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Abstract: Nowadays the heuristic techniques are becoming one of the most useful tools in solving optimization 

problems. One of these techniques is Particle Swarm Optimization, PSO algorithm. From the numerical analysis 

perspective this is a successful method, but many issues are still to be considered regarding the convergence of 

algorithm. In this paper we deal with the problem of the evaluation of the parameters of the algorithm that assure its 

convergence. In the previous work we presented some restriction on the parameters of the perturbated dynamical 

system, that modeled the PSO algorithm. These restrictions are necessary to guarantee the stability of the system. In 

this paper we present some other restrictions needed to ensure the stability of the system and to advance in the research 

of the convergence of PSO. 
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1. INTRODUCTION 

The particle swarm optimization is an algorithm based on the behavior of a flock of birds, fish, 

ants, more generally a group of individuals, and considers their behavior to control the area for 

their necessity, like feeding. There is no surprise that its first origin comes from Social Psychology 

as a simulation of social and cognitive processes in order to model abstract concepts as intelligence 

and learning. The model was invented by Kennedy and Eberhart in 1995.  The main idea of the 

algorithm is that the particles play the role of the members of the flock, and the algorithm imitates 

the behavior of the member (particle) locally and globally which means the flock as a whole. Since 

the algorithm is based in the behavior of a particle and the interaction of each particle with the 

ones that are in the neighborhood, then it converges to the global solution. [1-3]. There are many 

other algorithms which operate in a similar way, known as population-based evolutionary 

algorithms, however, PSO algorithm is motivated by the simulation of social behavior instead of 

the best performance made by the strongest individual (natural selection). The challenge in the 

optimization methods we use for optimization problems is to find the global solution because they 

mostly converge to the local solution. The heuristic algorithms try to converge to the global 

solution, which applies even for the method we study, PSO. The PSO algorithm is very efficient 

numerically but still lacks theoretical foundations. In this work we present a study on the stability 

of the algorithm.  First, we present the basic PSO algorithm and then we consider the dynamical 

system where this algorithm is modeled. In sections 4 and 5 we introduce the parameters 

𝛼, 𝛽, 𝛾, 𝛿, 𝜂 that allow us to operate within intervals where stability holds. Then in section 6 we 

tested these values on well-known functions and arrived at an optimal solution. Three cases are 

considered, two of which have the inertia weight vary at each iteration and in one case it is kept 

constant with value one, the ideal case. Finally, in the conclusion section we give a resume of the 

evaluation of the parameters theoretically and then the results obtained by applying the restrictions 

on the parameters in some test functions.  
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2. PARTICLE SWARM OPTIMIZATION 

As it is known the particle swarm optimization (PSO) is an algorithm that finds optimal solution 

through the interaction of individuals in a population of particles. The algorithm searches a space 

by adjusting the trajectories of individual vectors, named particles. Each particle is aimed to move 

toward the positions of their own best position and the best position of their neighbors. More 

specifically, a particle is identified by its current speed and its position, the most optimal position 

of each particle and the most optimal position of the neighborhood. We focus our work in the study 

of the behavior of one particle, of one individual. The speed and the velocity of a particle is given 

by the formula [3] 

(1)𝑣𝑖𝑑
𝑘+1 = 𝑣𝑖𝑑

𝑘 + 𝑐1𝑟1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) + 𝑐2𝑟2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑑
𝑘 − 𝑥𝑖𝑑

𝑘 ) 

(2)x𝑖𝑑
𝑘+1 = x𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1 

𝑣𝑖𝑑
𝑘  represents the speed of the particle i in the k time and x𝑖𝑑

𝑘  represents the d-dimension quantity 

of its position or more simply the current position of the particle  𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑘   represents the d 

dimension quantity of the particle i at its most optimal position at its k times and 𝑔𝑏𝑒𝑠𝑡𝑑
𝑘  is the 

d-dimension quantity of the swarm at its most optimal position. The speed is always between two 

boundaries, −𝑣𝑑𝑚𝑎𝑥  and 𝑣𝑑𝑚𝑎𝑥   , in order to avoid the wandering of the point away from the 

operational searching space. 𝑐1, 𝑐2 are non-negative constants, called cognitive learning rate or 

the acceleration coefficients and play an important role in the algorithm process. They represent 

the particle stochastic acceleration weight toward the personal best (pbest) and the global best 

(gbest).  We should avoid small accelerate constant since the particle can move away from the 

goal area and large accelerate constant values since the particle can move very quickly to the goal 

area and leave it totally. How do we determine these acceleration coefficients? In previous work 

of Kennedy and Eberhart, also Clerc later was stated that high values of the cognitive component 

𝑐1 compared to the social component 𝑐2 will bring to extra wandering of the search area (space). 

