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Abstract. In this paper, (1+ϑ)-constacyclic codes of arbitrary length m over a non-chain finite local frobenious

ring Z8 +ϑZ8 are introduced. A new Gray map is constructed from Z8 +ϑZ8 to Z8
8 and proved that the Z8 -

Gray image of (1+ϑ)-constacyclic codes having prescribed length m over the ring Z8 +ϑZ8 is a cyclic code of

length 8m over the ring Z8. Moreover, it has been obtained that the binary image of the (1+ϑ)-constacyclic code

of length m over Z8 +ϑZ8 is a distance invariant binary quasi-cyclic code of length 32m with index 16.
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1. BACKGROUND

Many optimal binary linear codes have been studied from codes over several new classes

of rings via some Gray map. Over the ring F2 + uF2 + vF2 + uvF2, linear codes are discussed

in [1], self dual codes in [2], cyclic codes in [3] and (1+ u)-constacyclic codes are described

in [4] alongwith the construction of many optimal binary linear codes. More generally, cyclic

codes over the ring Rk were investigated in [12]. The rings mentioned above are not finite chain

rings, however have rich algebraic structures and produce binary codes with large automorphism
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groups and new binary self-dual codes. This demonstrates that the linear codes over such non-

chain rings have been received increasing attention to the authors (see [10]-[12], [14]). More

recently, linear codes over the non-chain ring Z4 +uZ4, where u2 = 0, has been explored in [6].

Also, linear codes over the non-chain ring Z8+uZ8, with u2 = 0, were obtained in [14]. (1+u)-

constacyclic codes over Z4 + uZ4 and a class of constacyclic codes over Fp + uFp and its gray

image were studied in [7] and [13] respectively. Motivated by the work over the ring presented

in [7] and [14], we focus on the construction of the constacyclic codes over the ring Z8 +ϑZ8,

with ϑ 2 = 0 and intent to establish some good binary codes from such codes.

2. THE RING Z8 +ϑZ8

Throughout this paper, the ringZ8+ϑZ8 with ϑ 2 = 0 is denoted by R. An arbitrary element

a+ϑb is a unit in R if and only if a is a unit in Z8. The ring R is a local Frobenius ring and a

finite non-chain ring having total of 12 ideals defined as

S.No. Ideals

1 I0 = {0}

2 I1 = Z8 +ϑZ8

3 I2 = {a+ϑb : a,b ∈ {0,2,4,6}}

4 I4 = {0,4,4ϑ ,4+4ϑ}

5 Iϑ = {aϑ : a ∈ Z8}

6 I2ϑ = {aϑ : a ∈ {0,2,4,6}}

7 I4ϑ = {0,4ϑ}

8 I2+ϑ = {0,2ϑ ,4ϑ ,6ϑ ,2+ϑ ,2+3ϑ ,2+5ϑ ,2+7ϑ ,4,4+2ϑ ,4+4ϑ ,4+6ϑ ,6+ϑ ,6+3ϑ ,6+5ϑ ,6+7ϑ}

9 I4+ϑ = {0,2ϑ ,4ϑ ,6ϑ ,4+ϑ ,4+3ϑ ,4+5ϑ ,4+7ϑ}

10 I4+2ϑ = {0,4ϑ ,4+2ϑ ,4+6ϑ}

11 I4,ϑ = {a+bϑ : a ∈ {0,4},b ∈ Z8}

12 I4,2ϑ = {0,4,2ϑ ,4ϑ ,6ϑ ,4+2ϑ ,4+4ϑ ,4+6ϑ}

A non-empty subset Á over Rm of length m is said to be a linear code, if it is an R-submodule

of Rm.
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Now, defining the mappings ϖ , γ and ζ from Rm to Rm as follows:

ϖ(c0,c1, ...,cm−1) = (cm−1,c0,c1, ...,cm−2),

γ(c0,c1, ...,cm−1) = (−cm−1,c0,c1, ...,cm−2),

ζ (c0,c1, ...,cm−1) = (ζ cm−1,c0,c1, ...,cm−2).

