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Abstract. In this paper, a numerical method is proposed to solve the Volterra-Fredholm Integral Equation. The

method is based on the use of framelets to reduce the integral equation to a system of algebraic equations, a

numerical solution is given by using collocation method.

Finally, numerical examples are presented to test the efficiency of the proposed method. Comparative results show

that our method is more accurate than existing ones.
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1. INTRODUCTION

Framelets have been widely researched in literature and have been successfully extended

to many applications, for example, the redundant representation offered by the tight framelet,

made it a beneficial tool in signal processing [1] and image compression and restoration [2].

Several articles have shown that constructing and building tight framelets, is much simpler and

more versatile than orthonormal wavelet bases [3], [4], [5].
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In this paper, tight framelets extracted from refinable functions via a Multiresolution Analy-

sis (MRA) are of special interest to us. The concept of Hilbert space frame was first introduced

in 1952 by Duffin and Schaffer [6], where nonharmonic Fourier series has been discussed. The

topic has been revived in 1986 by Daubechies, Grossmann,and Meyer in [7] where they gave a

solid mathematical basis to the discrete wavelets. Ron and Shen in [8] offered a general charac-

terization of all framelets, concentrating on tight framelets. The authors in [9] discussed frames

from a numerical analysis point of view and concluded that truncated frames often result ill-

conditioned linear system.

Several articles emphasis on framelets built through MRA and extension principles, as this

ensures the presence of fast frames algorithms for application, refer to [10] [11]. MRA sym-

metric tight framelets resulting from symmetric refinable functions are of interest in both theory

and applications.

Many problems that appear to handled with ordinary and partial differential equations can be

recast as integral equations, as well as, being useful tool to state many problems in mathemat-

ical physics. One of these is Volterra-Fredholm Integral Equation (VFIE) which usually occur

from the mathematical modelling of the spatiotemporal growing of some epidemics and from

the theory of nonlinear boundary value problems.

The method of separation of variables has been used in [12] to convert (VFIE) of the second

kind to the Volterra Integral Equation of the second kind. The author in [13] used the framelets

to give a numerical solution of the Volterra Integral Equation. Amin et al. [14] developed a

numerical technique to solve the delay (VFIE) by using Haar wavelet. Method based on the

two dimensional Legendre wavelets has been presented in [15] to approximate the solution of

the Mixed Voltera-Fredholm Integral Equation (MVFIE) . Wazwaz [16] presented a method for

solving (MVFIE) using Adomian decomposition series. In [17], biorthogonal tight framelets

are used to solve weakly singular (MVFIE).
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The standard form of the Volterra-Fredholm integral is given by

u(x) = f (x)+
∫ x

a
K1(x, t)u(t)dt +

∫ b

a
K2(x, t)u(t)dt,

where u is an unknown function and K1(x, t) and K2(x, t) are the kernels of the equation.

The paper is organized as follows. In Section 2 we present some concepts and properties of

framelets. Then we turn to MRA and the related extension principles, as well as, tight framelets

based on B-spline in Section 3. The proposed method is introduced in Section 4. We conclude

this paper (Section 5) with some numerical examples to provide the efficiency of the method.

2. DEFINITIONS AND BASICS

The main purpose of this section is to introduce some basic notations and concepts.

The support of the function f is defined by

supp f := {x ∈ R : f (x) 6= 0}.

For 1≤ p < ∞, Lp(R) is defined by

Lp(R) := { f : R→ C : f is measurable and
∫
R
| f (x)|pdx < ∞}.

The definition of frame is what follows:

Definition 2.1. A sequence { fk}∞
k=1 of elements in L2(R) is a frame for L2(R) if there exist

constants, A, B > 0 such that

A‖ f‖2 ≤
∞

∑
k=1
|〈 f , fk〉|2 ≤ B‖ f‖2, ∀ f ∈ L2(R),

where |〈 f ,g〉| :=
∫
R f (x)g(x)dx and ‖ f‖2 := |〈 f , f 〉|. The numbers A, B are called the lower

and upper frame bounds, respectively. A frame which is not a basis is said to be redundant. A

frame is called a tight frame if A = B; in case A = 1, it is called a Parseval frame. In fact, if

{ fk}∞
k=1 is a tight frame for L2(R), then

∞

∑
k=1
|〈 f , fk〉|2 = A‖ f‖2, ∀ f ∈ L2(R),
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and

f =
1
A

∞

∑
k=1
|〈 f , fk〉| fk , ∀ f ∈ L2(R).