If there is a high value of the social component compared to the cognitive one then the particles 

may hurry prematurely to the local optimum. In many papers the values of the acceleration 

coefficients are equal to 2.05, other researchers recommend to not take the same value of the 
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coefficients. All of this discussion is based more heuristically because still there is no mathematical 

assurance on the convergence of PSO. In this paper we present some values for the acceleration 

coefficients based on the perturbated dynamical system presented in the work of Clerc and 

Kennedy.   

 

3. MODELLING THE PROBLEM IN A DYNAMICAL SYSTEM 

First, we denote 𝜑1 = 𝑐1𝑟1
𝑘, 𝜑2 = 𝑐2𝑟2

𝑘,  and 𝜑 = 𝜑1 + 𝜑2. Then we redefine 

𝑝𝑏𝑒𝑠𝑡𝑖𝑑 ≔ 
𝜑1𝑝𝑏𝑒𝑠𝑡𝑖𝑑 + 𝜑2𝑔𝑏𝑒𝑠𝑡𝑑

𝜑1 + 𝜑2
 

The dynamical system obtained by (1) and (2)                                                  

(3)     {
𝑣𝑡+1 = 𝑤𝑣𝑡 + 𝜑𝑦𝑡

𝑦𝑡+1 = −𝑤𝑣𝑡 + (1 − 𝜑)𝑦𝑡
 

where 𝑦𝑡 = 𝑝 − 𝑥𝑡, where p is the best position found so far. From three in an iterating step we 

have 

{
𝑣𝑡+2 = 𝑤𝑣𝑡+1 + 𝜑𝑦𝑡+1

𝑦𝑡+1 = −𝑤𝑣𝑡 + (1 − 𝜑)𝑦𝑡
 

substituting   𝑦𝑡+1 at the first equation and adding the first identity of (3) we have  

𝑣𝑡+2 + (𝜑 − 1 − 𝑤)𝑣𝑡+1 + 𝜔𝑣𝑡 = 0 

Which is a second order difference equation. Using the Lagrange interpolation, we have a 

continuous solution in order to study the convergence so the respective differential equation is 

𝑣𝑡𝑡 + ln(𝑒1𝑒2) 𝑣𝑡 + ln(𝑒1) ln(𝑒2) = 0 

where 𝑒1, 𝑒2 are the roots of the characteristic equation  

𝜆2 + (𝜑 − 1 − 𝜔)𝜆 + 𝜔 = 0, 

respectively 

(*)  𝑒1 =
𝜔+1−𝜑+√(𝜔+1−𝜑)2−4𝜔

2
,   𝑒2 =

𝜔+1−𝜑−√(𝜔+1−𝜑)2−4𝜔

2
 

and the solution of the second order differential equation is 𝑣(𝑡) = 𝑙1𝑒1
𝑡 + 𝑙2𝑒2

𝑡.  

From  

𝑣𝑡+1 = 𝑤𝑣𝑡 + 𝜑𝑦𝑡 
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we can derive 

𝑦(𝑡) =  
𝑙1𝑒1

𝑡(𝑒1−𝜔)+𝑙2𝑒2
𝑡(𝑒2−𝜔) 

𝜑
. 

