Multilevel multi-leader multi-follower games address compromises among multiple interacting decision 

agents within a hierarchical system in which multiple followers are involved at each lower-level unit and more than 

one decision maker (multiple leaders) are involved in the upper-level. The leaders' decisions are affected not only by 

reactions of the followers but also by various relationships among the leaders themselves. In general, multiple-leaders 

multiple-followers (MLMF) game serve as an important modeling tool in game theory with many applications in 

economics, engineering, operations research and other fields. In this paper, we have reformulated a multilevel-MLMF 

game into an equivalent multilevel single-leader multi-follower (SLMF) game by introducing a suppositional (or 

dummy) leader, and hence the multiple leaders in the original problem become followers in the second level. If the 

resulting multilevel-SLMF game consists of separable terms and parameterized common terms across all the followers, 

then the problem is further transformed into equivalent multilevel programs having a single leader and single follower 

at each level of the hierarchy. The proposed solution approach can solve multilevel multi-leader multi-follower 
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problems whose objective values at all levels have common but having different positive weights of non-separable 

terms. This result improves the work of Kulkarni and Shanbhag (2015). 

Keywords: multilevel programming; multi-leader multi-follower; Nash equilibrium; multi-parametric programming; 

equivalent reformulation; branch-and–bound. 

2010 AMS Subject Classification: 65K05, 90C26, 90C31, 91A65. 

 

1. INTRODUCTION 

Nash games model competitive behavior among a set of players that make simultaneous decisions. 

Nash equilibrium is a set of strategies in which each individual player has chosen an optimal 

strategy given the strategies chosen by the other players. On the other hand, Stackelberg (single-

leader-follower) game arises when one player, called the leader, commits to a strategy, while the 

remaining players, called followers, react to the strategy selected by competing among them [2]. 

That is, the reaction of the followers is a Nash equilibrium parameterized by the decision variables 

from the leader. The leader chooses an optimal strategy anticipating how the followers will react. 

This choice of the leader requires a complete knowledge of followers' reaction for each of his/her 

action. Based on the number of hierarchical levels and based on the number of decision makers at 

the level of the leader and the followers in the system. If the number of levels is only two, the 

problem is called a bilevel leader-follower game, and if there is only one leader in the system with 

multiple decision makers at the follower’s levels the problem is named as a single-leader-multiple-

followers (SLMF) game. 

Multi-leader-follower games are a class of hierarchical games in which a collection of leaders 

compete in a Nash game constrained by the equilibrium conditions of another Nash game amongst 

the followers. Generally, in a game, when several players take the position as leaders and the rest 

of players take the position as followers, it becomes a multi-leader-follower game. The multi-

leader-follower game may further be classified into the game which contains only one follower, 

called the multi-leader single-follower game, and the game which contains multiple followers, 

called the multi-leader multi-follower game. The leader-follower Nash equilibrium, a solution 
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concept for the multi-leader-follower game, can be defined as a set of leaders' and followers' 

strategies such that no player (leader or follower) can improve his/her status by changing his/her 

own current strategy unilaterally. 

A general 𝑘-level multi-leader multi-follower game involving 𝑁 leaders and multiple followers 

at each level can be described mathematically as: 

min
𝑦1
𝑛∈𝑌1

𝑛
𝐹1
𝑛(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙), 𝑛 ∈ {1,… ,𝑁}

𝑠. 𝑡. 𝐺1
𝑛(𝑦1

𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                

𝐻1(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0

                     min
𝑦2
𝑖∈𝑌2

𝑖
𝑓2
𝑖(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙), 𝑖 ∈ {1, … , 𝐼}

𝑠. 𝑡.  𝑔2
𝑖 (𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0

                ℎ2(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0

⋱

                                                min
𝑦𝑘
𝑙∈𝑌𝑘

𝑙
𝑓𝑘
𝑙(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦
2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙), 𝑙 ∈ {1, … , 𝐿}

                                𝑠. 𝑡.  𝑔𝑘
𝑙 (𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 ) ≤ 0

                                                ℎ𝑘(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0

(1.1) 

where 𝑦1
𝑛 ∈ 𝑌1

𝑛 is a decision vector for the leader's optimization problem and 𝑦1
−𝑛 is a vector of 

the decision variables for all leaders without the vector of decision variables 𝑦1
𝑛, of the 𝑛𝑡ℎ leader. 

i.e., 𝑦1
−𝑛 = (𝑦1

1, … , 𝑦1
𝑛−1, 𝑦1

𝑛+1, … , 𝑦1
𝑛), 𝑛 = 1,2, … ,𝑁. The shared constraint 𝐻1  is the leaders' 

common constraint set whereas, the constraint 𝐺1
𝑛  determines the constraint only for the 𝑛𝑡ℎ 

leader. 𝑦𝑚
𝑐 ∈ 𝑌𝑚

𝑐  is a decision vector for the 𝑐𝑡ℎ  follower at level 𝑚, and 𝑦𝑚
−𝑐  is a vector of 

decision variables for all followers at level 𝑚 without the vector of decision variables 𝑦𝑚
𝑐 , of 

follower 𝑐. i.e.,𝑦𝑚
−𝑐 = (𝑦𝑚

1 , … , 𝑦𝑚
𝑐−1, 𝑦𝑚

𝑐+1, … , 𝑦𝑚
𝑛), where 𝑐 = 𝑖, 𝑗, … , 𝑙 and 𝑚 ∈ {2,3, … , 𝑘}. The 

shared constraint ℎ𝑚 is the 𝑚𝑡ℎ level followers' common constraint set, whereas the constraint 

𝑔𝑚
𝑐  determines the constraint only for the 𝑐𝑡ℎ follower at the 𝑚𝑡ℎ level optimization problem. 

One of a mathematical formulation to solve multi-leader-follower type games is the equilibrium 

problem with equilibrium constraints (EPEC). An EPEC is an equilibrium problem consisting of 

several parametric mathematical programs with equilibrium constraints (MPECs) which contain 
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the strategies of other players as parameters. The equilibria of an EPEC can be achieved when all 

MPECs are solved simultaneously. That means, the equilibrium amongst the followers is 

compactly captured by an equilibrium constraint in the optimization problem of a leader, whereby 

each leader faces a MPECs. The equilibrium amongst leaders is captured by an EPEC and its 

associated equilibria. Multilevel multi-leader-follower problems have the property that the EPECs 

at the lower level are parametric problems as opposed to the bilevel multi-leader multi-follower 

problem. 

The early study associated with the multi-leader-follower game and EPEC could date back to 1984 

by Sherali [16], where a multi-leader-follower game was called a multiple Stackelberg model. 

While multi-leader generalizations were touched upon by Okuguchi [13] and Sherali [16] 

presented amongst the first models for multi-leader-follower games in a Cournot regime. Sherali 

[16] established existence of an equilibrium by assuming that each leader can exactly anticipate 

the aggregate follower reaction curve. He also showed the uniqueness of equilibrium for a special 

case where all leaders share an identical cost function and make identical decisions. 

As Ehrenmann [3] pointed out, the assumption that all leaders make identical decisions is essential 

for ensuring the uniqueness result. He also gave a counterexample to show that, when all leaders 

with identical cost functions make different decisions, the game could reach multiple equilibria. 

In addition, Su [18] considered a forward market equilibrium model that extended the existence 

result of Sherali [16] under some weaker assumptions. Pang and Fukushima [14] considered a 

class of remedial models for the multi-leader-follower game that can be formulated as a 

generalized Nash equilibrium problem (GNEP) with convexified strategy sets. They further 

defined a new equilibrium concept called remedial leader-follower Nash equilibrium and presented 

an existence result with this equilibrium concept. Moreover, in the same paper the authors also 

formulated some examples about oligopolistic electricity market that lead to the multi-leader-

follower games. Based on the strong stationary conditions of each leader in a multi-leader-follower 

game, Leyffer and Munson [12] derived a family of nonlinear complementarity problem, nonlinear 
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program, and MPEC formulations of the multi-leader multi-follower games. They also introduced 

an alternative price-consistent formulation of the multi-leader-follower game that gives rise to a 

square complementarity problem. 