Note that one can extend the functions in a frame for L2(a,b) to functions in L2(R), by defining

them to be zero on R\(a,b) gives a frame for L2(R). On the other hand, restricting the functions

in a frame for L2(R) to the interval (a,b) gives a frame for L2(a,b).

For f ∈ L1(R), the Fourier transform of f is defined by

F f = f̂ (γ) :=
∫
R

f (x)e−ixγdx, γ ∈ R.

Given two functions f ,g ∈ L1(R), the convolution f ∗g is defined by

f ∗g(y) :=
∫
R

f (y− x)g(x)dx, y ∈ R,

with the property that f̂ ∗g(γ) = f̂ (γ)ĝ(γ) ∀γ ∈ R.

Let l2(Z) be the set of all sequences h = {hk} defined on Z such that

l2(Z) = {{hk}k∈Z : hk ∈ C, ∑
k∈Z
|hk|2 < ∞}.

The Fourier series for h ∈ l2(Z) is given by

ĥ(γ) = ∑
k∈Z

hke−ikγ , a.e. γ ∈ R.

The bracket product of two functions f ,g ∈ L2(R), denoted by [ f ,g], and defined by

[ f ,g](x) = ∑
k∈2πZ

f (x+ k)g(x+ k).

For any closed subset S in L2(R) and any function f ∈ L2(R), the approximation error is

E( f ,S) := min{|| f − s|| : s ∈ S}.

A function φ is said to be refinable if it satisfies the refinement equation

(1) φ(x) = 2 ∑
k∈Z

h0[k] φ(2x− k),

for some h0 ∈ l2(Z), called the refinement mask of φ . In Frequency (Fourier) domain, the

definition of refinability of φ can be written as

(2) φ̂(γ) = ĥ0(γ/2) φ̂(γ/2).
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Throughout this paper, we assume that ĥ0(0) = 1 and all sequences on Z are assumed to be

real-valued. Consequently, it follows from (2) that φ̂(γ) = ∏
∞
k=1 h0(2−kγ).

Next, the definition of some important operators in L2(R) is given:

Definition 2.2. Given a function f ∈ L2(R), we define the following operators:

Translation by a: Ta f (x) = f (x−a), for a ∈ R;

Dilation or scaling by a: Da f (x) = 1√
a f ( x

a), for a ∈ R\{0};

and the dyadic scaling operator is given by

(D f )(x) = D1/2 f (x) = 21/2 f (2x),x ∈ R.

The following is important relation between the operators:

TbDa f (x) = DaTb/a f (x) =
1√
|a|

f (
x
a
− b

a
),

which implies that for j,k ∈ Z

TkD j = D jT2 jk and D jTk = T2− jkD j.

For j,k ∈ Z, define

ψ j,k(x) = D jTkψ = 2 j/2
ψ(2 jx− k), ∀ψ ∈ L2(R).

If {ψ j,k} j,k∈Z is an orthonormal basis for L2(R), then the function ψ is called a wavelet.

For a set {ψ1, . . . ,ψr} of compactly supported functions in L2(R), we say that {ψ1, . . . ,ψr} has

m vanishing moments if∫
R

xk
ψl(x) dx = 0 l = 1, . . . ,r and k = 0, . . . ,m−1.

Definition 2.3. Given Ψ = {ψ1, . . . ,ψr} ⊂ L2(R), define the dyadic wavelet system or affine

system X(Ψ) as

X(Ψ) = {ψl, j,k : 1≤ l ≤ r, j,k ∈ Z},

where ψl, j,k = D jTkψl. This system is called a wavelet frame (framelet) of L2(R) if there exist

constants, A, B > 0 such that

A‖ f‖2 ≤ ∑
g∈X(Ψ)

|〈 f , fk〉|2 ≤ B‖ f‖2, ∀ f ∈ L2(R).
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In the case where X(Ψ) is a tight framelet with bound one, we have the perfect reconstruction

property

f = ∑
g∈X(Ψ))

|〈 f ,g〉|g. ∀ f ∈ L2(R),

which can be written in particular as

f =
r

∑
l=1

∑
j∈Z

∑
k∈Z
|〈 f ,ψl, j,k〉|ψl, j,k. ∀ f ∈ L2(R).

The elements of Ψ, i.e., ψ1, . . . ,ψr are called the generators for the corresponding framelet.

A significant property of a framelet system is the order of vanishing moments. The framelet

system has vanishing moments of order m0 if, for each ψl ∈Ψ, ψ̂l has a zero of order m0 at the

origin.