Here, the defined mappings ϖ , γ and ζ are known as the cyclic, negacyclic and constacyclic

shift respectively. Moreover, Á is a cyclic code, negacyclic code and ζ -constacyclic code if ϖ(

Á) = Á, γ( Á) = Á and ζ ( Á) = Á respectively.

The polynomial representation of the codeword c = (c0,c1, ...,cm−1) is c(x) = c0 + c1x+ ...+

cm−1xm−1 and xc(x) corresponds to a ζ -constacyclic shift of c(x) in the ring R[x]/ < xm−ζ >.

Thus, ζ -constacyclic codes of length m over R can be identified as ideals in the ring R[x]/ <

xm−ζ >. Thus, we have the following proposition.

Proposition 2.1. A subset C of Rm is a linear cyclic code of length m if and only if C is an

ideal of Am = R[x]/ < xm− 1 > . A subset C of Rm is a linear (1+ϑ)-constacyclic code of

length m over R if and only if C is an ideal of Bm = R[x]/ < xm−1−ϑ >.

A unique set of generators for cyclic codes over Z8 are discussed in the next lemma.

Lemma 2.2. Let C be a cyclic code of length m over Z8. Then,

(1) If m is odd then, C =< g(x),4a(x)> = < g(x)+4a(x)>, where g(x), a(x) are binary

polynomials with a(x)|g(x)|(xm−1) mod 2.

(2) If m is even, then

(i): If g(x) = a(x) then, C = < g(x),4a(x) > = < g(x)+ 4a(x) >, where g(x),a(x)

are the binary polynomials with g(x)|(xm−1)mod 2, and g(x)|p(x)(x
m−1)
g(x)

.

(ii): C = < g(x)+4p(x),4a(x)>, where g(x),a(x) and p(x) are the binary polynomi-

als with a(x)|g(x)|(xm−1) mod 2, a(x)|p(x)(x
m−1)
g(x)

and deg(g(x)) > deg(a(x))>

deg(p(x)).
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For a linear code C of length m over R, the two linear codes: Torsion code, Tor(C ) and Residue

code, Res(C ) of length m over Z8 are defined as:

Tor(C ) = {x ∈ Zm
8 | ϑx ∈ C },

Res(C ) = {x ∈ Zm
8 | ∃ y ∈ Zm

8 : x+ϑy ∈ C }.

The homomorphism ϕ : R→ Z8 as ϕ(a+ϑb) = a, extends naturally to a ring homomorphism

ϕ : Rm→ Z8[x]
< xm−1 >

defined as

ϕ(c0 + c1x+ ...+ cm−1xm−1) = ϕ(c0)+ϕ(c1)x+ ...+ϕ(cm−1)xm−1.

Acting ϕ on C over R, define a ring homomorphism ϕ : C → Res(C ) as ϕ(a+ϑb) = a, where

a,b ∈ Z8 with Kerϕ ∼= Tor(C ) and ϕ(C ) = Res(C ).

By the application of first isomorphism theorem of finite groups, |C| = |Tor(C )||Res(C )|. Also,

the image of C under the map ϕ is a cyclic code of length m over Z8.

Combining the above result with lemma 2.2, the set of generators for cyclic code of length m

over R can be obtained as provided in following theorem.

Theorem 2.3. Let C be a (1+ϑ)-constacyclic code of length m over R.Then

(1) If m is odd then, C = < g1(x),4a1(x)+ϑb(x),ϑ(g2(x)+ 4a2(x)) >, where b(x) is a

polynomial in Z8[x] and for i = 1,2, gi(x),ai(x) are the binary polynomials with ai(x) |

gi(x) | (xm−1) mod 2.