Su [17] proposed a sequential nonlinear complementarity problem (NCP) approach for solving 

EPECs. The approach is related to the relaxation approach used in MPECs [15] that relaxes the 

complementarity condition of each leader and drives the relaxation parameter to zero. Hu and 

Fukushima [7] also considered the EPEC approach in solving bilevel multi-leader-follower games 

for separable cases and assuming existence of unique Nash equilibrium reaction from the followers. 

There are several instances of EPECs for which equilibria have been shown to exist, but there are 

also fairly simple EPECs which admit no equilibria as shown in [14]. Definitive statements on the 

existence of equilibria have been obtained mainly for two level multi-leader-follower games with 

specific structure. In the majority of these settings, the uniqueness of the follower-level equilibrium 

is assumed to construct an implicit form (such as problems with convex strategy sets) which allows 

for the application of standard fixed-point theorems of Brouwer and Kakutani [1,5]. Indeed, when 

the feasible region of the EPEC is convex and compact, the two-level multi-leader multi-follower 

game can be thought of as a conventional Nash game or a generalized Nash game and the existence 

of a global equilibrium follows from classical results. But the equilibrium constraint in an EPEC 

is known for being non-convex and for lacking the continuity properties required to apply fixed 

point theory. Consequently, most standard approaches fail to apply to EPECs and there currently 

exists no general mathematical paradigm that could be built upon to make a theory for general 

EPECs. 

Kulkarni [10] identified subclasses of the non-shared constraint multi-leader multi-follower games 

for which the existence of equilibria can be guaranteed and showed that when the leader-level 

problem admits a potential function, the set of global minimizers of the potential function over the 

shared constraint are the equilibria of the multi-leader multi-follower game; in effect, this reduces 

to a question of the existence of an equilibrium to that of the existence of a solution to an MPEC. 
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Equilibrium to MPEC exists under standard conditions and the existence of a global equilibrium 

was seen to follow. The same authors further showed that local minima, B-stationary points, 

strong-stationary points and second-order strong stationary points of this MPEC are respectively, 

local Nash equilibria, Nash B-stationary points, Nash strong-stationary points and Nash second-

order strong-stationary points of the shared constraint multi-leader multi-follower game. 

Motivated by quasi-potential games through an application in communication networks, Kulkarni 

and Shanbhag [11] also showed that, under the assumption that the objectives of the leaders admit 

a quasi-potential function, the global and local minimizers of a suitably defined optimization 

problem are the global and local equilibria of the game. In effect, existence of equilibria can be 

guaranteed by the solvability of an optimization problem which holds under mild conditions. Their 

result was a general existence result for equilibria for this class of games. Because they impose no 

single-valuedness assumption on the equilibrium of the follower level game. 

A reformulation of the generalized Nash equilibrium problem into a special bilevel programming 

problem is studied in [19]. In this study it is shown that the generalized Nash equilibrium problem 

can be transformed into an equivalent bilevel programming problem having a single decision 

maker at both levels. 

Single-leader and multiple followers (SLMF) games are considered in [9, 20] using different 

approaches. Tharakunnel & Bhattacharyya [20] used the so called “reinforcement learning” 

approach with Q-learning scheme to propose an algorithm to solve bilevel-SLMF games. Kassa 

and Kassa [9] have reformulated the class of multilevel programs with single leader and multiple 

followers that consist of separable terms and parameterized common terms across all the followers, 

into equivalent multilevel programs having single follower at each level. Then the resulting 

(possibly non-convex) multilevel problem is solved by a solution strategy, called a branch-and-

bound multi-parametric programming approach, they have developed in [8]. The method works 

through successive convex relaxation of the inner level problems for fixed parameters followed by 

the application of MPP procedures. 



2961 

MULTILEVEL MULTI-LEADER-MULTI-FOLLOWER GAMES 

The solution approaches for multilevel multi-leader-follower problems that are proposed so far are 

sensitive to the way the criteria functions at each of the levels are formulated and most of them 

work only for two level of decisions. Moreover, the development of implementable solution 

algorithms for multilevel-MLMF games is at its infancy, and researchers are still working on this 

direction. In this paper we will focus on equivalent reformulations of multi-leader problems into 

single-leader problem type, apply the solution approaches for SLMF problems. 

The remaining part of the paper is organized as follows. In the next section the mathematical 

description of the problem is presented, and Section 3 establishes the proposed framework for 

equivalent reformulations. Section 4 outlines the solution procedure of multilevel-MLMF 

problems using the reformulation approach and with the use of multiparametric programming 

approach. Some concrete examples are used to demonstrate the proposed method in Section 5 

followed by conclusive remarks in Section 6. 

2. EQUIVALENT REFORMULATIONS OF BILEVEL-MLMF GAMES 

In this section, we will consider the possibilities of reformulating bilevel games with multiple 

leaders and multiple followers first as bilevel games having a single leader and multiple followers.  

Consider a bilevel multi-leader multi-follower (bilevel-MLMF) game involving 𝑁 leaders in the 

upper level and 𝑀 followers at lower level which is defined as: 

min
𝑥𝑖∈𝑋𝑖

 𝐹𝑖(𝑥
𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗)         

𝑠. 𝑡.  𝐺𝑖(𝑥
𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0

               𝐻(𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0

               min
𝑦𝑗∈𝑌𝑗

 𝑓𝑗(𝑥
𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗)

                     𝑠. 𝑡.  𝑔𝑗(𝑥
𝑖 , 𝑥−𝑖, 𝑦𝑗) ≤ 0

                                    ℎ(𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0

                        (2.1) 
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Let us assume that 𝐹𝑖, 𝐺𝑖 , 𝐻, ℎ, 𝑓𝑗 , 𝑔𝑗, 𝑖 = 1,2, … ,𝑁, 𝑗 = 1,2, … ,𝑀  are twice continuously 

differentiable functions and that the followers’ constraint functions satisfy the Guignard constraint 

qualifications conditions and let us define some relevant sets related to problem (1) as follows: 

(i) The feasible set of problem (2.1) is given by:                                                  

𝒜 = {(𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): 𝑔𝑗(𝑥
𝑖 , 𝑥−𝑖, 𝑦𝑗) ≤ 0, ℎ(𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0, 𝐺𝑖(𝑥

𝑖 , 𝑦𝑗 , 𝑦−𝑗)

≤ 0,𝐻(𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗, 𝑦−𝑗) ≤ 0, 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑀}. 

(ii) The feasible set for the 𝑗𝑡ℎ follower (for any leaders strategy 𝑥 = (𝑥𝑖 , 𝑥−𝑖)) can be defined 

as 𝒜𝑗(𝑥
𝑖 , 𝑥−𝑖, 𝑦−𝑗) = {𝑦𝑗 ∈ 𝑌𝑗: 𝑔𝑗(𝑥

𝑖, 𝑥−𝑖, 𝑦𝑗) ≤ 0, ℎ(𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0}} 

(iii) The Nash rational reaction set for the 𝑗𝑡ℎ follower is defined by the set of parametric 

solutions, 

ℬ𝑗(𝑥
𝑖, 𝑥−𝑖, 𝑦−𝑗) = {�̅�𝑗 ∈ 𝑌𝑗: �̅�𝑗 ∈ argmin{𝑓𝑗(𝑥

𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): 𝑦𝑗 ∈ 𝒜𝑗(𝑥
𝑖, 𝑥−𝑖, 𝑦−𝑗)}, 𝑗

= 1,… ,𝑀}. 

(iv)  The feasible set for the 𝑖𝑡ℎ leader is defined as    

𝒜𝑖(𝑥
−𝑖) = {(𝑥𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ 𝑋𝑖 × 𝑌𝑗 × 𝑌−𝑗: 𝐺𝑗(𝑥

𝑖 , 𝑦𝑗 , 𝑦−𝑗) ≤ 0,𝐻(𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗)

≤ 0, 𝑔𝑗(𝑥
𝑖, 𝑥−𝑖, 𝑦𝑗) ≤ 0, ℎ(𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗, 𝑦−𝑗) ≤ 0, 𝑦𝑗 ∈ ℬ𝑗(𝑥

𝑖 , 𝑥−𝑖, 𝑦−𝑗), 𝑗

= 1,… ,𝑀} 

(v) The Nash rational reaction set for the 𝑖𝑡ℎ leader is defined as 

ℬ𝑖(𝑥
−𝑖) = {(𝑥𝑖 , 𝑦𝑗 , 𝑦−𝑗) ∈ 𝑋𝑖 × 𝑌𝑗 × 𝑌−𝑗: 𝑥𝑖

∈ argmin{𝐹𝑖(𝑥
𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): (𝑥𝑖 , 𝑦𝑗 , 𝑦−𝑗) ∈ 𝒜𝑖(𝑥

−𝑖)}, 𝑖 = 1,… ,𝑁}. 