Let X(Ψ) be a tight frame system, we define the truncated operator Qn by

Qn : f 7→ ∑
ψ∈Ψ, k∈Z, j<n

|〈 f ,ψl, j,k〉|ψl, j,k.

We say that the tight frame system X(Ψ) provides approximation order m1, if, for all f in the

Sobolve space W m
2 (R),

‖ f −Qn‖L2(R) = O(2−nm1)

A subspace S⊂ L2(R) is called a shift-invariant if for any k ∈Z and f ∈ S, we have f (.−k)∈ S.

Shift-invariant spaces are important in construction of applicable framelets. Notice that the

affine framelet system X(Ψ) is not shift-invariant. To associate this system with another shift-

invariant system, Ron and Shen in [8] introduced a notation of quasi-affine system.

Definition 2.4. Given Ψ = {ψ1, . . . ,ψr}. A quasi-affine system from level L is defined by

Xq
L (Ψ) := {ψq

l, j,k : 1≤ l ≤ r, j,k ∈ Z},

where ψ
q
l, j,k is given by

ψ
q
l, j,k =


D jTkψl, j ≥ L

2
j−L
2 T2−LkD jψl, j < L

.
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The system Xq
L (Ψ) is a 2−L shift-invariant system. The approximation order is the same for

the affine system and it’s corresponding quasi-affine system.

In our discussion below, we need to define the spectrum of the shift-invariant space V0 as

σ(V0) := {γ ∈ [−π,π] : φ̂(γ +2πk) 6= 0, for some k ∈ Z},

and it is determined only up to a null set. In fact, if φ is compactly supported, then σ(V0) =

[−π,π].

3. TIGHT FRAMELETS VIA MRA

In this section, we discuss tight framelets designed via MRA. Principally, we provide general

basis and specific algorithms for tight framelets, and we discuss how they can used for building

B-spline tight framelets. Several explicit examples are presented.

3.1. Multiresolution Analysis. Multiresolution Analysis (MRA) were developed by Mallat

and Meyer in 1986 as a general method to generate wavelet orthonormal bases for L2(R) of

the form {2 j/2ψ(2 jx− k)} j,k∈Z. Tight framelets that have a (MRA) setup are preferred in

applications because this guarantees the existence of fast decomposition and reconstruction

algorithms [11].

In this paper, we adopt a MRA setup as proposed in [10], rather than the original setup.

Given φ ∈ L2(R) and define the shift-invariant subspace V0(φ)⊂ L2(R) by

V0 :=V0(φ) = span{Tkφ}k∈Z,

and set

Vj := D jV0(φ).

The function φ is said to generate the MRA (Vj) j∈Z if

V0 ⊂V1;

∪ j∈ZVj = L2(R);

∩ j∈ZVj = {0},

hold.

A wavelet system X(Ψ) is said to be MRA based for L2(R) if there exists an MRA sequence of
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subspaces {Vj} j∈Z such that the condition Ψ ⊂ V1 holds. If, in addition, the system X(Ψ) is a

frame, we refer to its elements as framelets.

The generator φ of the MRA is known as a refinable function or a scaling function. It has been

demonstrated in literature that the approximation properties of a shift-invariant space are related

to the order of the zeros of φ̂ at 2πk,k ∈ Z. Therefore it is important to examine the behavior

near zero of the 2π-periodization of |φ̂ |2, i.e., [φ̂ , φ̂ ] = ∑k∈2πZ |φ̂(.+ k)|2.

In this paper, we assume that φ is a compactly supported refinable function generated by a

finitely supported refinement mask and satisfy the following:

(i) φ(0) = 1.

(ii) limω→0 φ̂(ω) = 1.

(iii) [φ̂ , φ̂ ] is essentially bounded.

Based on (2), the refinement mask ĥ0 completely determine φ and therefore the underlying

MRA.

Further, define ψl ∈ L2(R) by

(3) ψl(x) = 2 ∑
k∈Z

hl[k]φ(2x− k), l = 1, . . . ,r,

which can be written in frequency domain as

ψ̂l(γ) = ĥl(γ/2)φ̂(γ/2), l = 1, . . . ,r.

The periodic measurable functions ĥ1, . . . , ĥr are called wavelet masks or masks.

The MRA provides approximation order m, if, for every f ∈W m
2 (R),

(4) dist( f ,Vj) := min{‖ f −g‖L2(R) : g ∈Vj}= O(2− jm.)

In the following we present some important extensions of the original MRA. The main purpose

of these extensions is to construct tight framelets with prescribed properties.