To estimate the parameters 𝑙1, 𝑙2 for 𝑡 = 0  

{

𝑣(0) = 𝑙1 + 𝑙2

𝑦(0) =  
𝑙1(𝑒1 − 𝜔) + 𝑙2(𝑒2 − 𝜔) 

𝜑

 

 and  

{

𝑣(0) = 𝑙1 + 𝑙2

𝑦(0) =  
𝑙1(𝑒1 − 𝜔) + 𝑙2(𝑒2 − 𝜔) 

𝜑

 

We continue our study of convergence taking the inertia weight  

𝜔 = 1, and perturbate the dynamical system introducing the parameters 𝛼, 𝛽. 𝛾, 𝛿, 𝜂 as follows  

(4) {
𝑣𝑡+1 = 𝛼𝑣𝑡 + 𝛽𝜑𝑦𝑡

𝑦𝑡+1 = −𝛾𝑣𝑡 + (𝛿 − 𝜂𝜑)𝑦𝑡
 

where 𝜑 ∈ 𝑅+∗, ∀𝑡 ∈ 𝑁, (𝑦𝑡, 𝑣𝑡) ∈ 𝑅
2  

In this case we operate with matrix theory as the eigenvalues of the coefficients of a linear 

dynamical system determine the solution of that system as well.  

𝐴 = [
𝛼 𝛽𝜑
−𝛾 𝛿 − 𝜂𝜑

] 

 If we denote the eigenvalues of the matrix �̅�1  �̅�2   then the solution of (4) is 

 𝑣(𝑡) = 𝑙1�̅�1
𝑡 + 𝑙2�̅�2

𝑡,   𝑦(𝑡) =  
𝑙1�̅�1

𝑡(�̅�1−𝛼)+𝑙2�̅�2
𝑡(�̅�2−𝛼) 

𝛽𝜑
. 

As in the previous section we evaluate the parameters 𝑙1, 𝑙2 for the initial time 𝑡 = 0  

{
 
 

 
 𝑙1 =

−𝛽𝜑𝑦(0) − (𝛼 − �̅�2)𝑣(0)

�̅�2 − �̅�1

𝑙2 =
𝛽𝜑𝑦(0) + (𝛼 − �̅�1)𝑣(0)

�̅�2 − �̅�1

 

And also from (*) for 𝜔 = 1  

𝑒1 =
2 − 𝜑 + √(2 − 𝜑)2 − 4

2
,   𝑒2 =

2 − 𝜑 − √(2 − 𝜑)2 − 4

2
 

(**)   𝑒1 = 1 −
𝜑

2
+
√𝜑2−4𝜑

2
,           𝑒2 = 1 −

𝜑

2
−
√𝜑2−4𝜑

2
 

We have the constriction coefficients 𝑘1, 𝑘2  defined by  
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{
�̅�1 = 𝑘1𝑒1
�̅�2 = 𝑘2𝑒2

 

From direct computation, 

{
 
 

 
 𝑘1 = 

𝛼 + 𝛿 − 𝜂𝜑 +√(𝜂𝜑)2 + 2𝜑(𝛼𝜂 − 𝛿𝜂 − 2𝛽𝛾) + (𝛼 − 𝛿)2

2 − 𝜑 + √𝜑2 − 4𝜑

𝑘2 =
𝛼 + 𝛿 − 𝜂𝜑 − √(𝜂𝜑)2 + 2𝜑(𝛼𝜂 − 𝛿𝜂 − 2𝛽𝛾) + (𝛼 − 𝛿)2

2 − 𝜑 − √𝜑2 − 4𝜑

 

 

4.  CHOOSING THE COEFFICIENTS 

For 𝑘1and 𝑘2 to be real for a given value of 𝜑 subtracting and adding the two above identities 

we obtain   

2(𝛼 + 𝛿 − 𝜂𝜑) = ( 𝑘1+ 𝑘2)(2 − 𝜑) + ( 𝑘1- 𝑘2) √𝜑2 − 4𝜑 

2 √(𝜂𝜑)2 + 2𝜑(𝛼𝜂 − 𝛿𝜂 − 2𝛽𝛾) + (𝛼 − 𝛿)2=( 𝑘1+ 𝑘2) √𝜑2 − 4𝜑( 𝑘1 − 𝑘2)(2 − 𝜑)  

or posing 

• 𝐴 = 𝑠𝑔𝑛(𝜑2 − 4𝜑) 