(vi) The set of Nash equilibrium points (optimal solutions) of problem (2.1) is given by  

𝒮 = {(𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): (𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ 𝒜, (𝑥𝑖 , 𝑦𝑗 , 𝑦−𝑗) ∈ ℬ𝑖(𝑥
−𝑖), 𝑖 = 1,… ,𝑁} 

Now we shall formulate an equivalent trilevel single-leader multi-follower (trilevel-SLMF) 

programming problem for (2.1) and we will show their equivalence. 
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Let us add an upper level decision maker, a suppositional (or dummy) leader, to the problem (2.1) 

with the corresponding decision variable𝑧, where 𝑧 = (𝑥, 𝑦) = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑚), and 

objective function equal to a constant 𝛼. Then the multiple leaders in the upper level problem of 

(2.1) become middle-level followers and the multiple followers in the lower level problem of (2.1) 

become bottom-level followers in the second level and we will get the following trilevel-SLMF 

programming: 

min
𝑧
 𝛼                            

𝑠. 𝑡.  𝑧 = (𝑥, 𝑦)      

                          min
𝑥𝑖∈𝑋𝑖

 𝐹𝑖(𝑥
𝑖 , 𝑥−𝑖 , 𝑦𝑗 , 𝑦−𝑗)

                                𝑠. 𝑡.  𝐺𝑖(𝑥
𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0

                                                𝐻(𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0

                                                min
𝑦𝑗∈𝑌𝑗

𝑓𝑗(𝑥
𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗)

                                                        𝑠. 𝑡.  𝑔𝑗(𝑥
𝑖 , 𝑥−𝑖, 𝑦𝑗) ≤ 0

                                                                        ℎ(𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0

                        (2.2) 

Let us assume that each of the objective functions is convex with respect to its own decision 

variable for the second and third level followers and the Guignard constraint qualifications 

condition hold for the follower’s constraints and let us define some relevant sets related to problem 

(2.2) as follows: 

(i) The feasible set for the third level follower’s problem is defined as:                                         

𝛺3(𝑥
𝑖 , 𝑥−𝑖, 𝑦𝑗) = {𝑦𝑗 ∈ 𝑌𝑗: 𝑔𝑗(𝑥

𝑖, 𝑥−𝑖, 𝑦𝑗) ≤ 0, ℎ(𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0}}. 

(ii)  The rational reaction set for the third level followers problem is given by a set of parametric 

solutions, 𝛹3(𝑥
𝑖 , 𝑥−𝑖, 𝑦−𝑗) = {�̅�𝑗 ∈ 𝑌𝑗: �̅�𝑗 ∈ argmin{𝑓𝑗(𝑥

𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): 𝑦𝑗 ∈

𝛺3(𝑥
𝑖 , 𝑥−𝑖, 𝑦𝑗)}, 𝑗 = 1,… ,𝑀}. 

(iii) The feasible set for the second level problem is given by 
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𝛺2(𝑥
−𝑖) = {(𝑥𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ 𝑋𝑖 × 𝑌𝑗 × 𝑌−𝑗: 𝐺𝑗(𝑥

𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0,𝐻(𝑥𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗)

≤ 0, 𝑔𝑗(𝑥
𝑖, 𝑥−𝑖, 𝑦𝑗) ≤ 0, ℎ𝑗(𝑥

𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0, 𝑦𝑗 ∈ 𝛹3(𝑥
𝑖 , 𝑥−𝑖, 𝑦−𝑗), 𝑗

= 1,… ,𝑀} 

(iv) The rational reaction set for the second level followers’ problem is defined as: 

𝛹2(𝑥
−𝑖) = {(𝑥𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ 𝑋𝑖 × 𝑌𝑗 × 𝑌−𝑗: 𝑥𝑖

∈ argmin{𝐹𝑖(𝑥
𝑖, 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): (𝑥𝑖 , 𝑦𝑗 , 𝑦−𝑗) ∈ 𝛺2(𝑥

−𝑖)}, 𝑖 = 1,… ,𝑁}. 

(v)  The feasible set of problem (2.2) is given by: 

𝛷 = {(𝑧, 𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): 𝑧 = (𝑥, 𝑦), 𝐺𝑗(𝑥
𝑖 , 𝑦𝑗 , 𝑦−𝑗) ≤ 0,𝐻(𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗)

≤ 0, 𝑔𝑗(𝑥
𝑖 , 𝑥−𝑖, 𝑦𝑗) ≤ 0, ℎ𝑗(𝑥

𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ≤ 0, 𝑖 = 1,… ,𝑁, 𝑗

= 1, … ,𝑀} 

(vi) The inducible region of problem (2.2) is given by  

ℐℛ = {(𝑧, 𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗): (𝑧, 𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ 𝛷, (𝑥𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ 𝛹2(𝑥
−𝑖), 𝑖

= 1,… ,𝑁} 

With these definitions of sets, problem (2.2) could be equivalently rewritten as: 

min
𝑧
 𝛼

𝑠. 𝑡. (𝑧, 𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ ℐℛ
      (2.3) 

Since every feasible point of (2.3) is an optimal point, the optimal set of (2.3) is given by 

𝒮∗ = ℐℛ = {(𝑧, 𝑥𝑖 , 𝑥−𝑖 , 𝑦𝑗 , 𝑦−𝑗): (𝑧, 𝑥𝑖 , 𝑥−𝑖, 𝑦𝑗 , 𝑦−𝑗) ∈ 𝛷, (𝑥𝑖 , 𝑦𝑗 , 𝑦−𝑗) ∈ 𝛹2(𝑥
−𝑖), 𝑖 = 1, … , 𝑁} 

Once we have established relations between the bilevel-SLMF problem (2.1) and the trilevel-

SLMF problem (2.2). We will describe their equivalence with the following theorem. 

Theorem 2.1 A point (𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗)  is an optimal solution to (2.1) if and only if 

(𝑧∗, 𝑥∗,𝑖, 𝑥∗,−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) is an optimal solution to (2.3). 
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Proof: Suppose that (𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗)  is an optimal solution to (2.1), i.e., 

(𝑥 ,𝑖, 𝑥−𝑖, 𝑦 ,𝑗, 𝑦−𝑗) ∈ 𝒮  which implies that (𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) ∈ 𝒜, (𝑥 ,𝑖, 𝑦 ,𝑗 , 𝑦−𝑗) ∈

ℬ𝑖(𝑥
,−𝑖), 𝑖 = 1,… ,𝑁. That means, 

(𝑥∗,𝑖, 𝑦∗,𝑗 , 𝑦−𝑗) ∈ 𝛹2(𝑥
∗,−𝑖), 𝑔𝑗(𝑥

∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗) ≤ 0, ℎ(𝑥∗,𝑖, 𝑥∗,−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ≤ 0, 

𝐺𝑖(𝑥
,𝑖, 𝑦 ,𝑗, 𝑦−𝑗) ≤ 0, 𝐻(𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ≤ 0, 𝑖 = 1, … , 𝑁, 𝑗 = 1,… ,𝑀. 

Then for any point (𝑧∗, 𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) where 𝑧∗ = (𝑥∗, 𝑦∗) and (𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) ∈ 𝑆, 

we have 

  (𝑥∗,𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ∈ 𝛹2(𝑥
∗,−𝑖), 𝑧∗ = (𝑥∗, 𝑦∗), 

𝑔𝑗(𝑥
∗,𝑖, 𝑥∗,−𝑖, 𝑦∗,𝑗) ≤ 0, ℎ(𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ≤ 0, 𝑗 = 1,… ,𝑀 

𝐺𝑖(𝑥
∗,𝑖, 𝑦∗,𝑗, 𝑦∗−𝑗) ≤ 0,𝐻(𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) ≤ 0, 𝑖 = 1,… ,𝑁. 

