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Abstract. Y. B. Jun et al introduced a remarkable structure namely cubic sets that combines fuzzy set and interval-

valued fuzzy set. Motivated by the above theory our aim in this paper is to introduce the notion of cubic near-ring.

The notions of R-intersection, R-union, P-intersection and P-union are investigated. We prove that R-intersection

of two cubic near-ring is again a cubic near-ring. It is shown by means of counter examples that the R-union,

P-intersection and P-union of two cubic near-ring is not a cubic near-ring.
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1. INTRODUCTION

The fundamental concept of fuzzy set was introduced by Zadeh [10]. After the introduction

of the concept of fuzzy sets by Zadeh several researchers were conducted on the generalization

of the notion of fuzzy set. In 1975 Zadeh [11] introduced the concept of interval-valued fuzzy

subsets. Where the values of membership functions are intervals of numbers instead of the

numbers. In 1982, W. J. Liu [6] introduced the concept of fuzzy ring. In 2010, K. Hur and H.
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W. Kang [2] introduced interval-valued fuzzy subgroups and rings. Jun et al [5] introduced the

new concept called cubic sets. This structure encompass interval-valued fuzzy set and fuzzy

set. Also Jun et al [4] introduced the notion of cubic subgroups. The purpose of this paper to

introduce the notion of cubic near-ring. The notions of R-intersection, R-union, P-intersection

and P-union are introduced and we provide some results on it.

2. PRELIMINARIES

In this section, we listed some basic definitions related to cubic near-ring.

Definition 2.1. [7] A near-ring is an algebraic system (N,+, .) consisting of a non-empty set

N together with two binary operations called “+” and “.” such that (N,+) is a group not

necessarily abelian and (N, .) is a semigroup connected by the following distributive law:

(x+y).z = x.z+y.z valid for all x,y,z ∈ N. Precisely speaking, it is a right near-ring because it

satisfies the right distributive law. We will use the word “near-ring” to mean “right near-ring”.

Definition 2.2. [11] Let X be a non-empty set. A mapping µ̄ : X → D [0,1] is called interval-

valued fuzzy set, where D [0,1] denote the family of all closed subintervals of [0,1].

Definition 2.3. Let N be a near-ring and µ be a fuzzy set of N. Then µ is called a fuzzy near-ring

of N. If it satisfies the following conditions,

i) µ(x− y)≥ min{µ(x),µ(y)},

ii) µ(xy)≥ min{µ(x),µ(y)} ,∀x,y ∈ N.

Definition 2.4. Let N be a near-ring and µ be an interval-valued fuzzy set of N. Then µ is

called an interval-valued fuzzy near-ring of N. If it satisfies the following conditions,

i) µ̄(x− y)≥ min{µ̄(x), µ̄(y)},

ii) µ̄(xy)≥ min{µ̄(x), µ̄(y)} ,∀x,y ∈ N.

Definition 2.5. [3] Let X be a non-empty set. A cubic set A is a structure of the form A =

{〈x, µ̄(x),λ (x)〉 : x ∈ X} and denoted by A = 〈µ̄A,λ 〉, µ̄A =
[
µ
−
A ,µ+

A

]
is an interval-valued

fuzzy set (briefly, IVF) in X and λ : X → [0,1] is a fuzzy set in X.
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Definition 2.6. [5] The complement of A = 〈µ̄A,λ 〉 is defined to be the cubic set

A c = {〈x,(µ̄A)
c(x),1−λ (x)〉 |x ∈ X}.

Definition 2.7. [4] A cubic set A = 〈µ̄A,λ 〉 is called a cubic subgroup of X. If it satisfies the

following conditions,

i) µ̄A(xy)≥ min{µ̄A(x), µ̄A(y)},

ii) µ̄A(x−1)≥ µ̄A(x),

iii) λ (xy)≤ max{λ (x),λ (y)},

iv) λ (x−1)≤ λ (x) ∀x,y ∈ N.

