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Abstract: Value at Risk (VAR) is a risk measure frequently used in market finance. This tool gives an idea of the 

losses that may occur to a financial asset (share or option), but does not predict when these losses may occur.  

The objective of our work is to propose a method that allows us to know the state of the economy necessary for 

Microsoft's performance to suffer extreme losses with alpha probability. This represents a significant asset for 

investors to consider before trading on the stock market. To answer this problem, we will try to explain the VAR using 

the ROBBINS-MONRO-JOSEPH procedure for the estimation of a percentile for binary variables, as a function of a 

systemic risk factor. We will also propose a method for applying the procedure without using real-time experiments. 

We are going to estimate the different parameters of the process, based on the history of the data available for statistical 

modelling, then analyse the results of the convergence of the process over the iterations, and finally see the impact of 

adding a random element to the binary variable 𝑦𝑛 of the process on convergence. The final results are satisfying 

and seem to be in line with reality, but there is room for improvement, either by increasing the number of iterations 

needed to refine convergence, whereas the stochastic approximation aims to obtain a good estimate in a minimum 

number of iterations, or by applying other more recent procedures that show better results following simulations. 
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1. INTRODUCTION 

The main arbitrage in market finance is to know the right time to sell or buy financial products, 

while minimising losses and maximising gains. One of the first attempts to address this arbitrage 

was made by Markowitz (1952) [1] with his approach to minimizing the variance of a portfolio of 

financial assets. Since then, several approaches have been adopted, but one of the most widely 

used methods for managing financial product risk remains Value At Risk (VAR). Thus, the Basel 

Committee has even imposed its use on financial institutions [2]. 

 VaR is the maximum level of loss that a financial asset can sustain, with a confidence level α∊ 

(0,1). There are several methods for calculating VaR. However, the most commonly used are: 

historical VaR which is based on past returns, and assumes that future returns are independent and 

have the same distribution as past returns. The second method is the parametric method. In this 

case it is assumed that the returns on the financial asset follow a known distribution, and we deduce 

the VAR according to the percentile of this law which is consistent with the confidence level set. 

The third method uses Monte Carlo simulation, which, by setting a given time horizon, generates 

returns according to a specific distribution, and then calculates the VaR on the basis of the 

simulated returns. Typically, the return on assets is assumed to follow the following differential 

equation 

𝑅𝑖 = 𝜇∆𝑡 +  𝜎𝜀√∆𝑡 (1) 

With: 

      𝑅𝑖 the return on financial assets after i periods,  

      𝜇 the average of financial asset prices,  

      𝜎 the standard deviation of the price of the financial asset,  

      𝜀 a random number generated according to the standard normal law,  

and Δ𝑡 the process step.  



3731 

MEASURING THE IMPACT OF THE STOCK MARKET INDEX RETURN 

The frequently used generalisation is Wiener's process, which is more suitable for distributions 

with a thick tail, and which incorporates time jumps. To know more about the VaR see [3]. 

 However, we do not know when these losses might occur, and therefore we have difficulty 

protecting ourselves against this risk of loss. In this paper, we will introduce a method for 

estimating the impact of a given exogenous risk factor on the return on the financial asset of interest, 

using a sequential stochastic approximation algorithm of the Robbins and Monro (1951) [4] type. 

 Robbins and Monro have shown that 𝑥𝑛 →  𝜃 , the percentile value α of an unknown 

distribution, in probability if  𝑥𝑛 is generated according to the following process. 

𝑥𝑛+1 = 𝑥𝑛 − 𝑎𝑛(𝑦
𝑛

− 𝛼) (2) 

with 

∑ 𝑎𝑛

∞

𝑛=1

= ∞ 𝑒𝑡 ∑ 𝑎𝑛
2

∞

𝑛=1

< ∞ (3)  

and  

𝑦
𝑛

= {
      1 𝑖𝑓 𝑣𝑛 > 𝑠 

0 𝐸𝑙𝑠𝑒
(4) 

• 𝑣𝑛The value of a latent variable at iteration n 

• 𝑆 A threshold linked to the latent variable 

Therefore, we will try to estimate the value θ of the α percentile that will cause losses equivalent 

to the VaR of the financial asset of interest. To do so, we will use the optimal Robbins-Monro 

procedure proposed by V. Roshan Joseph (2004) [5]. 