• 𝐵 = |𝜑2 − 4𝜑| 

• 𝐶 = (𝜂𝜑)2 + 2𝜑(𝛼𝜂 − 𝛿𝜂 − 2𝛽𝛾) + (𝛼 − 𝛿)2 

we have  

√𝐶(1 − 𝑠𝑔𝑛(𝐶)(2 − 𝜑) − (𝛼 + 𝛿 − 𝜂𝜑) √𝐵 (1 − 𝐴) = 0 

√(|𝐶| ) √𝐵 𝑠𝑔𝑛(𝐶)(1 + 𝐴) = 0 

 It is seen the presence of 𝜑 so the solution depends on it. As it is obvious there are many ways 

for the two equations to be zero. A possible choice is 

{

𝐶 > 0
𝐴 = −1, (𝜑 < 4)
𝛼 + 𝛿 − 𝜂𝜑 = 0

 

First set of choice 𝛼 = 𝛿,   𝛽𝛾 = 𝜂2.  

Then 

𝛼 =
1

4
(2(𝑘1 + 𝑘2) + (𝑘1 − 𝑘2)(√𝜑2 − 4𝜑 + 𝜑

2−𝜑

√𝜑2−4𝜑
)) 
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𝜂 = 
1

2
(𝑘1 + 𝑘2 + 

2−𝜑

√𝜑2−4𝜑
(𝑘1 − 𝑘2)) 

Since we want real coefficients and from 𝐴 = −1 then we choose  

𝑘1 = 𝑘2 = k ∈ 𝑅 

And in order for the five coefficients to satisfy the conditions 𝛼 = 𝛿,   𝛽𝛾 = 𝜂2, we choose 

 𝛼 = 𝛽 = 𝛾 = 𝛿 = 𝜂 = 𝑘 

In this case the parameters do not depend on 𝜑. 

Second set of choice (depend on  ) 𝛼 = 𝛽,   𝛾 = 𝛿 = 𝜂,  after the calculations  

𝛼 =
( 𝑘1+ 𝑘2)(2 − 𝜑) + ( 𝑘1- 𝑘2) √𝜑2 − 4𝜑

2
+ (𝜑 − 1) 

𝛾 =
1

4(𝜑 − 1)

( 𝑘1+ 𝑘2)(𝜑 − 2) − ( 𝑘1- 𝑘2) √𝜑
2 − 4𝜑

√𝑘1
2(𝜑2 − 4𝜑 + 2 − 𝜑√𝜑2 − 4𝜑+𝑘2

2(𝜑2 − 4𝜑 + 2 + 𝜑√𝜑2 − 4𝜑 + 8𝑘1 𝑘2(2𝜑 − 1)

 

To simplify the result, we take 𝑘1 = 𝑘2 = k ∈ 𝑅 and   

𝛼 = (2 − 𝜑)𝑘 + 𝜑 − 1 

𝛾 = 𝑘  𝑜𝑟   𝛾 =
𝑘

𝜑 − 1
 

For the convergence of the first choice of parameters, with the conditions 𝑘1 = 𝑘2 = k,  

(5) {
|�̅�1| =  𝑘|𝑒1|

|�̅�2| = 𝑘|𝑒2|
 

And for the second choice of coefficients and for the parameter 𝛼 to be positive, 𝜑 ≤ 2  

(6)

{
 
 

 
 |�̅�1| =  |𝑘 (1 −

𝜑

2
) +

√𝑘2(2 − 𝜑)2 + 4𝑘(𝜑 − 2) + 4(𝜑 − 1)

2
| ≤ 𝑘|𝑒1| = 𝑘

|�̅�2| =  |𝑘 (1 −
𝜑

2
) −

√𝑘2(2 − 𝜑)2 + 4𝑘(𝜑 − 2) + 4(𝜑 − 1)

2
| ≤ 𝑘|𝑒2| = 𝑘

 

(5) and (6) guarantee that the system is stable. 