Definition 2.8. [5] For any Ai = {〈x, µ̄i(x),λi(x)〉 |x ∈ X} where i ∈ ∧ (index set),

we have the following,

i)
⋂

R,i∈∧Ai = {〈x,(
⋂

i∈∧ µ̄i)(x) ,(
⋃

i∈∧λi)(x)〉 |x ∈ X} (R- intersection)

ii)
⋃

R,i∈∧Ai = {〈x,(
⋃

i∈∧ µ̄i)(x) ,(
⋂

i∈∧λi)(x)〉 |x ∈ X} (R- union)

iii)
⋂

P,i∈∧Ai = {〈x,(
⋂

i∈∧ µ̄i)(x) ,(
⋂

i∈∧λi)(x)〉 |x ∈ X} (P- intersection)

iv)
⋃

P,i∈∧Ai = {〈x,(
⋃

i∈∧ µ̄i)(x) ,(
⋃

i∈∧λi)(x)〉 |x ∈ X} (P- union)

3. MAIN RESULTS

We now introduce the notion of cubic near-ring as follows,

Definition 3.1. Let N be a near-ring, (N, µ̄) be an interval-valued fuzzy near-ring and (N,γ)

be a fuzzy near-ring. A cubic set A = 〈µ̄,γ〉 is called a cubic near-ring of N if it satisfies the

following conditions,

i) µ̄(x− y)≥ min {µ̄(x), µ̄(y)},

ii) µ̄(xy)≥ min {µ̄(x), µ̄(y)},

iii) γ(x− y)≤ max {γ(x),γ(y)},

iv) γ(xy)≤ max {γ(x),γ(y)} ,∀x,y ∈ N.

Example 3.2. Let N = {0,a,b,c} be the near ring with (N,+) as the Klein’s four group and

(N, .) as defined below (scheme 10:(0,0,0,1) See [7], p.408).
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+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

. 0 a b c

0 0 0 0 0

a 0 0 c a

b 0 0 0 b

c 0 0 0 c

Then (N,+, .) is a near-ring.

Define an interval-valued fuzzy set µ̄ in N by

µ̄(0) = [0.6,0.7], µ̄(a) = [0.4,0.5], µ̄(b) = [0.5,0.6], µ̄(c) = [0.4,0.5]

Then µ̄ is an interval-valued fuzzy near-ring.

Define a fuzzy set γ in N by γ(0) = 0.2,γ(a) = 0.45,γ(b) = 0.4,γ(c) = 0.45. Then γ is a fuzzy

near-ring.

Hence A = 〈µ̄,γ〉 is a cubic near-ring.

Remark 3.3. Every cubic ring is a cubic near-ring. But the converse need not be true.

Proof. Let N = The Dihedral group D8 = {0,a,2a,3a,b,a+b,2a+b,3a+b} ∀a,2a,3a,b,a+

b,2a+b,3a+b ∈ N(scheme 41: (10,10,10,10,10,10,10,10) See [7], p.416).

+ 0 a 2a 3a b a+b 2a+b 3a+b

0 0 a 2a 3a b a+b 2a+b 3a+b

a a 2a 3a 0 a+b 2a+b 3a+b b

2a 2a 3a 0 a 2a+b 3a+b b a+b

3a 3a 0 a 2a 3a+b b a+b 2a+b

b b 3a+b 2a+b a+b 0 3a 2a a

a+b a+b b 3a+b 2a+b a 0 3a 2a

2a+b 2a+b a+b b 3a+b 2a a 0 3a

3a+b 3a+b 2a+b a+b b 3a 2a a 0
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. 0 a 2a 3a b a+b 2a+b 3a+b

0 0 0 0 0 b b b b

a 0 0 0 0 b b b b

2a 0 0 0 0 b b b b

3a 0 0 0 0 b b b b

b 0 0 0 0 b b b b

a+b 0 0 0 0 b b b b

2a+b 0 0 0 0 b b b b

3a+b 0 0 0 0 b b b b

Then (N,+, .) is a near-ring.