 

2. PRELIMINARIES 

2.1 Optimal Robbins-Monro procedure 

Let 𝑀(𝑥) be a distribution function of an unknown law and assume that �̇�(𝜃) is known with 

𝜃 , such that 𝑀(𝜃) = 𝛼 with 𝛼 the order of the percentile that we are trying to estimate. The 

experiment starts with a value 𝑥1 close to the value of 𝜃  of the percentile of order 𝛼  that we 

are trying to estimate, based on a priori knowledge. Therefore, we can choose an a priori 

distribution for 𝜃 with 𝐸(Ɵ) =  𝑥1 and 𝑉𝑎𝑟(Ɵ) =  𝜏1
2 < ∞, 𝑤ℎ𝑒𝑟𝑒  𝜏1 represents uncertainty 



3732 

LABRIJI, BENNAR, LABRIJI, RACHIK 

of estimation of 𝜃. Joseph proposes the following modified Robbins-Monro procedure 

𝑥𝑛+1 = 𝑥𝑛 − 𝑎𝑛(𝑦
𝑛

− 𝑏𝑛) (5) 

Note that even if  𝑥1  is fixed, 𝑥2, … , 𝑥𝑛are random, given their dependencies on past data. 

Let be  

𝑍𝑛 =  𝑥𝑛 −  Ɵ (6) 

Therefore 

𝑦
𝑛

|𝑍𝑛~ 𝐵𝑒𝑟{𝑀(𝑍𝑛)} (7) 

𝑍𝑛+1 = 𝑍𝑛 −  𝑎𝑛(𝑦𝑛 − 𝑏𝑛) (8) 

𝐸(𝑍1) = 0 𝑒𝑡 𝐸(𝑍1
2) = 𝜏1

2 (9) 

Joseph found the sequences {𝑎𝑛} and {𝑏𝑛} such as 𝑍𝑛 →  0 in probability, assuming that they 

verify the following condition 

∑ 𝑎𝑛

∞

𝑛=1

|𝑏𝑛 −  𝛼| ∑ 𝑎𝑗
2

𝑛−1

𝑗=1

< ∞ (10) 

He has shown that: 

𝑎𝑛 =
𝑐𝑛

𝛽𝑏𝑛(1 − 𝑏𝑛)
(11)  

With: 

𝑐𝑛 =
𝑣𝑛

(1 + 𝑣𝑛)
1
2

𝜙 {
𝛷−1(𝛼)

(1 + 𝑣𝑛)
1
2

} (12) 

𝑏𝑛 = 𝛷 {
𝛷−1(𝛼)

(1 + 𝑣𝑛)
1
2

} (13) 

𝑣𝑛+1 = 𝑣𝑛 − 
𝑐𝑛

2

𝑏𝑛(1 − 𝑏𝑛)
(14) 

With 𝛷 the distribution function of the standard normal law, 𝜙 its density function, 

𝛽 = �̇�(𝜃)/𝜙{𝛷−1(𝛼)} , and 𝑣1 = 𝛽2𝜏1
2  , so once 𝑣1  is determined, we can start the process. 

Moreover, the confidence interval at the level (1 −  𝛾)  for each value of de 𝑥𝑛  is 

[𝑥𝑛 ±  𝛷−1(𝛾/2)𝜏𝑛], with 𝜏𝑛 = 𝑣𝑛
1/2

/𝛽 
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2.2 Problematic 

It should be noted that this is not the first application of stochastic approximation to the VAR, see 

[6]-[7], but where the cited work focuses on modeling the VAR, we seek earlier to explain it. 

Let 𝑉𝑎𝑅𝑞  the Value at Risk of a financial asset with a q∈(0,1) level, we define 𝑦𝑛 such as : 

𝑦𝑛 = {
   1 𝑖𝑓 𝑟𝑛 > 𝑉𝑎𝑅𝑞

0 𝐸𝑙𝑠𝑒
(15) 

With 𝑟𝑛 the return on the financial asset we want to study.  

Let X be an exogenous factor, correlated to the performance of the financial asset we wish to study, 

and which is capable of explaining the losses or gains of the financial asset. 

So, we can use Robbins-Monro-Joseph's algorithm to estimate the value  𝑥𝑛 such that  𝑥𝑛 has 

a probability 𝛼 that 𝑦𝑛 = 1 and thus a probability 1 − 𝛼 of causing losses greater than or equal 

to the threshold of 𝑉𝑎𝑅𝑞, with 𝛼 the percentile of the unknown density function that we want to 

estimate 

Let 𝑓(𝑥𝑛) be a function such that 𝑟𝑛 = 𝑓(𝑥𝑛) + 𝑒 with 𝑒 a noise with a mean of zero. We can 

therefore write 𝑦𝑛 in the following form 

𝑦𝑛 = {
   1 𝑖𝑓 𝑓(𝑥𝑛) > 𝑉𝑎𝑅𝑞

0 𝐸𝑙𝑠𝑒
(16) 

 

2.3 Model estimation 

The most well-known basic model in the literature is the Capital Asset Pricing Model (CAMP). 