 This implies that (𝑧∗, 𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ∈ 𝛷  and (𝑥∗,𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ∈ 𝛹2(𝑥
∗,−𝑖) . Therefore, 

(𝑧∗, 𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) ∈ ℐℛ = 𝒮∗ and hence (𝑧∗, 𝑥∗,𝑖, 𝑥∗,−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) is an optimal solution 

to (2.3). 

Conversely, suppose that (𝑧∗, 𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗)  is an optimal solution to (2.3), 

i.e., (𝑧∗, 𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) ∈ 𝒮∗ then we have (𝑧∗, 𝑥∗,𝑖, 𝑥∗−𝑖 , 𝑦∗,𝑗 , 𝑦∗,−𝑗) ∈ 𝛷  and 

(𝑥∗,𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ∈ 𝛹2(𝑥
∗,−𝑖). This implies the following 

(𝑥∗,𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ∈ 𝐵𝑖(𝑥
∗,−𝑖), 

𝑔𝑗(𝑥
∗,𝑖, 𝑥∗,−𝑖, 𝑦∗,𝑗) ≤ 0, ℎ(𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ≤ 0, 𝑗 = 1,… ,𝑀 

𝐺𝑖(𝑥
∗,𝑖 , 𝑦∗,𝑗 , 𝑦∗,−𝑗) ≤ 0,𝐻(𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ≤ 0, 𝑖 = 1,… ,𝑁. 
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That is, (𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ∈ 𝒜, (𝑥∗,𝑖, 𝑦∗,𝑗 , 𝑦∗,−𝑗) ∈ ℬ𝑖(𝑥
∗,−𝑖), 𝑖 = 1, … , 𝑁.  

Therefore(𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) ∈ 𝒮 and hence (𝑥∗,𝑖, 𝑥∗−𝑖, 𝑦∗,𝑗, 𝑦∗,−𝑗) is an optimal solution to 

(2.1). 

Remark 2.1: The idea described above can be extended to any finite 𝑘-level multi-leader multi-

follower programming problem. By adding a dummy upper decision maker, problem (1.1) can be 

equivalently reformulated as (𝑘 + 1)-level SLMF game. As a result, leaders in the upper-level 

problem of (1.1) become followers at the second-level and followers at 𝑚𝑡ℎ-level problem of (1.1) 

become followers at (𝑚 + 1)𝑡ℎ-level, where 𝑚 ∈ {2, … , 𝑘}. 

 

3. EQUIVALENT REFORMULATION OF MULTILEVEL-MLMF GAMES 

In this section we extend the reformulation discussed in Section 2 to the general k-level case. 

Consider a class of problem (1.1) with a property that each leaders' objective function consisting 

of separable terms and parameterized common terms across all leaders with positive weights 𝜌1 ∈

ℝ+
𝑁, i.e., for each 𝑛𝑡ℎ leader we have: 

𝐹1
𝑛(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)

= �̂�1
𝑛(𝑦1

𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) + F1

𝑛(𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)

+ 𝜌1
𝑛�̃�1

𝑛(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙), 

with 𝜌1
𝑛 > 0 for each 𝑛 = 1,2, … ,𝑁, and with a property that at all levels in the hierarchy each 

followers' objective function consisting of separable terms and parameterized common terms 

across all followers of the same level with positive weights 𝜌𝑚
𝑐 ∈ ℝ+

𝑁, i.e., for the 𝑐𝑡ℎ follower at 

𝑚𝑡ℎ-level, 𝑚 ∈ {2,3, … , 𝑘}, we have 

𝑓𝑚
𝑐(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦𝑚

𝑐 , 𝑦𝑚
−𝑐) = 𝑓𝑚

𝑐(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦𝑚
𝑐 ) + 𝑓�̅�

𝑐(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦𝑚
−𝑐) + 𝜌𝑚

𝑐 𝑓𝑚
𝑐(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦𝑚

𝑐 , 𝑦𝑚
−𝑐) 

with 𝜌𝑚
𝑐 > 0, for each 𝑚 = 2,3,… , 𝑘 and 𝑐 = 𝑖, 𝑗, … , 𝑙. 

With these assumptions and using Remark 2.1, problem (1.1) can be reformulated as: 
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min
𝑥
  𝛼                                                                                                                                                            

𝑠. 𝑡.  𝑥 = (𝑦1, 𝑦2, … 𝑦𝑛)                                                                                                                           

𝑚𝑖𝑛
𝑦1
𝑛∈𝑌1

𝑛
{�̂�1

𝑛(𝑦1
𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) + �̅�1

𝑛(𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)  

+𝜌1
𝑛�̃�1

𝑛(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)}, 𝑛 ∈ {1, … , 𝑁}

𝑠. 𝑡.  𝐺1
𝑛(𝑦1

𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                                               

𝐻1(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                               

                𝑚𝑖𝑛
𝑦2
𝑖∈𝑌2

𝑖
{𝑓2

𝑖(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) + 𝑓2̅

𝑖(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)

+𝜌2
𝑖𝑓2

𝑖(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)}, 𝑖 ∈ {1, … , 𝐼}

𝑠. 𝑡.  𝑔2
𝑖 (𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                               

ℎ2(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                

⋱

                        𝑚𝑖𝑛
𝑦𝑘
𝑙∈𝑌𝑘

𝑙
{𝑓𝑘

𝑙(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 ) + 𝑓�̅�
𝑙(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

−𝑙)

+𝜌𝑘
𝑙 𝑓𝑘

𝑙(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)}, 𝑙 ∈ {1, … , 𝐿}

𝑠. 𝑡.  𝑔𝑘
𝑙 (𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 ) ≤ 0                                

ℎ𝑘(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                

(3.1) 

Then as it was shown in [9], problem (3.1) can be reformulated into its equivalent hierarchical 

multilevel programming problem having single decision maker at each decision level: 

min
𝑥
  𝛼                                                                                                                                                                            

𝑠. 𝑡.  𝑥 = (𝑦1, 𝑦2, … , 𝑦𝑛)                                                                                                                                         

𝑚𝑖𝑛
𝑦1
𝑛∈𝑌1

𝑛
{
1

𝜌1
𝑛 �̂�1

𝑛(𝑦1
𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) + �̃�1

𝑛(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖 , 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)}

𝑠. 𝑡.  𝐺1
𝑛(𝑦1

𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                                                           

𝐻1(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                                          

𝑚𝑖𝑛
𝑦2
𝑖∈𝑌2

𝑖
{
1

𝜌2
𝑖
𝑓2
𝑖(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) + 𝑓2

𝑖(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)}

𝑠. 𝑡.  𝑔2
𝑖 (𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                                                          

ℎ2(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                                          
⋱

𝑚𝑖𝑛
𝑦𝑘
𝑙∈𝑌𝑘

𝑙
{
1

𝜌𝑘
𝑙 𝑓𝑘

𝑙(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 ) + 𝑓𝑘
𝑙(𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙)}

𝑠. 𝑡.  𝑔𝑘
𝑙 (𝑦1

𝑛, 𝑦1
−𝑛, 𝑦2

𝑖 , 𝑦2
−𝑖, 𝑦3

𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 ) ≤ 0                                                                          

ℎ𝑘(𝑦1
𝑛, 𝑦1

−𝑛, 𝑦2
𝑖 , 𝑦2

−𝑖, 𝑦3
𝑗
, 𝑦3

−𝑗
, … , 𝑦𝑘

𝑙 , 𝑦𝑘
−𝑙) ≤ 0                                                          

(3.2) 
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Proposition 3.1: A point (𝑦1
∗,𝑛, 𝑦1

∗,−𝑛, 𝑦2
∗,𝑖, 𝑦2

∗,−𝑖, 𝑦3
∗,𝑗
, 𝑦3

∗,−𝑗
, … , 𝑦𝑘

∗,𝑙, 𝑦𝑘
∗,−𝑙) is an optimal solution to 

(3.1) if and only if  (𝑥∗, 𝑦1
∗,𝑛, 𝑦1

∗,−𝑛, 𝑦2
∗,𝑖, 𝑦2

∗,−𝑖, 𝑦3
∗,𝑗
, 𝑦3

∗,−𝑗
, … , 𝑦𝑘

∗,𝑙, 𝑦𝑘
∗,−𝑙) is an optimal solution to 

(3.2). 