Define an interval-valued fuzzy set µ̄ in N by

µ̄(x) =


[0.8,0.9] if x = 0,b,3a+b

[0.7,0.8] if x = a,2a,3a,a+b,2a+b

Then µ̄ is an interval-valued fuzzy near-ring.

Define a fuzzy set γ in N by

γ(x) =


0.43 if x = 0,b,3a+b

0.57 if x = a,2a,3a,a+b,2a+b

Then γ is a fuzzy near-ring. Hence A = 〈µ̄,γ〉 is a cubic near-ring.

Since (N,+) is not abelian, N is not a ring. Therefore a cubic near-ring A = (µ̄,γ) is not a

cubic ring. �

Theorem 3.4. Let A1 = 〈µ̄1,γ1〉 and A2 = 〈µ̄2,γ2〉 be two cubic near-rings. Then their R-

intersection (A1∩A2)R = 〈µ̄1∩ µ̄2,γ1∪ γ2〉 is a cubic near-ring.

Proof. Define (µ̄1∩ µ̄2) as,

(µ̄1∩ µ̄2)(x− y) = min{µ̄1(x− y), µ̄2(x− y)}

and

(µ̄1∩ µ̄2)(xy) = min{µ̄1(xy), µ̄2(xy)} .
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Now,

i) (µ̄1∩ µ̄2)(x− y) = min{µ̄1(x− y), µ̄2(x− y)} ,

≥ min{min [µ̄1(x), µ̄1(y)] ,min [µ̄2(x), µ̄2(y)]} ,

= min{min [µ̄1(x), µ̄2(x)] ,min [µ̄1(y), µ̄2(y)]} ,

= min{(µ̄1∩ µ̄2)(x),(µ̄1∩ µ̄2)(y)} .

ii) (µ̄1∩ µ̄2)(xy) = min{µ̄1(xy), µ̄2(xy)} ,

≥ min{min [µ̄1(x), µ̄1(y)] ,min [µ̄2(x), µ̄2(y)]} ,

= min{min [µ̄1(x), µ̄2(x)] ,min [µ̄1(y), µ̄2(y)]} ,

= min{(µ̄1∩ µ̄2)(x),(µ̄1∩ µ̄2)(y)} .

Define (γ1∪ γ2) as

(γ1∪ γ2)(x− y) = max{γ1(x− y),γ2(x− y)} ,

(γ1∪ γ2)(xy) = max{γ1(xy),γ2(xy)} .

iii) (γ1∪ γ2)(x− y) = max{γ1(x− y),γ2(x− y)} ,

≥ max{max [γ1(x),γ1(y)] ,max [γ2(x),γ2(y)]} ,

= max{max [γ1(x),γ2(x)] ,max [γ1(y),γ2(y)]} ,

= max{(γ1∪ γ2)(x),(γ1∪ γ2)(y)} .

iv) (γ1∪ γ2)(xy) = max{γ1(xy),γ2(xy)} ,

≥ max{max [γ1(x),γ1(y)] ,max [γ2(x),γ2(y)]} ,

= max{max [γ1(x),γ2(x)] ,max [γ1(y),γ2(y)]} ,

= max{(γ1∪ γ2)(x),(γ1∪ γ2)(y)} .