(2) If m is even then,

(i): If gi(x) = ai(x) then, C = < g1(x)+ 4p1(x)+ϑdx,ϑ(g2(x)+ 4p2(x)) >, where

b(x) is a polynomial inZ8[x], and for i= 1,2, gi(x),ai(x) are the binary polynomial

with gi(x)|(xm−1)mod 2, and gi(x)|pi(x)
(xm−1)

gi(x)
.

(ii): C = < g1(x)+ 4p1(x)+ϑe1(x),4a1(x)+ϑe2(x),ϑg2(x)+ 4ϑ p2(x),4a2(x) >,

where g(x),a(x) and p(x) are the binary polynomials with a(x)|g(x)|(xm−1) mod

2, a(x)|p(x)(x
m−1)
g(x)

and deg(g(x))>deg(a(x))>deg(p(x)).
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3. GRAY MAPS

Gray images of (1+ϑ)-constacyclic codes over R

The gray map ρ1 from Z8 to Z4
2 defined as

ρ1(z) = (q+ r,r, p+ r,q+ r),

where z= p+2q+4r with p,q,r ∈ Z2, is a distance preserving map from Zm
8 (Lee distance) to

Z4m
2 (Hamming distance) and can be extended to Zm

8 as: ρ1 : Zm
8 → Z4m

2 as

ρ1(z0,z1, ...,zm−1) =(q0 + r0, ...,qm−1 + rm−1,r0, ...,rm−1, p0 + r0, ..., pm−1 + rm−1,

q0 + r0, ...,qm−1 + rm−1).

Now, defining a new gray map ρ2 from Rm to Z8n
8 as

ρ2(c) = (b+7a,b+6a,b+5a,b+4a,b+3a,b+2a,b+a,b),

where c = a+ub and a,b ∈ Z8 and can also be extended from Rm to Z8 as

ρ2(c0,c1, ...,cm−1) =(b0 +7a0, ...,bm−1 +7am−1,b0 +6a0, ...,bm−1 +6am−1,b0 +5a0,

...,bm−1 +5am−1,b0 +4a0, ...,bm−1 +4am−1,b0 +3a0, ...,bm−1

+3am−1,b0 +2a0, ...,bm−1 +2am−1,b0 +a0, ...,bm−1 +am−1,b0,

...,bm−1)

where ci = ai +ϑbi and ai, bi ∈ Z8.

It is well known that the homogeneous weight has many applications for codes over finite rings

and provides a good metric for the underlying ring in constructing superior codes. Next, a

homogeneous weight on R is defined after defining of the homogeneous weight on arbitrary

finite ring K .

Definition 3.1. A real valued function w on the finite ring K is called a left homogeneous

weight if w(0) = 0 and the following holds:

(1) For all x,y ∈K , K x = K y implies w(x) = w(y).
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(2) There exists a real number γ such that

∑
y∈K (x)

w(y) = γ|K x| for all x ∈K \{0}.

The Right homogeneous weight can be defined in a similar manner and if weight is both left

homogeneous and right homogeneous, it is known as a homogeneous weight. For any element c

= a+ϑb ∈R; the homogeneous weight denoted by whom(c), as wL(b+7a,b+6a, ...,b+a,b).

By simple calculations the weight of any element c = a+ϑb ∈R is:

whom(x) =



0 if c = 0,

8 if c = ϑ ,7ϑ ,

24 if c = 3ϑ ,5ϑ ,

32 if c = 4ϑ ,

16 if otherwise.

It is easy to verify that, the above defined weight meets the conditions of the Definition 3.1,

hence it is actually a homogeneous weight on R. The homogeneous distance of a linear code C

over R, denoted by dhom(C ), is defined as the minimum homogeneous weight of the non-zero

codewords of C .