Proof: Follows from Theorem 2.1 and the equivalence of (3.1) and (3.2). 

 

4. SOLUTION APPROACH FOR SPECIAL CLASSES OF MULTILEVEL-MLMF GAMES 

In this section we suggest an appropriate solution method to solve a multilevel program with 

multiple leader and multiple followers at each decision level. And we introduce a pseudo 

algorithmic approach to solve some classes of multilevel program with multiple leader and 

multiple followers. 

The basic steps of the proposed algorithm were as follows: 

(1) Reformulate the given multilevel program with multiple leaders and multiple followers 

into equivalent multilevel program with single leader and multiple followers as discussed 

in Section 2 and 3. 

(2) If the resulting problems in step (1) above have a property that at all levels in the hierarchy 

each follower’s objective function consisting of separable terms and parameterized 

common terms across all followers of the same level, then it can be reformulated into 

equivalent multilevel program having a single follower over the hierarchy as discussed in 

Section 4. 

(3) Then to solve the resulting problem in step (2) above, one can apply any known method 

that can effectively solve multilevel single-leader-follower problems. 

For the examples below, in particular, we apply the multi-parametric programming methods 

proposed in [6] and [9]. 
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5.  ILLUSTRATIVE EXAMPLES 

Example 1. Consider the following nonlinear bilevel-MLMF programming problem: 

{min 
𝑥1
𝐹1(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑥1

2 − 𝑥1𝑥2 − 𝑥1 + 𝑥1𝑦1                                          

min
𝑥2
 𝐹2(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑥2

2 −
1

2
𝑥1𝑥2 − 2𝑥2 + 𝑦2}                                     

𝑠. 𝑡.  𝑥1 + 𝑥2 ≤ 1.5                                                                                    

{min
𝑦1
 𝑓1(𝑥1, 𝑥2, 𝑦1, 𝑦2) =

1

2
𝑦1
2 + 𝑦1𝑦2 + 𝑦1 − 𝑥1𝑦1           

min
𝑦2
 𝑓2(𝑥1, 𝑥2, 𝑦1, 𝑦2) =

1

2
𝑦2
2 + 𝑦1𝑦2 + 𝑦2 − 𝑥2𝑦2}      

𝑠. 𝑡.  2𝑦1 + 𝑦2 + 𝑥1 − 2𝑥2 ≤ 3, 𝑦1 + 𝑦2 ≤ 2.5     
0 ≤ 𝑥1, 𝑥2 ≤ 1,0 ≤ 𝑦1 ≤ 2,0 ≤ 𝑦2 ≤ 1

(5.1) 

An equivalent tri-level single-leader multi-follower problem for (5.1) is given by: 

min
𝑧
 𝛼                                                                                                                              

𝑠. 𝑡.  𝑧 = (𝑥, 𝑦)                                                                                                         

{min
𝑥1
 𝐹1(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑥1

2 − 𝑥1𝑥2 − 𝑥1 + 𝑥1𝑦1                            

min
𝑥2
 𝐹2(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑥2

2 −
1

2
𝑥1𝑥2 − 2𝑥2 + 𝑦2}                    

𝑠. 𝑡.  𝑥1 + 𝑥2 ≤ 1.5                                                                        

{min
𝑦1
 𝑓1(𝑥1, 𝑥2, 𝑦1, 𝑦2) =

1

2
𝑦1
2 + 𝑦1𝑦2 + 𝑦1 − 𝑥1𝑦1   

min
𝑦2
 𝑓2(𝑥1, 𝑥2, 𝑦1, 𝑦2) =

1

2
𝑦2
2 + 𝑦1𝑦2 + 𝑦2 − 𝑥2𝑦2}

𝑠. 𝑡.   2𝑦1 + 𝑦2 + 𝑥1 − 2𝑥2 ≤ 3, 𝑦1 + 𝑦2 ≤ 2.5
       0 ≤ 𝑥1, 𝑥2 ≤ 1,0 ≤ 𝑦1 ≤ 2,0 ≤ 𝑦2 ≤ 1

(5.2) 

Then (5.2) is transformed into the following tri-level programming problem: 

min
𝑧
 𝛼                                                                                                                                                                

𝑠. 𝑡.  𝑧 = (𝑥, 𝑦)                                                                                                                                            

min
𝑥1,𝑥2

 𝐹(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑥1
2 − 𝑥1 + 𝑥1𝑦1 + 2𝑥2

2 − 4𝑥2 − 𝑥1𝑥2                                        

𝑠. 𝑡.  𝑥1 + 𝑥2 ≤ 1.5                                                                                                             

min
𝑦1,𝑦2

 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) =
1

2
𝑦1
2 + 𝑦1 − 𝑥1𝑦1 +

1

2
𝑦2
2 + 𝑦2 − 𝑥2𝑦2 + 𝑦1𝑦2

𝑠. 𝑡.  2𝑦1 + 𝑦2 + 𝑥1 − 2𝑥2 ≤ 3, 𝑦1 + 𝑦2 ≤ 2.5                                        
     0 ≤ 𝑥1, 𝑥2 ≤ 1,0 ≤ 𝑦1 ≤ 2,0 ≤ 𝑦2 ≤ 1                                        

(5.3) 
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Then the third level problem in (5.3) can be considered as a MPP problem with parameter 𝑥 =

(𝑥1, 𝑥2): 

min
𝑦1,𝑦2

 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) =
1

2
𝑦1
2 + 𝑦1 − 𝑥1𝑦1 +

1

2
𝑦2
2 + 𝑦2 − 𝑥2𝑦2 + 𝑦1𝑦2

𝑠. 𝑡.  2𝑦1 + 𝑦2 + 𝑥1 − 2𝑥2 ≤ 3, 𝑦1 + 𝑦2 ≤ 2.5                                        
0 ≤ 𝑥1, 𝑥2 ≤ 1,0 ≤ 𝑦1 ≤ 2,0 ≤ 𝑦2 ≤ 1                                   

(5.4) 

Problem (5.4) have a bilinear term 𝑏12𝑦1𝑦2 = 𝑦1𝑦2 , a concave function 𝑐(𝑦) = 0, ℎ1(𝑥) =

−𝑥1𝑦1 − 𝑥2𝑦2andℎ2(𝑦) = 𝑦1 + 𝑦2  at the objective function. This can result in multiple Nash 

equilibrium reaction for at least one feasible choice of the leader's problem. So, we should apply a 

mathematical procedure described in [8].  The convex envelope of the bilinear terms 𝑦1𝑦2 taken 

over the rectangle 𝑅 = {(𝑦1, 𝑦2): 0 ≤ 𝑦1 ≤ 2,0 ≤ 𝑦2 ≤ 1}  is denoted by 𝑉𝑒𝑥𝑅[𝑏12𝑦1𝑦2]  and 

can be obtained as follows: 𝑏12 = 1 > 0 ⇒ 𝑙12
1 (𝑦1, 𝑦2) = 0, 𝑙12

2 (𝑦1, 𝑦2) = 𝑦1 + 2𝑦2 − 2, 

𝑉𝑒𝑥𝑅[𝑏12𝑦1𝑦2] = max {𝑙12
1 (𝑦1, 𝑦2), 𝑙12

2 (𝑦1, 𝑦2)} = max {0, 𝑦1 + 2𝑦2 − 2} = 𝑦1 + 2𝑦2 − 2 

Therefore, the under-estimator of the objective function in (6.8) is equal to: 

1

2
𝑦1
2 +

1

2
𝑦2
2 + 𝑉𝑒𝑥𝑅[𝑏12𝑦1𝑦2] + 𝑉𝑒𝑥𝑐 + ℎ1(𝑥) + ℎ2(𝑦)

=
1

2
𝑦1
2 +

1

2
𝑦2
2 + 2𝑦1 + 3𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2 − 2 

Thus, the under-estimator problem of (6.4) is formulated as: 

min
𝑦1,𝑦2

 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) =
1

2
𝑦1
2 +

1

2
𝑦2
2 + 2𝑦1 + 3𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2 − 2

𝑠. 𝑡.  2𝑦1 + 𝑦2 + 𝑥1 − 2𝑥2 ≤ 3, 𝑦1 + 𝑦2 ≤ 2.5                                        
0 ≤ 𝑥1, 𝑥2 ≤ 1,0 ≤ 𝑦1 ≤ 2,0 ≤ 𝑦2 ≤ 1                                   

(5.5) 

The Lagrangian of the problem (5.5) is given by, 𝐿(𝑥, 𝑦, 𝜆) =
1

2
𝑦1
2 +

1

2
𝑦2
2 + 2𝑦1 + 3𝑦2 − 𝑥1𝑦1 −

𝑥2𝑦2 − 2 + 𝜆1(2𝑦1 + 𝑦2 + 𝑥1 − 2𝑥2 − 3) + 𝜆2(𝑦1 + 𝑦2 − 2.5). 

