DISJOINT ELEMENTS AND SEMI SOLIDS IN RIESZ I_{G}–MODULE

K. SOWMYA*, SR. MAGIE JOSE

Department of Mathematics, St. Mary’s College, Thrissur, Kerala, India

Abstract. Disjoint elements and semi solids in Riesz I_{G}-module are introduced and properties are studied.

Keywords: Rlg–disjoint; $RlgI_{G}$–disjoint; $RlgI_{G}$–semi solid; Riesz I_{G}–module; Riesz I_{G}–submodule.

2010 AMS Subject Classification: 06F25, 06F20.

1. INTRODUCTION

Lattice ordered algebraic structures were discussed by Blyth [9] and Steinberg [8]. Based on group action dealt by Gallian [3] and Michel, Zhilinskii [5], representation theory was developed by Curtis, Reiner[2] and Steinberg [1]. This concept was studied in lattice structure which leads to the definition of lattice ordered G-modules by Ursala, Isaac [6] and Riesz I_{G}-module by Sowmya, Magie and Ursala [4]. Disjoint elements in Riesz spaces were studied by Luxemburg, Zaanen [10] and Gloden [7]. Solid space (Ideal) of a Riesz space which acts as a black hole was also introduced in [7, 10]. In this paper, the concepts of disjoint elements and semi solids are introduced in a Riesz I_{G}–module.

*Corresponding author
E-mail address: sowmya.k@smetsr.ac.in
Received March 12, 2021
2. Preliminaries

In this section, some basic definitions and results are reviewed.

Throughout this paper, \(e \) denotes the identity element in the group \(G \) with binary operation \(\ast \) and \(0 \) denotes the identity element in the vector space \(E \) over the set of reals \(\mathbb{R} \).

Definition 2.1. [8] A partial order on a nonempty set \(L \) is a binary relation on \(L \) that is reflexive, anti-symmetric, and transitive. A partially ordered set or poset is a set in which a partial order is defined.

Definition 2.2. [8] A lattice \(L \) is a poset in which the infimum \(a \land b \) and supremum \(a \lor b \) exist for any two elements \(a \) and \(b \) in \(L \).

Definition 2.3. [9] Let \((G,\ast)\) be a group and \(\leq \) be a partial order on it. Then \(G \) is a lattice ordered group or an \(l \)-group if \((G,\leq)\) is a lattice and the binary operation in \(G \) is order preserving. That is, \(g \leq h \implies x \ast g \ast y \leq x \ast h \ast y \) for all \(x,y,g,h \in G \).

Definition 2.4. [9] An \(l \)-subgroup of \(G \) is a subgroup of \(G \) which is a sublattice of \(G \).

Definition 2.5. [9] Let \(G \) be a lattice-ordered group. The set \(G^+ = \{ g \in G : g \geq e \} \) is the positive cone of \(G \), whose elements are termed as positive elements of \(G \) and the set \(G^- = \{ g \in G : g \leq e \} \) is the negative cone of \(G \) which contains all negative elements of \(G \).

Definition 2.6. [9] Let \(G \) be a lattice-ordered group. Then for every \(g \in G \) the positive part of \(g \) is \(g^+ = g \lor e \in G^+ \), and the negative part is \(g^- = g \land e \in G^- \). The absolute value of \(g \) is \(|g| = g \lor g^{-1} = g^+ * (g^-)^{-1} \) and \(|g| \in G^+ \).

Definition 2.7. [7] A real vector space \(V \) which is a poset is called an ordered vector space if for \(x, y, z \in V \) and \(0 \leq \alpha \in \mathbb{R} \), \(x \leq y \implies x + z \leq y + z \) and \(\alpha x \leq \alpha y \).

Definition 2.8. [7] An ordered vector space which is a lattice is a vector lattice or Riesz space.

Definition 2.9. [7] Let \(E \) be a Riesz space. Two elements \(x \) and \(y \) in \(E \) are said to be disjoint (denoted as \(x \perp y \)) if \(|x| \land |y| = 0 \).
Theorem 2.10. [7] Let E be a Riesz space. For $x, y \in E$,

(i): If $x \perp y$, then $rx \perp y$ for every real number r.