The map ρ2 is a distance preserving map from Rm(homogeneous distance) to Z8m
8 (Lee dis-

tance). Thus, we have the following three distance preserving maps:

ρ1 : (Zm
8 ,Lee Distance)→ (Z4m

2 ,Hamming Distance)

ρ2 : (Rm,Homogeneous Distance)→ (Z8m
8 ,Lee Distance)

ρ = ρ1ρ2 : (Rm,Homogeneous Distance)→ (Z32m
2 ,Hamming Distance)

4. (1+ϑ)-CONSTACYCLIC CODES

The following theorem defined a result on the above defined map ρ2.

Theorem 4.1. If ζ is a (1+ϑ) - constacyclic shift on Rm, ϖ is a cyclic shift on Z8m
8 and ρ2 be

a map defined as above, then ρ2ζ = ϖρ2.
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Proof. If c = (c0,c1, ...,cm−1) ∈Rm where ci = ai +ϑbi and ai,bi ∈ Z8 for 0≤ i≤ m−1.

The definition of the map ρ2, implies

ρ2(c) =(b0 +7a0, ...,bm−1 +7am−1, b0 +6a0, ...,bm−1 +6am−1,b0 +5a0, ...,bm−1

+5am−1,b0 +4a0, ...,bm−1 +4am−1,b0 +3a0, ...,bm−1 +3am−1,b0 +2a0,

...,bm−1 +2am−1,b0 +a0, ...,bm−1 +am−1,b0, ...,bm−1),

and

ϖρ2(c) =(bm−1,b0 +7a0, ...,bm−1 +7am−1,b0 +6a0, ...,bm−1 +6am−1,b0 +5a0, ...,

bm−1 +5am−1,b0 +4a0, ...,bm−1 +4am−1,b0 +3a0, ...,bm−1 +3am−1,b0

+2a0, ...,bm−1 +2am−1,b0 +a0, ...,bm−1 +am−1,b0, ...,bm−2).

On the other hand,

ζ (c) = ((1+ϑ)cm−1,c0,c1, ...,cm−2)

= ((1+ϑ)(am−1 +ϑbm−1),a0 +ϑb0,a1 +ϑb1, ...,am−2 +ϑbm−2),

and therefore,

ρ2ζ (c) =(bm−1 +am−1 +7am−1,b0 +7a0, ...,bm−1 +7am−1,b0 +6a0, ...,bm−1 +6am−1,

b0 +5a0, ...,bm−1 +5am−1,b0 +4a0, ...,bm−1 +4am−1,b0 +3a0, ...,bm−1

+3am−1,b0 +2a0, ...,bm−1 +2am−1,b0 +a0, ...,bm−1 +am−1,b0, ...,bm−2)

=(bm−1,b0 +7a0, ...,bm−1 +7am−1,b0 +6a0, ...,bm−1 +6am−1,b0 +5a0, ...,

bm−1 +5am−1,b0 +4a0, ...,bm−1 +4am−1,b0 +3a0, ...,bm−1 +3am−1,b0 +2a0,

...,bm−1 +2am−1,b0 +a0, ...,bm−1 +am−1,b0, ...,bm−2).

Hence, the result follows. �

Theorem 4.2. A linear code C of length m over R is a (1+ϑ)-constacyclic code if and only if

ρ2(C ) is a cyclic code of length 8m over Z8.

Proof. If C is a (1+ϑ)-constacyclic code, then Theorem 4.1 implies

ϖ(ρ2(C )) = ρ2(ζ (C )) = ρ2(C ).
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Hence, ρ2(C ) is a cyclic code of length 8m over Z8. Further, if ρ2(c) is a cyclic code of length

8m over Z8, then use Theorem 4.1 to obtain

ρ2(ζ (C )) = ϖ(ρ2(C )) = ρ2(C )

Since, ρ2 is an injective mapping, therefore ζ (C ) = C and hence, the result holds. �

The following corollary is an immediate consequence of above theorem.

Corollary 4.3. The image of (1+ϑ)-constacyclic code of length m over R under the map ρ2

is a distance invariant cyclic code of length 8m over Z8.