3.2. Extension Principles. The main extensions to MRA are given in this subsection: The

Unitary Extension Principle (UEP) and the Oblque Extension Principle (OEP). The aim is to

construct functions ψ1, . . . ,ψn belonging to V1 such that {ψl; j,k} j,k∈Z,l=1,2,...,r forms a tight
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frame for L2(R).

First, let us define the fundamental function Θ by

(5) Θ(γ) :=
∞

∑
j=0

r

∑
i=1
|ĥi(2 j

γ)|2
j−1

∏
m=0
|ĥ0(2m

γ)|2.

The definition of Θ ensures

Θ(γ) =
r

∑
j=1
|ĥ j(γ)|2 + |ĥ0(γ)|2Θ(2γ).

The following UEP has been introduced and proved by Daubechies et al. [10].

Theorem 3.1. Let φ be a compactly supported refinable function in L2(R) with refinement mask

ĥ0 ∈ l2(Z). Suppose that there exist a sequence of measurable and essentially bounded functions

{ĥl}r
l=1. Assume that, for almost all γ ∈ σ(V0), and all ν ∈ [0,π],

r

∑
l=0

ĥl(γ)ĥl(γ +ν) =


1, ν = 0

0, otherwise

Then the resulting wavelet system X(Ψ) is a tight frame in L2(R), and the fundamental function

Θ equals 1 a.e. on [−π,π].

The UEP is shown to be a very beneficial method to construct compactly supported spline

framelets, but the generators have some constraints, e.g. on the number of vanishing moments.

For more details, refer to [18]. In fact, when the number of vanishing moments increases, the

framelet representation of one-dimensional piecewise-smooth functions become sparser.

The primary purpose of the following theorem of Oblique Extension Principle (OEP) is to

increase vanishing moments of masks derived from a given refinement mask. This principle

was first presented and proved in [10]

Theorem 3.2. Let φ be a compactly supported refinable function in L2(R) with refinement mask

ĥ0 ∈ l2(Z). Assume there exists a 2π-periodic function Θ that satisfies the following:

(1) Θ is non-negative, essentially bounded, continuous at the origin, and Θ(0) = 1.
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(2) If γ ∈ [−π,π] and ν ∈ [0,π] is such that γ +ν ∈ [−π,π], then

ĥ0(γ)ĥ0(γ +ν)Θ(2γ)+
r

∑
l=1

ĥl(γ)ĥl(γ +ν) =


Θ(γ), ν = 0

0, otherwise.

Then the system X(Ψ) defined by ĥ0, . . . , ĥr is a tight framelet in L2(R).

The oblique extension principle can be used to obtain spline tight frame system whose trun-

cated framelet system has high approximation order and whose generators have high order

vanishing moments.

Lemma 3.3. Let X(Ψ) be an MRA tight frame system with generator φ provides approximation

order m. Then the approximation order of the framelet system is min{m,m′}, with m′ is the

order of the zero of Θ(.)−Θ(2.)|ĥ0|2 at the origin.

Proof. refer to [10]. �

Lemma 3.4. The MRA-based wavelet system X(Ψ) has vanishing moments of order m0 if and

only if ∑
r
j=1 |ĥ j(γ)|2 = O(|γ|)2m0 , near the origin.

Proof. Since ψ̂l(γ) = ĥl(γ)φ̂(γ/2) and φ̂(0) = 1, i.e., ψ̂l(0) = ĥl(0), the vanishing moments of

ψl are determined completely by the order of the zero (at the origin) of ĥl . Hence, X(Ψ) has

vanishing moments of order m0 is equivalent to

r

∑
l=1
|ĥl(γ)|2 = O(|γ|2m0)

�

Next, we show that the approximation order of the MRA provides an upper bound for the

approximation order of it’s corresponding framelet system.

Theorem 3.5. Let X(Ψ) be an MRA tight frame system. Assume that the system has vanishing

moments of order m0, and that the refinable function φ provides approximation order m. Then

the approximation order of the tight frame system is min{m,2m0}.
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Proof. Let X(Ψ) be a tight framelet. Hence, it is satisfy the OEP conditions, and thus
r

∑
j=1
|ĥ j(γ)|2 = Θ(γ)−|ĥ0(γ)|2Θ(2γ).

It follows that m′ in Lemma 3.3 is 2m0. �

3.3. Tight Framelets From B-spline functions. In this subsection, we first review the defi-

nition of B-splines functions. Next, we construct tight framelets with several number of gen-

erators derived from B-spline functions. B-spline functions, as an essential family of refinable

functions, are convenient in applications.