(ii): If $x_1, x_2 \perp y$, then $x_1 + x_2 \perp y$.

(iii): If $x_0 = \sup \{x_i : i \in I\}$ and if $x_i \perp y$ for all i, then $x_0 \perp y$.

(iv): If $x \perp y$, then $|x + y| = |x| + |y|$.

Definition 2.11. [7] Let E be a Riesz space. An ideal A is a linear subspace of E such that for $x \in A$ and $|y| \leq |x| \implies y \in A$.

Definition 2.12. [4] Let G be an l-group. A Riesz space E is called a Riesz lG-module if the group action G on E denoted by $g \circ x \in E$ for all $g \in G$ and $x \in E$ and has the following properties

(i): $e \circ x = x$

(ii): $(g \ast h) \circ x = g \circ (h \circ x)$

(iii): $g \circ (rx + sy) = r(g \circ x) + s(g \circ y)$

(iv): $|g| \circ (x \land y) = (|g| \circ x) \land (|g| \circ y)$

$|g| \circ (x \lor y) = (|g| \circ x) \lor (|g| \circ y)$

$(g \land h) \circ |x| = (g \circ |x|) \land (h \circ |x|)$

$(g \lor h) \circ |x| = (g \circ |x|) \lor (h \circ |x|)$ for all $g, h \in G$, $x, y \in E$, $r, s \in \mathbb{R}$.

Remark 2.13. [4] $g \circ 0 = 0$ for all $g \in G$.

Example 2.14. [4] \mathbb{R}^2 is a Riesz lG-module under the action of \mathbb{R}^+, the set of positive real numbers, where the group action is defined by $r \circ (x, y) = (rx, ry)$, for $r \in \mathbb{R}^+$ and $(x, y) \in \mathbb{R}^2$.

Definition 2.15. [4] Let E be a Riesz lG-module. A vector sublattice (Riesz subspace) F of E is a Riesz lG-submodule or RlG-submodule of E if F itself is a Riesz lG-module under the same action of G as that on E.

3. Main Results

Theorem 3.1. Let E be a Riesz lG-module. Then G^+ maps E^+ into E^+.
Proof. Let \(x, y \in E \) and \(\hat{g} \in G^+ \).

By condition (iv) in the definition of a *Riesz \(lG\)–module*, \(x \leq y \) shows that \(\hat{g} \circ x \leq \hat{g} \circ y \). Now, \(0 \leq x \implies 0 = \hat{g} \circ 0 \leq \hat{g} \circ x \). Hence, \(\hat{g} \circ x \in E^+ \). \(\square \)

Theorem 3.2. \(G^+ \) sends a Riesz subspace (vector sublattice) to a Riesz subspace (vector sublattice).

Proof. Let \(E \) be a *Riesz \(lG\)–module* and \(K \) be a Riesz subspace (vector sublattice) of \(E \). Then for \(\hat{g} \in G^+ \), we show that \(K' = \{ \hat{g} \circ x : x \in K \} \) is a Riesz subspace (vector sublattice) of \(E \). First, note that \(K' \) is non empty, for, \(0 = \hat{g} \circ 0 \in K' \). Let \(x, y \in K, \hat{g} \in G^+ \) and \(r \in \mathbb{R} \). Then \(x + y, rx, x \wedge y, x \vee y \in K \). Now \(\hat{g} \circ x + \hat{g} \circ y = \hat{g} \circ (x + y) \in K' \). Also, \(r(\hat{g} \circ x) = \hat{g} \circ (rx) \in K' \). \(\hat{g} \circ x \wedge \hat{g} \circ y = \hat{g} \circ (x \wedge y) \in K' \) and \(\hat{g} \circ x \vee \hat{g} \circ y = \hat{g} \circ (x \vee y) \in K' \). Thus \(K' \) is a Riesz subspace (vector sublattice) of \(E \). \(\square \)

Definition 3.3. A *Riesz \(lG\)–module* \(E \) is said to be *distributive \(RlG\)–module*, if \(\hat{g} \circ (x \wedge y) = \hat{g} \circ x \wedge \hat{g} \circ y \) and \(\hat{g} \circ (x \vee y) = \hat{g} \circ x \vee \hat{g} \circ y \) holds for all \(g \in G \).