Created by Sharpe, in the 1960s [8] and based on studies by Markowitz in 1952 (modern portfolio 

theory). This tool describes the relationship between the risk of a financial asset and the expected 

return on that asset, and can be formulated as follows 

�̅�𝑎 = 𝑟𝑓 + 𝛽(�̅�𝑚 − 𝑟𝑓) (17) 

With 

• �̅�𝑎 The expected return on financial assets 

• 𝑟𝑓  The risk-free rate 

• �̅�𝑚 The expected market profitability 
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Therefore, the equation can be written as follows. 

�̅�𝑎 = 𝛽�̅�𝑚 + 𝑐 (18) 

With β and c, respectively, the coefficient and constant estimated by linear regression. Indeed, the 

stock market indicator summarizes several information, and gives us an idea about the trend of the 

global evolution of the economy, as well as of finance. 

Taking in our case the example of Microsoft as well as the Standard and Poor's (S&P) stock market 

index. We have taken the closing prices of the Microsoft and S&P from 16/02/2015 to 07/02/2020 

and calculated the weekly return with the following formula. 𝑟𝑛 = ln (
𝑝𝑛

𝑝𝑛−1
). 

Below is Table 1 describing the two returns. 

 

Table 1. Description of the returns studied 

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

Return of S&P 261 0.002 0.018 -0.073 -0.006 0.012 0.047 

Return of Microsoft 261 0.005 0.028 -0.094 -0.010 0.021 0.140 

 

The two yields have a correlation of 0.7414856. It can also be seen from the graph below, which 

represents the Microsoft Return versus the S&P Return, that there is indeed a linear relationship 

between the two returns, visible through the linear regression line. However, we also note the 

existence of outliers which may affect the quality of our model (Figure 1).  
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Figure 1. Adjusting Microsoft's performance to S&P's performance by a linear line 

 

A linear regression model is a statistical model that estimates a straight line using the ordinary least 

squares method. At first glance, the fit is acceptable. However, it is noticeable that in some regions, 

it would be preferable to use a polynomial with a degree greater than 1. The most commonly used 

method to solve this local fitting problem is the LOESS (LOcally weighted Scatterplot Smoother) 

method. Originally proposed by Cleveland (1979) [9] and further developed by Cleveland and 

Devlin (1988) [10], it specifically refers to a locally weighted polynomial regression. At each point 

in the database, a low-level polynomial is fitted to a sample, based on the values of explanatory 

variables close to the point whose response is estimated. The polynomial is adjusted using 

weighted least squares, giving more weight to points close to the point whose response is estimated 

and less weight to points further away. The value of the regression function for the point is then 

obtained by evaluating the local polynomial using the explanatory variable values for that data 

point. The LOESS adjustment is achieved once the regression function values have been calculated 

for each of the n points in our database (Figure 2). 
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Figure 2. Adjusting Microsoft's performance to S&P's performance using a LOESS model 

 

We can see that there is a slight parabola near zero yields as well as towards low yields. So the 

relationship is not perfectly linear. (Figure 2) 

 

Figure 3. Comparison of adjustments 
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If only Microsoft's negative returns are selected (Figure 3), the relationship between the two returns 

is no longer linear, but becomes parabolic. An ordinary least squares adjustment will push us to 

impute the data that we consider aberrant, with a linear view, whereas the relationship that 

describes the links between the two variables tends towards a quadratic relationship. From this, we 

retain the LOESS model. 

The second element necessary for our approximation is to have the 𝛽 , as 𝛽 = �̇�(𝜃)/𝜙{𝛷−1(𝛼)},  

as we assume that �̇�(𝜃) is known. 

So the first step is to have an approximation of M(x). Since we have a history, we can define the 

variable 𝑦 as follows 

𝑦 = {
   1 𝑖𝑓 𝑟𝑚 > 𝑉𝑎𝑅95%

0 𝐸𝑙𝑠𝑒
(20) 

With.  

• 𝑟𝑚 Microsoft's performance 

• 𝑉𝑎𝑅95% Value at risk at the 95% level which is -3.73% in our case, using the historical 

method. 