The B-spline of order m, denoted by Bm and defined in frequency domain by

|B̂m(γ)|=
∣∣∣∣sin(γ/2)

γ/2

∣∣∣∣m ,

and its refinement mask is defined by

ĥ0(γ) =

(
1+ e−iγ

2

)m

.

In the time domain, the Bm may defined recursively via

B1(x) = χ[0,1](x),

Bm+1(x) = Bm ∗B1(x), m ∈ N,

with support on [0,m].

Explicit expressions for the piecewise linear B2(x) and cubic B4(x) are given by

B2(x) =


x, x ∈ [0,1),

2− x, x ∈ [1,2),

0, otherwise
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and

B4(x) =



1
6x3, x ∈ [0,1),

−1
2x3 +2x2−2x+ 2

3 , x ∈ [1,2),

1
2x3−4x2 +10x− 22

3 , x ∈ [2,3),

−1
6x3 +2x2−8x+ 32

3 , x ∈ [3,4),

0, otherwise.

Now, one can define the m (2π periodic) masks by

(6) ĥl(γ) = ile−imγ/2

√(
m
l

)
sinl(γ/2)cosm−l(γ/2); l = 1, . . . ,m.

As a result, the m framelets are given by

(7) ψ̂l(γ) = ile−imγ/2

√(
m
l

)
cosm−l(γ/4)+ sinm+l(γ/4)

(γ/4)m ; l = 1, . . . ,m

The complex number of absolute value 1, i.e., il is to guarantee that each of the framelets is a

real- valued symmetric (or anti-symmetric) function. Note that the framelets are supported in

[−m,m] and they are splines of order m−1.

It is known [10], that in order to construct tight framelets that provide high approximation

order, we should choose the fundamental function Θ in OEP as a suitable approximation, at the

origin, to 1/|φ̂ |2. Hence, if φ = Bm, then we should choose Θ as a 2π-periodic function which

approximate ∣∣∣∣ γ/2
sin(γ/2)

∣∣∣∣2m

at the origin (see [10] for more results and analysis).

We now give two examples of framelets: Linear, respectively, cubic spline framelets constructed

via Theorem 3.1.

Example 3.1. [Tight framelet with two generators by using UEP] Consider the compactly sup-

ported refinable function φ = B2(x) with the refinement mask ĥ0(γ) =
(1+e−iγ )2

4 . Define the

masks ĥ1 and ĥ2 by

ĥ1(γ) =

√
2

4
(1− e−2iγ),

ĥ2(γ) =
−1
4
(1− e−iγ)2.



NUMERICAL SOLUTION OF THE VOLTERRA-FREDHOLM INTEGRAL EQUATION 4575

Consequently

ψ1 =
1√
2
(B2(2x)−B2(2x−2)),

ψ2 =
−1
2
(B2(2x)−2B2(2x−1)+B2(2x−2)).

One can verify that all the conditions in UEP hold and, therefor, the system X({ψ1,ψ2}) is

a tight frame for L2(R) with two compactly supported symmetric (anti-symmetric) generators

(see Figure 1). Although ψ2 has two vanishing moment, the framelet system has m0 = 1 vanish-

ing moment. The approximation order of the MRA (refinable function φ = B2) is m = 2. The

approximation order of the framelet system X({ψ1,ψ2}) equals min(m,2m0) = 2.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

(A) B2(x)

0.0 0.5 1.0 1.5 2.0

-0.6

-0.4
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0.4

0.6

(B) ψ1

0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

(C) ψ2

FIGURE 1. The graphs of the piecewise linear B-spline, B2(x), and correspond-

ing framelets ψ1 and ψ2.

Example 3.2. [Tight framelet with four generators by using UEP] Consider φ = B4(x) with the

refinement mask ĥ0(γ) =
(1+e−iγ )4

16 . Define the masks as follows

ĥ1(γ) =−
1
4
(1− e−iγ)(1+ e−iγ)3, ĥ2(γ) =−

√
6

16
(1− e−iγ)2(1+ e−iγ)2,

ĥ3(γ) =−
1
4
(1− e−iγ)3(1+ e−iγ), ĥ4(γ) =

1
4
(1− e−iγ)4.

Consequently

ψ1(x) =−
1
2
(B4(2x)+2B4(2x−1)−2B4(2x−3)−B4(2x−4));

ψ2(x) =−
√

6
8

(B4(2x)−2B4(2x−2)+B4(2x−4));

ψ3(x) =−
1
2
(B4(2x)−2B4(2x−1)+2B4(2x−3)−B4(2x−4));
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and

ψ4(x) =
1
2
(B4(2x)−4B4(2x−1)+6B4(2x−2)−4B4(2x−3)+B4(2x−4)).