Thus (A1∩A2)R = 〈µ̄1∩ µ̄2,γ1∪ γ2〉 is a cubic near-ring. �

Remark 3.5. i) Let A1 = 〈µ̄1,γ1〉 and A2 = 〈µ̄2,γ2〉 be two cubic near-rings. Then their

R-union, (A1∪A2)R = 〈µ̄1∪ µ̄2,γ1∩ γ2〉 is not a cubic near-ring.
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ii) Let A1 = 〈µ̄1,γ1〉 and A2 = 〈µ̄2,γ2〉 be two cubic near-rings. Then their P-intersection,

(A1∩A2)P = 〈µ̄1∩ µ̄2,γ1∩ γ2〉 is not a cubic near-ring.

iii) Let A1 = 〈µ̄1,γ1〉 and A2 = 〈µ̄2,γ2〉 be two cubic near-rings. Then their P-union,(A1 ∪

A2)P = 〈µ̄1∪ µ̄2,γ1∪ γ2〉 is not a cubic near-ring.

Proof. The following example shows that the R-union, P-intersection and P-union of two cubic

near-ring is not a cubic near-ring.

Let N = {0,a,b,a+b} be the near ring with (N,+) as the Klein’s four group and (N, .) as

defined below (scheme 16:(0,0,0,14) See [7], p.408).

+ 0 a b a+b

0 0 a b a+b

a a 0 a+b b

b b a+b 0 a

a+b a+b b a 0

. 0 a b a+b

0 0 0 0 0

a 0 0 0 0

b 0 0 0 a

a+b 0 0 0 a

Then (N,+, .) is a near-ring.

i) Define µ̄1 : N→ D[0,1] by

µ̄1(x) =


[0.3,0.4] if x = 0

[0.2,0.3] if x = a

[0.1,0.2] if x = b,a+b

Define µ̄2 : N→ D[0,1] by

µ̄2(x) =


[0.6,0.7] if x = 0

[0.1,0.2] if x = a,a+b

[0.3,0.4] if x = b

Define γ1 : N→ D[0,1] by

γ1(x) =


0.25 if x = 0

0.35 if x = a

0.4 if x = b,a+b
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Define γ2 : N→ D[0,1] by

γ2(x) =


0.27 if x = 0

0.45 if x = a,a+b

0.32 if x = b

Define (µ̄1∪ µ̄2)(x) = max {µ̄1(x), µ̄2(x)} ,∀x,y ∈ N then

(µ̄1∪ µ̄2)(0) = [0.6,0.7]

(µ̄1∪ µ̄2)(a) = [0.2,0.3]

(µ̄1∪ µ̄2)(b) = [0.3,0.4]

(µ̄1∪ µ̄2)(a+b) = [0.1,0.2]

Since

(µ̄1∪ µ̄2)(a+b)≥ min{(µ̄1∪ µ̄2)(a),(µ̄1∪ µ̄2)(b)} ,

= {[0.2,0.3] , [0.3,0.4]} ,

= [0.2,0.3]

But (µ̄1∪ µ̄2)(a+b) = [0.1,0.2],

[0.1,0.2]� [0.2,0.3] Which is absurd.

This shows that the union of two interval-valued fuzzy near-ring is not a interval-valued fuzzy

near-ring.

Therefore (A1∪A2)R = 〈µ̄1∪ µ̄2,γ1∩ γ2〉 is not a cubic near-ring.

ii) Define γ1 : N→ D[0,1] by

γ1(x) =


0.3 if x = 0

0.4 if x = a

0.5 if x = b,a+b
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Define γ2 : N→ D[0,1] by

γ2(x) =


0.1 if x = 0

0.6 if x = a,a+b

0.2 if x = b

Define (γ1∩ γ2)(x) = min {γ1(x),γ2(x)} ,∀ x,y ∈ N

Then (γ1∩ γ2)(x) =



0.1 if x = 0

0.4 if x = a

0.2 if x = b

0.5 if x = a+b

(γ1∩ γ2)(a+b)≤ max{(γ1∩ γ2)(a),(γ1∩ γ2)(b)}

= max{0.4,0.2} ,

= 0.4

But (γ1∩ γ2)(a+b) = 0.5

0.5 � 0.4 Which is a contradiction.

This shows that intersection of two fuzzy near-rings need not be a fuzzy near-ring.