Example 3.4. The real plane \(\mathbb{R}^2 \) is a distributive *RlG–module* under the action (as in Example 2.14) of the group \(\mathbb{R}^+ \).

Theorem 3.5. Let \(E \) be a distributive *RlG–module* and \(K \) be a Riesz subspace of \(E \). For \(g \in G, \) let \(K' = \{ g \circ x : x \in K \} \) is a Riesz subspace of \(E \).

Proof. Since \(E \) is a distributive *RlG–module*, from theorem 3.2 it follows that \(K' \) is a Riesz subspace of \(E \). \(\square \)

Theorem 3.6. For \(g \in G, x \in E, \ | g \circ x | = | g | \circ | x | \). Hence, for \(g \in G^+, g \circ | x | = | g \circ x | \).

Proof. \(| g | \circ | x | = | g | \circ (x \vee (-x)) = (| g | \circ x) \vee (| g | \circ (-x)) \) (by condition (iv) in the definition of a *Riesz \(lG\)–module*)

\[= (| g | \circ x) \vee -(| g | \circ x) = | | g | \circ x | \]. The second result follows immediately. \(\square \)

Theorem 3.7. Let \(x \) and \(y \) be two disjoint elements of \(E \). Then \(g \circ x \) and \(g \circ y \) are disjoint for all \(g \in G^+ \).
Definition 3.8. Two elements x and y in a Riesz $lG-$module E are said to be $Rlg-$disjoint denoted by $x \perp^{Rlg} y$ if $|g \circ x| \land |g \circ y| = 0$ for some $g \in G^+$. That is, if $g \circ x$ and $g \circ y$ are disjoint for some $g \in G^+$. If x and y are $Rlg-$disjoint for all $g \in G^+$, then they are called $Rlg-$disjoint.

Remark 3.9. In a Riesz $lG-$module E, the identity element 0 is $Rlg-$disjoint to all other elements in E.

Remark 3.10. If x and y are disjoint $(x \perp y)$, then they are $Rlg-$disjoint.

Theorem 3.11. Let E be a Riesz $lG-$module. Let $g \in G^+$. If x and y are $Rlg-$disjoint, then $|g \circ (x+y)| = |g \circ x| + |g \circ y|$.

Proof. If x and y are $Rlg-$disjoint, then $|g \circ x| \land |g \circ y| = 0$ for $g \in G^+$. That is, $g \circ x$ and $g \circ y$ are disjoint. Therefore, $|g \circ x + g \circ y| = |g \circ x| + |g \circ y|$. Hence, $|g \circ (x+y)| = |g \circ x| + |g \circ y|$.

Theorem 3.12. Let $x, y \in E$ and fix $g \in G^+$. Let $y^{\perp_{Rlg}} = \{x : x \perp^{Rlg} y\}$ denotes the set of all elements of E which are $Rlg-$disjoint to y. Then $y^{\perp_{Rlg}}$ is a linear subspace of E.

Proof. Note that $y^{\perp_{Rlg}}$ is nonempty as $0 \in y^{\perp_{Rlg}}$. Let $x, z \in y^{\perp_{Rlg}}$ and $g \in G^+$. Then $|g \circ x| \land |g \circ y| = 0$ and $|g \circ z| \land |g \circ y| = 0$. That is, $g \circ x$ and $g \circ z$ are disjoint to $g \circ y$. Then, $(g \circ x + g \circ z) \perp g \circ y$. Therefore, $g \circ (x+z) \perp g \circ y$. Hence $x+z \in y^{\perp_{Rlg}}$.