The system X({ψ1,ψ2 ψ3,ψ4}) (see Figure 2) is a tight frame for L2(R) that has vanishing

moments of order m0 = 1 since ψ1 has one vanishing moment. For the refinable function φ =B4

we have m = 4. The approximation order of the framelet system is min{4,2}= 2.
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FIGURE 2. The graphs of the piecewise cubic B-spline, B4(x), and the corre-

sponding framelets

The next example is piecewise cubic spline framelet constructed by using Theorem 3.2.

Example 3.3. [Tight framelet with three generators by using OEP] We return to φ = B4 in the

previous example but now we define the fundamental function Θ to be

Θ(γ) =
2452
945
− 1657

840
cos(γ)+

44
105

cos(2γ)− 311
7560

cos(3γ),

and let

ĥ1(γ) = τ1(1− e−iγ)4[1+8e−iγ + e−2iγ ],

ĥ2(γ) = τ2(1− e−iγ)4[1+8e−iγ + τ
∗e−2iγ +8e−3iγ + e−4iγ ],

ĥ3(γ) = τ3(1− e−iγ)4[1+8e−iγ +(21+ τ/8)(e−2iγ + e−4iγ)+ τe−3iγ +8e−5iγ + e−6iγ ],
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where

τ
∗ =

7775
4396

τ− 53854
1099

, τ = 317784/7775+56
√

168771/7775 and

τ1 =

√
11113747578360−245493856965τ

62697600
,

τ2 =

√
1543080−32655τ

40320
,

τ3 =
√

32655/20160.

Hence, the symmetric framelets are given by (see Figure 3)

ψ1(x) = 2τ1(B4(2x)+4B4(2x−1)−25B4(2x−2)+40B4(2x−3)−25B4(2x−4)+4B4(2x−5)+B4(2x−6)),

ψ2(x) = 2τ2(B4(2x)+4B4(2x−1)+(τ∗−26)B4(2x−2)+(52−4τ
∗)B4(2x−3)+(6τ

∗−62)B4(2x−4)+

(52−4τ
∗)B4(2x−5)+(τ∗−26)B4(2x−6)+4B4(2x−7)+B4(2x−8)),

ψ3(x) = 2τ3(B4(2x)+4B4(2x−1)+(ρ−26)B4(2x−2)+(τ−4ρ +44)B4(2x−3)+(7ρ−4τ−31)B4(2x−4)+

(16+6τ−8ρ)B4(2x−5)+(7ρ−4τ−31)B4(2x−6)+(τ−4ρ +44)B4(2x−7)+

(ρ−26)B4(2x−8))+4B4(2x−9)+B4(2x−10)),

where ρ = 21+ τ/8.

The conditions of the OEP are satisfied and so the system X({ψ1,ψ2,ψ3}) is a tight frame for

L2(R) that has vanishing moments of order m0 = 4. The approximation order of the framelet

system is min{4,8}= 4.

0 1 2 3 4 5

-0.2

-0.1

0.0

0.1

0.2

0.3

(A) ψ1

0 1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

(B) ψ2

0 1 2 3 4 5 6 7
-0.4

-0.2

0.0

0.2

0.4

0.6

(C) ψ3

FIGURE 3. The graphs of the symmetric framelets derived from the cubic B-

spline, B4(x) and OEP in Example 3.3.
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4. NUMERICAL PROCEDURE

In this section, we present our method which consists of reducing the Voltera-Fredholm In-

tegral Equation to a set of algebraic equations by expanding the unknown function by B-spline

framelets with unknown coefficients. The generated system is ill-conditioned so the Moore-

Penrose inverse operator method is used to evaluate the unknown coefficients.

Consider the Voltera-Fredholm Integral Equation

(8) u(x) = f (x)+
∫ x

0
K1(x, t)u(t)dt +

∫ 1

0
K2(x, t)u(t)dt, 0≤ t ≤ x≤ 1,

where u is an unknown function and f ∈ L2[0,1], K1 ∈ L2([0,1][0,1]) and K2 ∈ L2([0,1][0,1])

are explicitly known. According to the proposed method, the approximate solution is given by

(9) un(x) =
r

∑
l=1

∑
j<n

∑
k∈Z

cl, j,kψl, j,k(x).

Substituting Eq.(9) into Eq.(8) yields

r

∑
l=1

∑
j<n

∑
k∈Z

cl, j,kψl, j,k(x)= f (x)+
r

∑
l=1

∑
j<n

∑
k∈Z

cl, j,k

[∫ x

a
K1(x, t)ψl, j,k(t)dt +

∫ b

a
K2(x, t)ψl, j,k(t)dt

]
.