We can apply the multi-parametric programming (MPP) approach to solve (5.5). 

(
𝑦(𝑥)
𝜆(𝑥)

) = (
𝑦0
𝜆0
) − 𝑀0

−1𝑁0(𝑥 − 𝑥0) 
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where (𝑦0, 𝜆0) = (𝑦(𝑥0), 𝜆(𝑥0)),𝑀0 = 𝑀(𝑥0) and 𝑁0 = 𝑁(𝑥0). 

If we take a point 𝑥0 = (0.5,0.5) which is feasible for the second level problem we have, 

(
𝑦0
𝜆0
) = (

0
0
0
0

) ,𝑁0 = (

−1 0
0 −1
0 0
0 0

) ,𝑀0 = (

1 0 2 1 1 0
0 1 1 1 0 1
0 0 3.5 0 0 0
0 0 0 2.5 0 0

) 

And we have got the following parametric solutions, 

(
𝑦1(𝑥)
𝑦2(𝑥)

) = (
𝑥1 − 0.5
𝑥2 − 0.5

) 

with the corresponding critical region 𝐶𝑅 = 𝐶𝑅𝐼 = {
𝑦∗(𝑥) = [

𝑥1 − 0.5
𝑥2 − 0.5

]

0 ≤ 𝑥1, 𝑥2 ≤ 1
 

Incorporating the solution into the second level follower’s problem of (6.3) and we obtain: 

min
𝑥1,𝑥2

 𝐹(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 2𝑥1
2 + 2𝑥2

2 − 𝑥1𝑥2 − 1.5𝑥1 − 4𝑥2

𝑠. 𝑡.  𝑥1 + 𝑥2 ≤ 1.5, 0 ≤ 𝑥1, 𝑥2 ≤ 1                                     
(5.6) 

Solving (5.6) we obtain the solution (𝑥1, 𝑥2) = (0.5,1). Then it is incorporated into the leader's 

problem of (5.3) and solved to obtain the solution 𝑧 = (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0.5,1,0,0.5). Therefore, 

the optimal solution to the bilevel multi-leader multi-follower programming problem (5.1) is 

(𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0.5,1,0,0.5)  with the corresponding objective values 𝐹1 = −0.75, 𝐹2 =

−0.75, 𝑓1 = 0 and 𝑓2 = 0.125. 

Example 2: Consider the following trilevel-MLMF programming problem: 
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{min
𝑥1
𝐹1(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥1

2 + 𝑦1𝑥2 + 2𝑧1

  min
𝑥2
𝐹2(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑒𝑥2 − 3𝑥1𝑦2

2 − 𝑧2}

     𝑠. 𝑡. {min
𝑦1
𝑓1
2(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = (𝑦1 − 𝑥1)

2 + 𝑧1
2

           min
𝑦2
𝑓2
2(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥2

2 + (𝑦2 − 2)
2 + 𝑧2}

             𝑠. 𝑡. {min
𝑧1
𝑓1
3(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥1 − 𝑦1𝑧2 + 2𝑧1

2

                    min
𝑧2
𝑓2
3(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥2 + 𝑦2𝑧1 + 3𝑧2

2}

                      𝑠. 𝑡. 2𝑥1 + 2𝑦1 + 3𝑧1 ≥ 6, 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

                           2𝑥1 + 𝑥2 + 3𝑦1 + 𝑧1 ≥ 3, 𝑥1 + 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

                           𝑥1 + 5𝑥2 + 𝑦1 + 𝑦2 + 𝑧1 + 2𝑧2 ≥ 4,

                           0 ≤ 𝑥1, 𝑥2 ≤ 1, 0 ≤ 𝑦1, 𝑦2 ≤ 1, 0 ≤ 𝑧1, 𝑧2 ≤ 3

(5.7) 

An equivalent four-level single-leader multi-follower problem for (5.7) is given by:   

min
𝑢
 𝛼

  𝑠. 𝑡. 𝑢 = (𝑥, 𝑦, 𝑧)

     {min
𝑥1
 𝐹1(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥1

2 + 𝑦1𝑥2 + 2𝑧1

       min
𝑥2
 𝐹2(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑒𝑥2 − 3𝑥1𝑦2

2 − 𝑧2}

         𝑠. 𝑡. {min
𝑦1
 𝑓1
2(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = (𝑦1 − 𝑥1)

2 + 𝑧1
2

                min
𝑦2
 𝑓2
2(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥2

2 + (𝑦2 − 2)
2 + 𝑧2}

                  𝑠. 𝑡. {min
𝑧1
 𝑓1
3(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥1 − 𝑦1𝑧2 + 2𝑧1

2

                        min
𝑧2
 𝑓2
3(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 𝑥2 + 𝑦2𝑧1 + 3𝑧2

2}

                          𝑠. 𝑡. 2𝑥1 + 2𝑦1 + 3𝑧1 ≥ 6, 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

                               2𝑥1 + 𝑥2 + 3𝑦1 + 𝑧1 ≥ 3, 𝑥1 + 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

                               𝑥1 + 5𝑥2 + 𝑦1 + 𝑦2 + 𝑧1 + 2𝑧2 ≥ 4,

                               0 ≤ 𝑥1, 𝑥2 ≤ 1, 0 ≤ 𝑦1, 𝑦2 ≤ 1, 0 ≤ 𝑧1, 𝑧2 ≤ 3

(5.8) 

 Then (5.8) is transformed into the following tri-level programming problem:   
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min
𝑢
 𝛼

  𝑠. 𝑡. 𝑢 = (𝑥, 𝑦, 𝑧)

      {min
𝑥
 𝐹(𝑥, 𝑦, 𝑧) = 𝑥1

2 + 𝑒𝑥2 + 𝑥2𝑦1 − 3𝑥1𝑦2
2}

           𝑠. 𝑡. {min
𝑦
 𝑓2(𝑥, 𝑦, 𝑧) = (𝑦1 − 𝑥1)

2 + (𝑦2 − 2)
2}

                     𝑠. 𝑡. {min
𝑧
 𝑓3(𝑥, 𝑦, 𝑧) = 2𝑧1

2 + 3𝑧2
2 − 𝑦1𝑧2 + 𝑦2𝑧1}

                            𝑠. 𝑡. 2𝑥1 + 2𝑦1 + 3𝑧1 ≥ 6, 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

                                 2𝑥1 + 𝑥2 + 3𝑦1 + 𝑧1 ≥ 3, 𝑥1 + 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

                                 𝑥1 + 5𝑥2 + 𝑦1 + 𝑦2 + 𝑧1 + 2𝑧2 ≥ 4,

                                 0 ≤ 𝑥1, 𝑥2 ≤ 1, 0 ≤ 𝑦1, 𝑦2 ≤ 1, 0 ≤ 𝑧1, 𝑧2 ≤ 3

(5.9) 

Then the fourth level problem in (5.9) can be considered as a MPP problem with parameter 

(𝑥, 𝑦) = (𝑥1, 𝑥2, 𝑦1, 𝑦2):  

min
𝑧1,𝑧2

 𝑓3(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = 2𝑧1
2 + 3𝑧2

2 − 𝑦1𝑧2 + 𝑦2𝑧1

   𝑠. 𝑡. 2𝑥1 + 2𝑦1 + 3𝑧1 ≥ 6, 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

        2𝑥1 + 𝑥2 + 3𝑦1 + 𝑧1 ≥ 3, 𝑥1 + 𝑥2 + 𝑦2 + 𝑧2 ≥ 1,

        𝑥1 + 5𝑥2 + 𝑦1 + 𝑦2 + 𝑧1 + 2𝑧2 ≥ 4,

        0 ≤ 𝑥1, 𝑥2 ≤ 1, 0 ≤ 𝑦1, 𝑦2 ≤ 1, 0 ≤ 𝑧1, 𝑧2 ≤ 3

(5.10) 

Applying multi-parametric programming (MPP) approach to solve (5.10). 