Hence the P-intersection (A1∩A2)P = 〈µ̄1∩ µ̄2,γ1∩ γ2〉 is not a cubic near-ring.

iii) From i) the union of two interval-valued fuzzy near-ring is not a interval-valued fuzzy

near-ring.

Therefore (A1∪A2)P = 〈µ̄1∪ µ̄2,γ1∪ γ2〉 is not a cubic near-ring. �

Theorem 3.6. If A = 〈µ̄,γ〉 is a cubic near-ring of N then A c is also a cubic near-ring of N.
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Proof. Since A = {(x, µ̄(x),γ(x)) |x ∈ N} is a cubic near-ring of N.

Define A c = {〈x,(µ̄A)
c(x),γc(x)〉 |x ∈ N}

i) (µ̄)c (x− y) = 1− µ̄(x− y)

≤ 1−min{µ̄(x), µ̄(y)} ,

= max{1− µ̄(x),1− µ̄(y)} ,

(µ̄)c (x− y)≤ max{(µ̄)c(x),(µ̄)c(y)} .

ii) (µ̄)c (xy) = 1− µ̄(xy)

≤ 1−min{µ̄(x), µ̄(y)} ,

= max{1− µ̄(x),1− µ̄(y)} ,

(µ̄)c (xy)≤ max{(µ̄)c(x),(µ̄)c(y)} .

iii) (γ)c (x− y) = 1− γ(x− y)

≥ 1−max{γ(x),γ(y)} ,

= min{1− γ(x),1− γ(y)} ,

(γ)c (x− y)≥ min{(γ)c(x),(γ)c(y)} .

iv) (γ)c (xy) = 1− γ(xy)

≥ 1−max{γ(x),γ(y)} ,

= min{1− γ(x),1− γ(y)} ,

(γ)c (xy)≥ min{(γ)c(x),(γ)c(y)} .

Therefore A c = 〈(µ̄)c(x),(γ)c(x)〉 is also a cubic near-ring. �

4. CUBIC BI-IDEALS OF CUBIC NEAR-RINGS

Definition 4.1. [7] Let N be a near-ring.Given two subsets A and B of N,we define the following

products AB = {ab|a ∈ A,b ∈ B} and A?B =
{(

a
′
+b
)

a−a
′
a|a,a′ ∈ A,b ∈ B

}
.
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Definition 4.2. [7] A subgroup B of (N,+) is said to be bi-ideal of N if BNB∩B?NB⊆ B.

Definition 4.3. A cubic subgroup A = 〈µ̄,ω〉 of N is called cubic bi-ideal of N, if for all

x,y,z ∈ N. If it satisfies the following conditions:

i) µ̄(x− y)≥ min {µ̄(x), µ̄(y)}

ii) ω(x− y)≤ max {ω(x),ω(y)}

iii) µ̄(xyz)≥ min {µ̄(x), µ̄(z)}

iv) ω(xyz)≤ max {ω(x),ω(z)}

Example 4.4. Let N = {0,a,b,c} be Klein’s four group. Define multiplication in N as fol-

lows: (scheme 13 : (0,7,13,9) See [7], p.408).

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

. 0 a b c

0 0 0 0 0

a 0 a b c

b 0 0 0 0

c 0 a b c

Then (N,+, .) is a Cubic near-ring.

Let µ̄ : N → D [0,1] be an interval-valued fuzzy subset defined by µ̄(0) = [0.4,0.5], µ̄(a) =

[0.2,0.3] = µ̄(c), µ̄(b) = [0.3,0.4] Then µ̄ is an interval-valued fuzzy bi-ideal of N.

Let ω : N → [0,1] be a fuzzy subset defined by ω(0) = 0.1,ω(a) = 0.4 = ω(c),ω(b) = 0.35.

Then ω is a fuzzy bi-ideal of N.

Hence A = 〈µ̄,ω〉 is a cubic bi-ideal of N.
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