If ϖ is a cyclic shift, then for a positive integer s, the quasi-shift ϖs is given by

ϖs(a(1)|a(2)|...|a(s)) = (ϖ(a(1))|ϖ(a(2))|...|ϖ(a(s))),

where a(1) , a(2) ,..., a(s) ∈ F(2m)
2 and ” | ” represents the usual vector concatenation. A binary

quasi-cyclic code C of index s and length 2ms is a subset of (Z2m
2 )s such that ϖs(C ) = C .

Lemma 4.4. If ζ is a (1+ϑ)-constacyclic shift on Rm and ρ be a mapping defined as above,

then ρζ = ϖ16ρ .

Proof. For r = (r0,r1, ...,rm−1) ∈ Rm, where ri = ai +2bi +4ci +ϑdi +2ϑei +4ϑ fi, ai, bi, ci,

di, ei, fi ∈ Z2, for 0≤ i≤ m−1. Then,
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ρ(r) =(c0 + e0 + f0, ...,cm−1 + em−1 + fm−1,b0 + e0 + f0, ...,bm−1 + em−1 + fm−1,a0

+b0 + c0 + e0 + f0, ...,am−1 +bm−1 + cm−1 + em−1 + fm−1,a0 + e0 + f0, ...,

am−1 + em−1 + fm−1,a0 + c0 + e0 + f0, ...,am−1 + cm−1 + em−1 + fm−1,a0

+b0 + e0 + f0, ...,am−1 +bm−1 + em−1 + fm−1,b0 + c0 + e0 + f0, ...,bm−1

+ cm−1 + em−1 + fm−1,e0 + f0, ...,em−1 + fm−1,a0 +b0 + c0 + f0, ...,am−1

+bm−1 + cm−1 + fm−1,a0 +b0 + f0, ...,am−1 +bm−1 + fm−1,a0 + c0 + f0,

...,am−1 + cm−1 + fm−1,a0 + f0, ...,am−1 + fm−1,b0 + c0 + f0, ...,bm−1 + cm−1

+ fm−1,b0 + f0, ...,bm−1 + fm−1,c0 + f0, ...,cm−1 + fm−1, f0, ..., fm−1,b0 + c0

+d0 + f0, ...,bm−1 + cm−1 +dm−1 + fm−1,a0 +b0 +d0 + f0, ...,am−1 +bm−1

+dm−1 + fm−1,c0 +d0 + f0, ...,cm−1 +dm−1 + fm−1,a0 +d0 + f0, ...,am−1

+dm−1 + fm−1,a0 +b0 + c0 +d0 + f0, ...,am−1 +bm−1 + cm−1 +dm−1 + fm−1,

b0 +d0 + f0, ...,bm−1 +dm−1 + fm−1,a0 + c0 +d0 + f0, ...,am−1 + cm−1 +dm−1

+ fm−1,d0 + f0, ...,dm−1 + fm−1,c0 + e0 + f0, ...,cm−1 + em−1 + fm−1,b0 + e0

+ f0, ...,bm−1 + em−1 + fm−1,a0 +b0 + c0 + e0 + f0, ...,am−1 +bm−1 + cm−1

+ em−1 + fm−1,a0 + e0 + f0, ...,am−1 + em−1 + fm−1,a0 + c0 + e0 + f0, ...,am−1

+ cm−1 + em−1 + fm−1,a0 +b0 + e0 + f0, ...,am−1 +bm−1 + em−1 + fm−1,b0

+ c0 + e0 + f0, ...,bm−1 + cm−1 + em−1 + fm−1,e0 + f0, ...,em−1 + fm−1)
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and therefore,