(
𝑧(𝑥, 𝑦)
𝜆(𝑥, 𝑦)

) = (
𝑧0
𝜆0
) − 𝑀0

−1 ⋅ 𝑁0 ⋅ (
𝑥 − 𝑥0
𝑦 − 𝑦0

) , where  (
𝑧0
𝜆0
) = (

𝑧(𝑥0, 𝑦0)
𝜆(𝑥0, 𝑦0)

) ,𝑀0 = 𝑀(𝑥0, 𝑦0)  and 

𝑁0 = 𝑁(𝑥0, 𝑦0)  

we have got the following parametric solutions,  

 [
𝑧1(𝑥, 𝑦)
𝑧2(𝑥, 𝑦)

] = [
2 − 0.6667𝑥1 − 0.6667𝑦1

0.1667𝑦1
] in CR1 where 

 CR1 =

{
 
 

 
 
−0.7023𝑥2 − 0.1170𝑦1 − 0.7023𝑦2 ≤ −0.7023
−0.4650𝑥1 − 0.3487𝑥2 − 0.8137𝑦1 ≤ −0.3487
−0.0647𝑥1 − 0.9703𝑥2 − 0.1294𝑦1 + 𝑦2 ≤ −0.3881
0 ≤ 𝑥1 ≤ 1, 𝑥2 ≤ 1
0 ≤ 𝑦1, 𝑦2 ≤ 1

 

 [
𝑧1(𝑥, 𝑦)
𝑧2(𝑥, 𝑦)

] = [
2 − 0.6667𝑥1 − 0.6667𝑦1

1 − 𝑦1 − 𝑦2
] in CR2 where 



2974 

ADDIS BELETE ZEWDE, SEMU MITIKU KASSA 

 𝐶𝑅2 =

{
 
 

 
 
0.7023𝑥2 + 0.1170𝑦1 + 0.7023𝑦2 ≤ 0.7023
−0.4650𝑥1 − 0.3487𝑥2 − 0.8137𝑦1 ≤ −0.3487
−0.1043𝑥1 − 0.9383𝑥2 − 0.1043𝑦1 + 0.3128𝑦2 ≤ 0
0 ≤ 𝑥1 ≤ 1, 𝑥2 ≥ 0
0 ≤ 𝑦1 ≤ 1, 𝑦2 ≥ 0

 

 [
𝑧1(𝑥, 𝑦)
𝑧2(𝑥, 𝑦)

] = [
3 − 2𝑥1 − 𝑥2 − 3𝑦1

1 − 𝑥2 − 𝑦2
] in 𝒞ℛ3 where 

 CR3 =

{
 
 

 
 
0.7023𝑥2 + 0.1170𝑦1 + 0.7023𝑦2 ≤ 0.7023
0.4650𝑥1 + 0.3487𝑥2 + 0.8137𝑦1 ≤ 0.3487
0.3162𝑥1 − 0.6325𝑥2 + 0.6325𝑦1 + 0.3162𝑦1 ≤ 0.3162
𝑥1 ≥ 0, 𝑥2 ≥ 0
𝑦1 ≥ 0, 𝑦2 ≥ 0

 

 

Fig. 1: Critical regions for the problem (5.10) 

Corresponding to the first critical set of fourth level-problem, we have got the following parametric 

solutions with parameter 𝑥 = (𝑥1, 𝑥2) to the third-level followers problem of (5.9),   

 [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
𝑥1
1
] , CR1−1 = {

−0.9648𝑥1 − 0.2631𝑥2 ≤ −0.2631
−0.1962𝑥1 − 0.9806𝑥2 ≤ −0.1961
𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 1

 

 [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
−0.5714𝑥1 − 0.4285𝑥2 + 0.4285
−0.0001𝑥2 + 1

] , 𝐶𝑅1−2 = {
0.0101𝑥1 − 0.9999𝑥2 ≤ −0.1514
0.9648𝑥1 + 0.2613𝑥2 ≤ 0.2631
𝑥1 ≥ 0
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 [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
0.5385𝑥1 − 2.3072𝑥2 + 0.6686
−0.6923𝑥1 − 3.4608𝑥2 + 1.5538

] , 𝐶𝑅1−3 = {
0.1962𝑥1 + 0.9806𝑥2 ≤ 0.1961
−0.9648𝑥1 − 0.2613𝑥2 ≤ −0.2631
𝑥2 ≥ 0

 

 [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
0.5385𝑥1 − 2.3072𝑥2 + 0.7724
−0.6923𝑥1 − 3.4608𝑥2 + 1.4845

] , 𝐶𝑅1−4 = {
−0.0101𝑥1 + 0.9999𝑥2 ≤ 0.1514
0.9648𝑥1 + 0.2613𝑥2 ≤ 0.2631
𝑥1 ≥ 0

 

 

Fig. 2: Critical regions for the third-level problem of (5.9) that corresponds to 𝐶𝑅1          

(red region in Fig. 1) 

Corresponding to the second critical set of fourth level-problem, we have got the following 

parametric solutions with parameter 𝑥 = (𝑥1, 𝑥2) to the third-level followers problem of (5.9),   

 [
𝑦1(𝑥)

𝑦2(𝑥)
] = [

0.9730𝑥1 − 0.1621𝑥2 − 0.1621
−0.1621𝑥1 − 0.9730𝑥2 + 1.0270

] , CR2−1 = {
−0.9854𝑥1 − 0.1700𝑥2 ≤ −0.3769
−0.2048𝑥1 − 0.9788𝑥2 ≤ −0.2700
𝑥1 ≤ 1, 𝑥2 ≤ 1

 

 [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
−0.5715𝑥1 − 0.4285𝑥2 + 0.4285
0.0952𝑥1 − 0.9286𝑥2 + 0.9286

] , 𝐶𝑅2−2 = {
0.9854𝑥1 + 0.1700𝑥2 ≤ 0.3769
−0.0126𝑥1 − 0.9999𝑥2 ≤ −0.2076
0 ≤ 𝑥1, 𝑥2 ≤ 1

 

  [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
0.7999𝑥1 − 0.9002𝑥2 + 0.2001
0.6001𝑥1 + 2.6995𝑥2 + 0.0667

] , 𝐶𝑅2−3 = {
−0.9854𝑥1 − 0.1700𝑥2 ≤ −0.3769
0.2023𝑥1 + 0.9793𝑥2 ≤ 0.2483
𝑥1 ≤ 1, 0 ≤ 𝑥2

 

 [
𝑦1(𝑥)

𝑦2(𝑥)
] = [

0.7999𝑥1 − 0.9001𝑥2 + 0.6002
0.6002𝑥1 + 2.6995𝑥2 + 0.2001

] , CR2−4 = {
0.9854𝑥1 + 0.1700𝑥2 ≤ 0.3769
0.2023𝑥1 + 0.9793𝑥2 ≤ 0.1931
0 ≤ 𝑥1, 0 ≤ 𝑥2
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 [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
−0.6667𝑥1 − 7.9979𝑥2 + 1.9996
0.1111𝑥1 + 0.3324𝑥2 + 0.6669

] , 𝐶𝑅2−5 = {

−0.9854𝑥1 − 0.1700𝑥2 ≤ −0.3769
−0.2023𝑥1 − 0.9793𝑥2 ≤ −0.2483
0.2048𝑥1 + 0.9788𝑥2 ≤ 0.2700
𝑥1 ≥ 1

 

 [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
−0.6668𝑥1 − 7.9988𝑥2 + 1.9999
0.1111𝑥1 + 0.3326𝑥2 + 0.6668