Therefore, we can express the relationship between the values of de 𝑟𝑆&𝑃  and 𝑦  trough the 

logistic regression. 

A relationship which is formulated as follows. 

𝑃(𝑦 = 1|𝑟𝑆&𝑃) =
1

1 + exp(−(𝛼𝑟𝑆&𝑃 + 𝑐))
(21) 

With α,et c, the parameters estimated using logistic regression. 
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The result of the estimation of the model coefficients is as follows (Table 2). 

Table 2. Result of the maximum likelihood estimation of the parameters of the logistic 

regression 

Results 

 Dependent variable. 

 y 

𝑅𝑒𝑡𝑢𝑟𝑛𝑒 𝑜𝑓 𝑆&𝑃 98.786*** 

 (18.608) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 4.062*** 

 (0.527) 

Observations 261 

Log Likelihood -30.904 

Akaike Inf. Crit. 65.807 

Note. *p<0.1; **p<0.05; ***p<0.01 

Thus . 

𝑃(𝑦 = 1|𝑟𝑆&𝑃) =
1

1 + exp(−(98.786𝑟𝑆&𝑃 + 4.062))
(22) 

In addition, one can also approximate �̇�(𝑟𝑆&𝑃) by the function 

𝑚(𝑟𝑆&𝑃) =
98.786 exp(−(98.786𝑟𝑆&𝑃 + 4.062))

(1 + exp(−(98.786𝑟𝑆&𝑃 + 4.062)))
2

(23) 

Therefore, one can approximate �̇�(𝜃) by 𝑚(𝜃). Furthermore, to have an approximation of θ 

associated with each α, we can use the solution of the following equation 

1

1 + exp(−(98.786𝑟𝑆&𝑃 + 4.062))
− 𝛼 = 0 (24) 
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Moreover, even if this is only an approximation of the actual value of �̇�(𝜃)   Joseph has 

demonstrated that the process converges towards the target value of θ, regardless of the value of 

�̇�(𝜃) provided [4]. However, an estimate far from the real value should cause a slowing down of 

the convergence. In our case the slowdown should be minimal, as our estimates are based on 

available data. 

The last element to be fixed is the 𝑉𝑎𝑅𝑞 to define  𝑦𝑛 , in our case, as well as the definition of y, 

the historical VAR at the 95% level is -3.73%. So 

 

𝑦𝑛 = {
   1 𝑖𝑓 𝑓(𝑥𝑛) > −3.73%

0 𝐸𝑙𝑠𝑒
(25) 

The definition of 𝑦𝑛 causes the approximation to return the value of 𝑥𝑛 , will be greater than the 

VAR, with a given probability α. Therefore, it returns the value of 𝑥𝑛 which will be lower than 

the VAR with a probability 1-α. 

 

3. MAIN RESULTS 

3.1 Simulation 

In our case we take 𝑥1  as the solution to the equation 

1

1 + exp(−(98.786𝑟𝑆&𝑃 + 4.062))
− 𝛼 = 0 (26) 

And 𝜏1 = 0.026 the standard deviation of 𝑟𝑆&𝑃 values when the VAR occurred. And after 100 

iterations, we get the following results. The graph below (Figure 4) shows the different values of 

𝑥𝑛  as a function of the different possible alpha values. 
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Figure 4. Result of the stochastic approximation as a function of each alpha 

 

The black curve is the result of the S.A. We can see that the S.A. has converged directly to the 

LOESS model solution and this, independently of the value of α. This is due to our definition of 

𝑦𝑛 which only takes into account the systemic risk factor that is represented by the S&P return, 

whereas it is the intrinsic risk that causes volatility.  

To overcome this problem, we define 𝑦𝑛(𝑒𝑛) as follows 

𝑦𝑛(𝑒𝑛) = {
   1 𝑖𝑓 𝑓(𝑥𝑛) + 𝑒𝑛 > −3.73%

0 𝐸𝑙𝑠𝑒
(27) 

With 𝑒𝑛 a randomly simulated value according to the distribution of the residuals of the LOESS 

regression. The next step therefore is to determine the error distribution of our model. 

The density function estimated from the residuals can be seen below (Figure 5).  
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Figure 5. distribution of regression residuals 

 

It can be seen that the curve is closer to a Student distribution than the normal distribution. 