ϖ16ρ(r) =(bm−1 + em−1 + fm−1,c0 + e0 + f0, ...,cm−1 + em−1 + fm−1,b0 + e0 + f0, ...,

bm−2 + em−2 + fm−2,am−1 + em−1 + fm−1,a0 +b0 + c0 + e0 + f0, ...,am−1

+bm−1 + cm−1 + em−1 + fm−1,a0 + e0 + f0, ...,am−2 + em−2 + fm−2,am−1

+bm−1 + em−1 + fm−1,a0 + c0 + e0 + f0, ...,am−1 + cm−1 + em−1 + fm−1,

a0 +b0 + e0 + f0, ...,am−2 +bm−2 + em−2 + fm−2,em−1 + fm−1,b0 + c0 + e0

+ f0, ...,bm−1 + cm−1 + em−1 + fm−1,e0 + f0, ...,em−2 + fm−2,am−1 +bm−1

+ fm−1,a0 +b0 + c0 + f0, ...,am−1 +bm−1 + cm−1 + fm−1,a0 +b0 + f0, ...,

am−2 +bm−2 + fm−2,am−1 + fm−1,a0 + c0 + f0, ...,am−1 + cm−1 + fm−1,

a0 + f0, ...,am−2 + fm−2,bm−1 + fm−1,b0 + c0 + f0, ...,bm−1 + cm−1 + fm−1,

b0 + f0, ...,bm−2 + fm−2, fm−1,c0 + f0, ...,cm−1 + fm−1, f0, ..., fm−2,am−1

+bm−1 +dm−1 + fm−1,b0 + c0 +d0 + f0, ...,bm−1 + cm−1 +dm−1 + fm−1,

a0 +b0 +d0 + f0, ...,am−2 +bm−2 +dm−2 + fm−2,am−1 +dm−1 + fm−1,c0

+d0 + f0, ...,cm−1 +dm−1 + fm−1,a0 +d0 + f0, ...,am−2 +dm−2 + fm−2,

bm−1 +dm−1 + fm−1,a0 +b0 + c0 +d0 + f0, ...,am−1 +bm−1 + cm−1 +dm−1

+ fm−1,b0 +d0 + f0, ...,bm−2 +dm−2 + fm−2,dm−1 + fm−1,a0 + c0 +d0

+ f0, ...,am−1 + cm−1 +dm−1 + fm−1,d0 + f0, ...,dm−2 + fm−2,bm−1 + em−1

+ fm−1,c0 + e0 + f0, ...,cm−1 + em−1 + fm−1,b0 + e0 + f0, ...,bm−2 + em−2

+ fm−2,am−1 + em−1 + fm−1,a0 +b0 + c0 + e0 + f0, ...,am−1 +bm−1 + cm−1

+ em−1 + fm−1,a0 + e0 + f0, ...,am−2 + em−2 + fm−2,am−1 +bm−1 + em−1

+ fm−1,a0 + c0 + e0 + f0, ...,am−1 + cm−1 + em−1 + fm−1,a0 +b0 + e0 + f0,

...,am−2 +bm−2 + em−2 + fm−2,em−1 + fm−1,b0 + c0 + e0 + f0, ...,bm−1

+ cm−1 + em−1 + fm−1,e0 + f0, ...,em−2 + fm−2)
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On the other hand,

ζ (r) =((1+ϑ)rm−1,r0,r1, ...,rm−2)

=((1+ϑ)(am−1 +2bm−1 +4cm−1 +ϑdm−1 +2ϑem−1 +4ϑ fm−1),r0, ...,rm−2)