Which can be rearranged to

(10)
r

∑
l=1

∑
j<n

∑
k∈Z

cl, j,k

(
ψl, j,k(x)−

[∫ x

a
K1(x, t)ψl, j,k(t)dt +

∫ b

a
K2(x, t)ψl, j,k(t)dt

])
= f (x)

By producing the collocation points on the interval [0,1]

(11) xi =
1
q

i, i = 0,1, . . . ,q,

and putting (11) in Eq.(10) we get

(12)
r

∑
l=1

∑
j<n

∑
k∈Z

cl, j,k

(
ψl, j,k(xi)−

[∫ xi

a
K1(xi, t)ψl, j,k(t)dt +

∫ b

a
K2(xi, t)ψl, j,k(t)dt

])
= f (xi).

Now, we can write Eq.(12) in the form

r

∑
l=1

∑
j<n

∑
k∈Z

cl, j,kMl, j,k(xi) = f (xi),

where

Ml, j,k =

(
ψl, j,k(xi)−

[∫ xi

a
K1(xi, t)ψl, j,k(t)dt +

∫ b

a
K2(xi, t)ψl, j,k(t)dt

])
.
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Rewriting Eq.(12) in matrix form leads to

M c = F ,

where

M = (Ml, j,k), c = (cl, j,k), F = ( f (xi)).

The values of the index k and consequently the number of nodes q depend on the support of

the refinable function and the domain of the desired function, i.e. u(x). More specifically,

by considering the B2 framelet system, we have to choose k such that 0 < 2 jx− k < 2 for

x ∈ (0,1), j = −n+ 1,−n+ 2, . . . ,n− 1 and hence suitable values of k are −2n−2,−2n−2 +

1, . . . ,2n−1−1. In other words, the matrix M is given by

M =


M1,−n+1,−2n−2(x0) . . . M1,−n+1,2n−1−1(x0) M1,−n+2,−2n−2(x0) . . . Mr,n−1,2n−1−1(x0)

M1,−n+1,−2n−2(x1) . . . M1,−n+1,2n−1−1(x1) M1,−n+2,−2n−2(x1) . . . Mr,n−1,2n−1−1(x1)
... . . . ... . . . ...

...

M1,−n+1,−2n−2(xq) . . . M1,−n+1,2n−1−1(xq) M1,−n+2,−2n−2(xq) . . . Mr,n−1,2n−1−1(xq)

 ,

whereas

c =



c1,−n+1,−2n−2

...

c1,−n+1,2n−1−1

c1,−n+2,−2n−2

...

cr,n−1,2n−1−1


.

As a consequence of sparseness of the matrix M and the absence of inverse, we computed the

unknown coefficients by

c = M+F ,

where M+ is the Moore-Penrose inverse of M satisfying

MM+M = M .
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5. NUMERICAL EXPERIMENTS

In this section, several numerical examples have been given to illustrate the efficiency of the

proposed method. All computations and plotting are accomplished using Mathematica [19].

Example 5.1. Consider the following Volterra-Fredholm Integral Equation [20]

u(x) = f (x)+
∫ x

0
ex−t u(t)dt−

∫ 1

0
ex+t u(t)dt, 0≤ t ≤ x≤ 1,

where f (x) = x2 +(e−4) ex + x2 +2x+2. The exact solution of this equation is u(x) = x2. In

Table 1, the exact values of the solution at equidistant nodes are compared with its numerical

results obtained by the proposed method using B2 framelets constructed by UEP for n = 3 and

n = 4. It can be seen from the table that as n increases the approximation solution converges

toward the exact solution.

xi Exact Value u3(xi) u4(xi) ‖u3(xi)−u(xi)‖ ‖u4(xi)−u(xi)‖

0.0 0.00 -0.002233 -0.000531 2.233e−3 5.305e−4

0.1 0.01 0.009895 0.010269 1.054e−4 2.687e−4

0.2 0.04 0.041118 0.039978 1.118e−3 2.209e−5

0.3 0.09 0.091145 0.089962 1.145e−3 3.800e−5

0.4 0.16 0.159872 0.160286 1.283e−4 2.868e−4

0.5 0.25 0.247376 0.249327 2.624e−3 6.730e−4

0.6 0.36 0.359857 0.360237 1.347e−4 2.372e−4

0.7 0.49 0.491133 0.489977 1.133e−3 2.335e−5

0.8 0.64 0.641100 0.641434 1.100e−3 1.434e−3

0.9 0.81 0.809872 0.809735 1.282e−4 2.653e−4

1.0 1.00 0.997740 0.997716 2.260e−3 2.264e−3

TABLE 1. Comparison between exact solution and approximate solution by the

B2-spline framelets constructed by UEP for Example 5.1



NUMERICAL SOLUTION OF THE VOLTERRA-FREDHOLM INTEGRAL EQUATION 4581

For n = 4, Figure 4 shows a good agreement between the exact and approximate solution .
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FIGURE 4. Exact and approximate solution for Example 5.1, n = 4

.