] , 𝐶𝑅2−6 =

{
 
 

 
 
0.9854𝑥1 + 0.1700𝑥2 ≤ 0.3769
0.2023𝑥1 + 0.9793𝑥2 ≤ −0.2221
0.0126𝑥1 + 0.9999𝑥2 ≤ 0.2076
−0.2023𝑥1 − 0.9793𝑥2 ≤ −0.1931
0 ≤ 𝑥1

 

   [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
−0.6668𝑥1 − 7.9986𝑥2 + 1.9998
0.1111𝑥1 + 0.3326𝑥2 + 0.6668

] , 𝐶𝑅2−7 = {
0.9854𝑥1 + 0.1700𝑥2 ≤ 0.3769
−0.2023𝑥1 − 0.9793𝑥2 ≤ −0.2221
0.0126𝑥1 + 0.9999𝑥2 ≤ 0.2076

 

 

Fig. 3: Critical regions for the third-level problem of (5.9) that corresponds to 𝐶𝑅2         

(blue region in Fig. 1) 

Corresponding to the third critical set of fourth level-problem we have got the following parametric 

solutions with parameter 𝑥 = (𝑥1, 𝑥2) to the third-level followers problem of (5.9),   

 [
𝑦1(𝑥)

𝑦2(𝑥)
] = [

0.9730𝑥1 − 0.1622𝑥2 − 0.1614
−0.1621𝑥1 − 0.9730𝑥2 + 1.0269

] , 𝐶𝑅3−1 = {
0.9854𝑥1 + 0.1700𝑥2 ≤ 0.3764
0.6451𝑥1 − 0.7641𝑥2 ≤ 0.0686
𝑥1 ≥ 0, 0 ≤ 𝑥2 ≤ 1

 

   [
𝑦1(𝑥)

𝑦2(𝑥)
] = [

−0.2000𝑥1 + 0.8001𝑥2 + 0.0504
−0.5999𝑥1 + 0.4000𝑥2 + 0.8992

] , CR3−2 = {

0.2894𝑥1 + 0.9572𝑥2 ≤ 0.2902
0.9854𝑥1 + 0.1700𝑥2 ≤ 0.3764
𝑥2 ≥ 0
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  [
𝑦1(𝑥)

𝑦2(𝑥)
] = [

−0.5712𝑥1 − 0.4285𝑥2 + 0.4284
0.0952𝑥1 − 0.9286𝑥2 + 0.9286

] , CR3−3 = {

−0.0125𝑥1 − 0.9999𝑥2 ≤ −0.2075
0.9854𝑥1 + 0.1700𝑥2 ≤ 0.4660
−0.9854𝑥1 − 0.1700𝑥2 ≤ −0.3764
𝑥2 ≤ 1

 

[
𝑦1(𝑥)

𝑦2(𝑥)
] = [

−0.5715𝑥1 − 0.4285𝑥2 + 0.4285
0.0952𝑥1 − 0.9286𝑥2 + 0.9286

] , 𝐶𝑅3−4 = {

0.9847𝑥1 + 0.1743𝑥2 ≤ 0.8362
−0.0125𝑥1 − 0.9999𝑥2 ≤ −0.2075
−0.9854𝑥1 − 0.1700𝑥2 ≤ −0.4660
𝑥1 ≤ 1, 𝑥2 ≥ 0

 

  [
𝑦1(𝑥)
𝑦2(𝑥)

] = [
−0.2000𝑥1 + 0.8000𝑥2 + 0.0560
−0.5999𝑥1 + 0.4000𝑥2 + 0.8880

] , 𝐶𝑅3−5 = {
0.2894𝑥1 + 0.9572𝑥2 ≤ 0.2902
−0.9854𝑥1 − 0.1700𝑥2 ≤ −0.3764
𝑥1 ≤ 1, 𝑥2 ≥ 0

 

[
𝑦1(𝑥)
𝑦2(𝑥)

] = [
−0.5453𝑥1 + 1.6362𝑥2
0.0909𝑥1 − 1.2726𝑥2 + 1

] , 𝐶𝑅3−6 = {

−0.9854𝑥1 − 0.1700𝑥2 ≤ −0.3764
0.0125𝑥1 + 0.9999𝑥2 ≤ 0.2075
−0.2894𝑥1 − 0.9572𝑥2 ≤ −0.2902

 

[
𝑦1(𝑥)

𝑦2(𝑥)
] = [

−0.2008𝑥1 + 0.7973𝑥2 + 0.0185
−0.5983𝑥1 + 0.4054𝑥2 + 0.9630

] , 𝐶𝑅3−7 = {

0.2894𝑥1 + 0.9572𝑥2 ≤ 0.3202
−0.2894𝑥1 − 0.9572𝑥2 ≤ −0.2902
−0.6436𝑥1 + 0.7654𝑥2 ≤ −0.3080
𝑥1 ≤ 1

 

 and no feasible solution in 𝐶𝑅3−8 and 𝐶𝑅3−9. 

 

Fig. 4: Critical regions for the third-level problem of (5.9) that corresponds to 𝐶𝑅3        

(green region in Fig.1) 

Substituting the above parametric solutions into the second-level followers problem of (5.9) and 
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solving the resulting problems in each critical regions we obtain  

(𝑥1, 𝑥2) =

{
 
 

 
 
(1,0), (0.2308,0.1537), (0.7006,0.0199), (0.2481,0.0904),
(0.2475,0.1864), (0.3474,0.2032), (0.3606,0.1269), (0.1426,0),
(0.0918,0.2103), (0.4274,0.1864), (0.3474,0.2032), (0.2033,0.0819),
(0.3115,0.0149), (0.4380,0.2020), (0.5998,0.2), (0.3778,0.0244),
(0.4768,0.1590), (0.6438,0.1389)

 

in the critical region CR1−1 , 𝐶𝑅1−2 , 𝐶𝑅1−3 , 𝐶𝑅1−4 , 𝐶𝑅2−1 , 𝐶𝑅2−2 , 𝐶𝑅2−3 , 𝐶𝑅2−4 , 𝐶𝑅2−5 , 

𝐶𝑅2−6 , 𝐶𝑅2−7 , 𝐶𝑅3−1 , 𝐶𝑅3−2 , 𝐶𝑅2−3 , 𝐶𝑅3−4 , 𝐶𝑅3−5 , 𝐶𝑅3−6 , 𝐶𝑅3−7 , respectively. But the 

point (𝑥1, 𝑥2) = (1,0) provides a best solution with respect to the second-level problem of (5.9), 

as it was decided by the upper-level decision makers we take this point as an optimal solution. 

Therefore, the optimal solution to the trilevel multi-leader multi-follower programming problem 

(5.7) is 𝑢 = (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = (1, 0, 1, 1, 0.6666, 0.1667)  on CR1−1  with optimal 

objective values 𝐹1 = 2.3332, 𝐹2 = −2.1667, 𝑓1
2 = 0.4444, 𝑓2

2 = 1.1667, 𝑓1
3 = 1.7220 and 

𝑓2
3 = 0.7500. 

6. CONCLUSION 

In multilevel multi-leader-follower games, various relationships among multiple leaders in the 

upper-level and multiple followers at the lower-levels would generate different decision processes. 

To support decision in such problems, this work considered a class of multilevel multi-leader 

multi-follower games, which consist of separable terms and parameterized common terms across 

all objective functions of the followers and leaders. We applied two levels of equivalent 

transformations on such problems; first transforming them into multilevel single-leader multi-

follower programming problem, and then the resulting formulations are further transformed into 

an equivalent multilevel program having only single follower at each level of the hierarchy. Finally, 

this single leader-follower hierarchical problem is solved using the solution procedure proposed 

in [6,9]. The proposed solution approach can solve multilevel multi-leader multi-follower 

problems whose objective values at all levels of the decision hierarchy have common, but having 

different positive weights of, non-separable terms and with the constraints at each level are 



2979 

MULTILEVEL MULTI-LEADER-MULTI-FOLLOWER GAMES 

polyhedral. However, much more research is needed in order to provide algorithmic tools to 

effectively solve the procedures. In this regard we feel it deserves further investigations. 
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