=(am−1 +2bm−1 +4cm−1 +ϑ(am−1 +dm−1)+2ϑ(bm−1 + em−1)+4ϑ(cm−1

+ fm−1),r0, ...,rm−2)

and therefore,

ρ(ζ (r)) =(bm−1 + em−1 + fm−1,c0 + e0 + f0, ...,cm−1 + em−1 + fm−1,b0 + e0 + f0, ...,

bm−2 + em−2 + fm−2,am−1 + em−1 + fm−1,a0 +b0 + c0 + e0 + f0, ...,am−1

+bm−1 + cm−1 + em−1 + fm−1,a0 + e0 + f0, ...,am−2 + em−2 + fm−2,am−1

+bm−1 + em−1 + fm−1,a0 + c0 + e0 + f0, ...,am−1 + cm−1 + em−1 + fm−1,

a0 +b0 + e0 + f0, ...,am−2 +bm−2 + em−2 + fm−2,em−1 + fm−1,b0 + c0 + e0

+ f0, ...,bm−1 + cm−1 + em−1 + fm−1,e0 + f0, ...,em−2 + fm−2,am−1 +bm−1

+ fm−1,a0 +b0 + c0 + f0, ...,am−1 +bm−1 + cm−1 + fm−1,a0 +b0 + f0, ...,

am−2 +bm−2 + fm−2,am−1 + fm−1,a0 + c0 + f0, ...,am−1 + cm−1 + fm−1,a0

+ f0, ...,am−2 + fm−2,bm−1 + fm−1,b0 + c0 + f0, ...,bm−1 + cm−1 + fm−1,b0

+ f0, ...,bm−2 + fm−2, fm−1,c0 + f0, ...,cm−1 + fm−1, f0, ..., fm−2,am−1

+bm−1 +dm−1 + fm−1,b0 + c0 +d0 + f0, ...,bm−1 + cm−1 +dm−1 + fm−1,

a0 +b0 +d0 + f0, ...,am−2 +bm−2 +dm−2 + fm−2,am−1 +dm−1 + fm−1,c0

+d0 + f0, ...,cm−1 +dm−1 + fm−1,a0 +d0 + f0, ...,am−2 +dm−2 + fm−2,

bm−1 +dm−1 + fm−1,a0 +b0 + c0 +d0 + f0, ...,am−1 +bm−1 + cm−1 +dm−1

+ fm−1,b0 +d0 + f0, ...,bm−2 +dm−2 + fm−2,dm−1 + fm−1,a0 + c0 +d0 + f0,

...,am−1 + cm−1 +dm−1 + fm−1,d0 + f0, ...,dm−2 + fm−2,bm−1 + em−1 + fm−1,

c0 + e0 + f0, ...,cm−1 + em−1 + fm−1,b0 + e0 + f0, ...,bm−2 + em−2 + fm−2,

am−1 + em−1 + fm−1,a0 +b0 + c0 + e0 + f0, ...,am−1 +bm−1 + cm−1 + em−1

+ fm−1,a0 + e0 + f0, ...,am−2 + em−2 + fm−2,am−1 +bm−1 + em−1 + fm−1,

a0 + c0 + e0 + f0, ...,am−1 + cm−1 + em−1 + fm−1,a0 +b0 + e0 + f0, ...,am−2

+bm−2 + em−2 + fm−2,em−1 + fm−1,b0 + c0 + e0 + f0, ...,bm−1 + cm−1

+ em−1 + fm−1,e0 + f0, ...,em−2 + fm−2).

Hence the result. �
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Theorem 4.5. A linear code C of length m over R is a (1+ϑ)-constacyclic code if and only if

ρ(C ) is a binary quasi-cyclic code of length 32m with index 16.

Proof. If C is a (1+ϑ)-constacyclic code, then use of Theorem 4.4 gives,

ϖ16(ρ(C )) = ρ(ζ (C )) = ρ(C ),

which implies ρ(C ) is a binary quasi-cyclic code of length 32m with index 16, and again

applying Theorem 4.4 to obtain

ρ(ζ (C )) = ϖ16(ρ(C )) = ρ(C ).

Further, ρ is an injective mapping and therefore, ζ (C ) = C . �

From Theorem 4.5 and the definition of the map ρ , the following result holds immediately.

Corollary 4.6. The image of a (1+ϑ)-constacyclic code of length m over R under the map ρ

is a distance invariant binary quasi-cyclic code of length 32m with index 16.
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