Let $r \in \mathbb{R}$. Now $x \perp y$ implies $rx \perp y$. Since, x and y are $Rlg-$disjoint, $g \circ x$ is disjoint to $g \circ y$ which in turn shows that $r(g \circ x) \perp (g \circ y)$. But, $r(g \circ x) = g \circ (rx)$. Hence, $rx \in y^{\perp_{Rlg}}$.

Theorem 3.13. Let E be a Riesz $lG-$module and $y \in E$. For $g \in G^+$, the set of distinct nonzero elements which are pairwise $Rlg-$disjoint is linearly independent.
Theorem 3.19. Intersection of any two \(R_lG \) denotes the set of all elements of \(E \) that are \(R_lG \)

Let \(E \) be a \(Riesz \) \(lG \) of \(E \). Then \(x_1 \perp R_lG \) \(x_1 \). That is, \(|g \circ x_1| \wedge |g \circ x_1| = 0 \). Hence, \(|g \circ x_1| = 0 \). That is, \(g \circ x_1 = 0 \implies x_1 = 0 \) which contradicts the choice of elements. \(\square \)

The positive cone \(G^+ \) maps \(E^+ \) onto \(E^+ \) (3.1). This made us to define the following.

Definition 3.14. \(z \in E^+ \implies g \circ z \in E^+ \) for all \(g \in G \), then \(G \) is said to be \(RlG - strict \) on \(z \). The \(l\)-group \(G \) is said to be \(RlG - strict \) on \(E \), if \(G \) is \(RlG - strict \) on \(x \) for every \(x \in E^+ \).

Theorem 3.15. Let \(E \) be a \(Riesz \) \(lG \) module and \(x,y \in E \). Then \(G \) is \(RlG - strict \) on \(E \) if and only if \(x \leq y \iff g \circ x \leq g \circ y \) for all \(g \in G \).

Theorem 3.16. Let \(E \) be a \(Riesz \) \(lG \) module and \(I \) is an ideal of \(E \). Let \(g \in G^+ \). Suppose that \(G \) is \(RlG - strict \) on \(E \). Then \(I' = \{ g \circ x : x \in I \} \) is an ideal of \(E \).

\(\square \)

Definition 3.17. Let \(E \) be a \(Riesz \) \(lG \) module and \(S \) be a vector subspace of \(E \). Then \(S \) is called a \(RlG \) semi solid in \(E \) if for any \(g \in G^+ \), \(x \in S, y \in E \), \(|g \circ y| \leq |g \circ x| \implies y \in S \).

Theorem 3.18. Let \(E \) be a \(Riesz \) \(lG \) module and \(D \) be a nonempty subset of \(E^+ \). Let \(D^{\perp R_lG} = \{ x : x \perp R_lG y \text{ for all } y \in D \} \). Then \(D^{\perp R_lG} \) is a \(RlG \) semi solid in \(E \). The set \(D^{\perp R_lG} \) denotes the set of all elements of \(E \) that are \(RlG \) disjoint to every \(y \in D \).

\(\square \)

Theorem 3.19. Intersection of any two \(RlG \) semi solids is again an \(RlG \) semi solid.
Proof. Let E be a $Riesz\ lG -$ module and I_1, I_2 be two $RlG -$semi solids in E. Then $I_1 \cap I_2$ is a vector subspace of E. Let $z \in E$. Suppose $x \in I_1 \cap I_2$, and $|g \circ z| \leq |g \circ x|$. Since, $x \in I_1 : |g \circ z| \leq |g \circ x| \implies z \in I_1$. Since, $x \in I_2 : |g \circ z| \leq |g \circ x| \implies z \in I_2$. Therefore, $z \in I_1 \cap I_2$. □

Definition 3.20. Let D be a nonempty subset of E. The intersection of $RlG -$semi solids in E containing D is an $RlG -$semi solid in E and contains D. It is called an $RlG -$semi solid generated by D. If D contains only one element, then it is called a principal $RlG -$semi solid.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References