Since the parameters must be real-valued then another restriction is the following  

(𝜂𝜑)2 + 2𝜑(𝛼𝜂 − 𝛿𝜂 − 2𝛽𝛾) + (𝛼 − 𝛿)2 ≥ 0, ∀𝜑 ∈ 𝑅+ 

We can compute the discriminant and obtain   

(𝜂𝜑)2 − 4𝛽𝛾𝜑 − 2𝜑𝛿𝜂 + 2𝜑𝛼𝜂 + (𝛼 − 𝛿)2 ≥ 0 

Since (𝜂𝜑)2, (𝛼 − 𝛿)2 are nonnegative we have  

−4𝛽𝛾𝜑 − 2𝜑𝛿𝜂 + 2𝜑𝛼𝜂 > 0 ↔ 2𝜑(−2𝛽𝛾 − 𝛿𝜂 + 𝛼𝜂) > 0 ↔ 
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↔ (−2𝛽𝛾 − 𝛿𝜂 + 𝛼𝜂) > 0 ↔ (−2𝛽𝛾 + 𝜂(−𝛿 + 𝛼) > 0 ↔ 𝜂(−𝛿 + 𝛼) > 2𝛽𝛾 > 𝛽𝛾 

So, the condition needed is 𝜂(𝛼 − 𝛿) > 𝛽𝛾. (7) 

From the other hand, even if the condition (7) is satisfied one of the values of the eigenvalues �̅�1, 

�̅�2  can still have a complex trajectory since 𝑣(𝑡) = 𝑙1�̅�1
𝑡 + 𝑙2�̅�2

𝑡 ,   for �̅�1 = −1 , (−1)𝑡 

where t non integer can be complex. So, we add a stronger condition for the eigenvalues, we require 

to be positive �̅�1 > 0, �̅�2 > 0 which is equivalent from (5) that  

𝛼 + 𝛿 − 𝜂𝜑 > 0 

(𝛼 + 𝛿 − 𝜂𝜑)2 > (𝜂𝜑)2 + 2𝜑(𝛼𝜂 − 𝛿𝜂 − 2𝛽𝛾) + (𝛼 − 𝛿)2 

From operation on the second inequality we obtain 

(8) {
𝛼 + 𝛿 − 𝜂𝜑 > 0

𝛼(𝛿 − 𝜂𝜑) + 𝛾𝛽𝜑 > 0
 

What we can deduce directly from (8) is that both inequalities depend on 𝜑. If the maximum 

value of 𝜑  is known, we denote it by 𝜑𝑚𝑎𝑥  and (8) becomes 

(9)  {

𝛼+𝛿

𝜂
> 𝜑𝑚𝑎𝑥

𝛼𝛿

𝛼𝜂−𝛾𝛽
> 𝜑𝑚𝑎𝑥

 

To conclude this section of restrictions needed for the system to be continuous and real the 

parameters should satisfy simultaneously (7), (8) and (9).  

 

5. RESULTS OF TESTING VALUES OF PARAMETERS SATISFYING (7), (8), (9) IN PSO 

ALGORITHM 

The theorical result from the previous sections allow us to propose several variants of PSO. The 

stability of the perturbed dynamical system depends on the parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜂  and the 

continuity of the perturbated system under the conditions (7), (8), (9) of the parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜂 

guarantees that the proposed variants of PSO converge. For different values of the coefficients we 

obtain different cases of PSO algorithm. We consider some well-known test functions to control 

the numerical efficiency and stability of the proposed cases. The population taken in consideration 

for all test functions is 30 particles. To arrive to the optimal value, we ran 10 steps with 1000 
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iterations each.   

We check their numerical results with test functions [5]. 

The following table presents the test functions and their characteristics related to the variants of 

PSO. 

The function Dimension Boundary 

𝒇𝟏(𝒙) = ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏   3 ±20 

𝒇𝟐(𝒙) =∑( 𝟏𝟎𝟎 ∗ (𝒙𝒊+𝟏 − 𝒙𝒊
𝟐)
𝟐
+ (𝟏 − 𝒙𝒊)

𝟐)

𝒏

𝒊=𝟏

 

 

 

3 

 

±50 

 𝒇𝟑(𝒙) =∑[𝒙𝒊
𝟐 − 𝟏𝟎 ∗ 𝐜𝐨𝐬 (𝟐𝝅𝒙(𝒊))

𝒏

𝒊=𝟏

+ 𝟏𝟎] 
 

3 

 

±10 

 

𝒇𝟒(𝒙) = ∑ 𝒊 ∗ 𝒙𝒊
𝟒𝒏

𝒊=𝟏   

 

 

6 

 

 

±20 

𝒇𝟓(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑(𝒙𝒊 − 𝟏𝟎𝟎)

𝟐 − ∏𝐜𝐨𝐬 (
𝒙𝒊 − 𝟏𝟎𝟎

√𝒊
) + 𝟏

𝒏

𝒊=𝟏

 

𝒏

𝒊=𝟏

 
 

3 

 

±300 

𝒇𝟔(𝒙) =∑𝒊 ∗ 𝒙𝒊
𝟒

𝒏

𝒊=𝟏

 
 

10 

 

±20 

 

Table 1. Test function used, dimension and boundaries of the respective variables. 