Example 5.2. Consider the following Volterra-Fredholm Integral Equation [21]

u(x) =
2
3

x− 1
3

x4 +
∫ x

0
x t u(t)dt +

∫ 1

0
x t u(t)dt, 0≤ t ≤ x≤ 1,

with the exact solution u(x) = x. For n = 3, Table 2 shows the absolute errors at equidistant

nodes for the different framelet systems discussed in this paper. The table gives that the increase

in the approximation order of the framelet from Examples 3.1 to 3.3 does not improve the

absolute error. The table shows that the method described in this paper is a very good technique

to solve linear Volterra-Fredholm Integral Equation.

In Table 3 we have compared the absolute errors at equidistant nodes of the proposed method

with those from the hybrid orthonormal Bernstein and block puls function (OBH) [22] for n= 3.

The table shows that the performance of our method is better than that of OBH.

For n = 3, Figure 5 shows the absolute errors of the present method via framelets based on

B4-spline and constructed by OEP. This Figure shows that the error is of order 10−15.

Example 5.3. Consider the following Volterra-Fredholm Integral Equation

u(x) =
1

30
(ex(32− e2− e2x))+

1
15

∫ x

0
ex+tu(t)dt +

1
15

∫ 1

0
ex+tu(t)dt, 0≤ t ≤ x≤ 1,
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xi B2, UEP B4, UEP B4, OEP

0.0 2.62e−16 4.44e−16 3.27e−16

0.1 3.61e−16 2.78e−16 2.50e−16

0.2 3.61e−16 3.33e−16 1.39e−16

0.3 3.89e−16 3.33e−16 3.89e−16

0.4 6.11e−16 5.00e−16 6.66e−16

0.5 6.66e−16 4.44e−16 5.55e−16

0.6 9.99e−16 6.66e−16 6.66e−16

0.7 1.44e−15 1.32e−15 7.77e−16

0.8 1.55e−15 1.33e−15 1.11e−15

0.9 1.78e−15 1.22e−15 1.22e−15

1.0 2.44e−15 1.78e−15 1.55e−15

TABLE 2. Absolute errors for Example 5.2

xi OBH B4, OEP

0.1 3e−8 2.50e−16

0.2 1e−8 1.39e−16

0.3 1e−8 3.89e−16

0.4 2e−8 6.66e−16

0.5 1e−8 5.55e−16

0.6 1e−8 6.66e−16

0.7 1e−8 7.77e−16

0.8 1e−8 1.11e−15

0.9 7e−8 1.22e−15

TABLE 3. Comparison of the absolute errors with OBH [22] for Example 5.2

with the exact solution u(x) = ex. Here, we use the framelet system based on B4-spline con-

structed by OEP to determine the approximate solutions. In Table 4 we have compared the
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FIGURE 5. Absolute errors of the approximate solution in Example 5.2 for n= 3

absolute errors of the proposed method with those from the Taylor expansion method [23].

The table shows that the performance of our method is better than that of the Taylor expansion

method.

xi Taylor Expansion B4, OEP

0.1 1.75e−3 1.65e−7

0.2 1.49e−3 3.15e−7

0.3 1.22e−3 3.23e−7

0.4 9.60e−4 5.69e−8

0.5 7.10e−4 5.90e−7

0.6 4.82e−4 1.34e−7

0.7 2.86e−4 3.89e−7

0.8 1.33e−4 6.72e−7

0.9 3.49e−5 2.88e−7

1.0 1.12e−6 1.71e−7

TABLE 4. Comparison of the absolute errors with the Taylor expansion method

[23] for Example 5.3
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6. CONCLUSION

In this paper, the linear Volterra-Fredholm Integral Equation is solved by using B-spline

based framelets and collocation method. In the proposed technique, the unknown function u(x)

is approximated using framelets and the integral equation is converted to a system of algebraic

equations. The efficiency of the presented method has been tested through several numerical

examples.
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