Furthermore, the result of Student's Kolmogorov Smirnov test for standardised residuals using a 

scale=0.01, location=0 with 3 degrees of freedom showed that the test statistic D = 0.026157, p-

value = 0.9941. Therefore, we cannot reject the hypothesis H0= "the residuals follow a Student 

distribution". Thus, we can see below (Figure 6) the result of the stochastic approximation by 

adding a noise for the calculation of 𝑦𝑛 after 100 iterations. 
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Figure 6. Result of stochastic approximation with noisy forecasts 

 

Firstly, we notice that the results of the approximation are more homogeneous. Indeed, there was 

an abrupt variation in the results of the first stochastic approximation, whereas in the second 

approximation a sigmoid is obtained as the result of the S.A. Moreover, there was a convergence 

of the values of 𝑥𝑛 towards their target values for alpha lower than 0.6, whereas the rest of the 

𝑥𝑛 remained stable. Thus, our estimate of 𝑥1 was quite close to the target value for these alphas. 

The second point is that the values of 𝑥𝑛 as a function of alpha reflect reality as well. Indeed, we 

can see below (Figure 7) the graph of Microsoft's return versus S&P's return, but only in the case 

where Microsoft's return suffers losses below VaR. 
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Figure 7 . Microsoft's performance versus S&P's performance for extreme losses 

 

It can therefore be clearly seen that the results of the stochastic approximation are consistent with 

Microsoft's historical performance. Indeed, for Alpha close to 1, the S.A. clearly indicates a low 

but positive return at a 1-alpha chance of causing losses exceeding the VAR threshold at Microsoft, 

and the same is true for Alpha close to zero. The red lines represent the result of the S.A. for alpha 

equal to 0.5. It should be noted that 50% of the occurrences of Microsoft's losses had an associated 

S&P return greater than the estimate for alpha equal to 0.5. 

 

3.2 Discussion 

The estimation method chosen is the method proposed by Joseph, the latter had demonstrated that 

his algorithm gives better results than the classical Robbins and Monro algorithm even for extreme 

alpha values, and this for a low number of iterations but with a high root mean square error for 

extreme alpha values, but still lower than the basic algorithm. We cannot verify this finding 

because the target value of our process is unknown. However, 100 iterations are not enough to 

converge, as can be seen in the graph below (Figure 8) after 1000 iterations.  



3744 

LABRIJI, BENNAR, LABRIJI, RACHIK 

 

Figure 8. Results of the stochastic approximation after 1000 iterations. 

 

It can be seen that the values of the 𝑥𝑛 estimate for alphas below 0.6 have been refined.  This is 

due to the low speed of convergence that can be caused by the same value 𝜏1 independently of 

alpha. Several methods have been proposed to overcome this convergence speed problem, such as 

those of [11], [12] and [13]. They have shown that their improved versions return a lower MSE 

than joseph's version for low iterations, especially for extreme alpha values. But, which are 

relatively heavier in terms of compilations, and require several iterations to calibrate particular 

parameters. Especially since in our case, we have to be more interested in the time needed for 

compilation than the number of iterations performed given the power of the compilers available. 

All the more so as adding iterations allows us to better control the effect of the noise we add to the 

Microsoft performance predictions associated with 𝑥𝑛 , since after 100 iterations, two 

compilations can give quite different estimates for the extreme values of alpha, whereas after 1000 

iterations for example the SA results are stable. 
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CONCLUSION  

The results obtained represent a significant asset to be taken into consideration by investors before 

trading on the stock market. Therefore, sell when the return of the stock market index is 

dangerously close to the results obtained by the stochastic approximation, or buy if the return of 

the stock market index is far from our results and thus be sure not to suffer significant losses. 

Moreover, this work can be duplicated for any value return. Therefore, at time "t" we can judge 

the state of the economy and make our forecasts of the evolution of the stock market index. We 

can set a target positive return, for example, and thus know whether our forecasts will generate the 

targeted return, and thus buy the stock at a low price to be able to resell it at a more advantageous 

price. It would also be interesting to apply the stochastic approximation, but this time not to a 

single stock, but to a portfolio of stocks, trying to capture the covariance between the different 

stocks that make up the portfolio. 

 

MATERIALS AND METHODS 

All data used to conduct this study was obtained through Yahoo Finance. In addition, the theory 

discussed in this article has been transcribed on the programming language "R" with functions 

native to it. As for the graphs, they were drawn using the functions of the "Ggplot2" package of 

this language. 

 

DATA AVAILABILITY 

1. The Microsoft stock price data used to support the findings of this study can be accessed 

free of charge on « https://finance.yahoo.com/quote/MSFT/history?p=MSFT » 

2. The S&P data used to support the findings of this study can be accessed free of charge on 

«https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC» 
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