 

We have tested three different cases; in the first and third case we consider the inertia weight 

variable at each iteration based in the formulas shown in the respective cases. In the second case 

the inertia weight is kept constant, which is considered an ideal case. 

First case considers that the inertia weight changes depending in  

𝑤𝑚𝑎𝑥 = 0.9;  𝑤𝑚𝑖𝑛 = 0.4;𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 1000, 𝑖𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 

while the acceleration coefficients are kept constant.   
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𝐶𝑎𝑠𝑒 1: 𝑐1 = 2.01, 𝑐2 = 2.02 and 𝑤 = 𝑤𝑚𝑎𝑥 −
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)∗𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
. 

In the second case we consider the inertia weight equal to one,𝑤 = 1 , and the acceleration 

coefficients 𝑐1, 𝑐2 equal, more specifically 

𝐶𝑎𝑠𝑒 2: 𝑐1 = 𝑐2 = 2.05, 𝑤 = 1 

In the third case we use a different formula to evaluate the inertia weight, and the acceleration 

coefficients are kept constant.  

𝐶𝑎𝑠𝑒 3: 𝑐1 = 𝑐2 = 2.01, 𝜔(𝑖𝑡𝑒𝑟) = 𝜔(𝑖𝑡𝑒𝑟 − 1) ∗ 0.99 

In the following table is shown the optimal value of the objective function and the step in which 

this value is obtained.  

 

𝒇𝒊(𝒙) Case.1 Case. 2 Case.3 

 

1 

2 

3 

4 

5 

6 
 

Best-fun Best-step 

1.9518e-67 9 

1.1445e-05 8 

0 1 

7.8302e-79 8 

0 4 

6.7040e-44 1 
 

Best-fun Best-step 

0.0382 3 

2.7578 9 

2.9376 9 

335.5725 2 

0.3315 6   

3.1448e+03 2 
 

Best-fun Best-step 

7.0880e-318 4 

0.0049 9 

0 1 

4.8372e-21 1 

 0 1 

2.9317e-68 1 
 

 

Table 2. Optimal value objective function and best run in 𝐶𝑎𝑠𝑒 1, 𝐶𝑎𝑠𝑒 2, 𝐶𝑎𝑠𝑒 3, for each test 

function taken in consideration. 

 

The convergence of these cases related to the test functions of table 1, is given in the following 

figures 
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Figure 1. Convergence graph of PSO of three cases, Case 1 Case 2 and Case 3, for each test 

functions𝑓1, 𝑓2, … , 𝑓6. 
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In the figures the black color represents the curve of case 1, blue color the curve of case 2, and the 

red color the curve of case 3. For each test function we have presented in figure1, the result of the 

optimal values which we obtain from the algorithm until we arrive at the best step. From tables 2 

we concluded that in case 1 and case 3 we have the best values which is noticed and emphasized 

also by figure 1. So, we can conclude that the convergence is faster in case 1 and case 3, when the 

inertia weight changes in each iteration of algorithm.  

 

6. CONCLUSIONS 

First, we explained thoroughly how the parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜂  are chosen to guarantee the 

convergence of the proposed variants of PSO. This was a very important issue of our work and it 

was based in the perturbated dynamical systems where we operated with analytic tools. The 

importance is shown in the request that this system must be stable. Then, for each of the proposed 

cases we took a group of functions considered as test functions. The results obtained are reasonable 

and satisfactory, emphasizing that case 1 and case 3 give the best results. This occurs due to the 

fact that the inertia weight changes in each iteration assuring a faster convergence then the cases 

when 𝑤 = 1. 
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