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Abstract. The quasi-Newton (QN) method are among the efficient variants of conjugate gradient (CG) method

for solving unconstrained optimization problems. The QN method utilizes the gradients of the function while ig-

noring the available value information at every iteration. In this paper, we extended the Dai-Yuan [39] coefficient

in designing a new CG method for large-scale unconstrained optimization problems. An interesting feature of our

method is that its algorithm not only uses the available gradient value, but also consider the function value infor-

mation. The global convergence of the proposed method was established under some suitable Wolfe conditions.

Extensive numerical computation have been carried out which show that the average performance of this new al-

gorithm is efficient and promising. In addition, the proposed method was extended to solve practical application

problem of portfolio selection.
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1. INTRODUCTION

The nonlinear conjugate gradient (CG) algorithms are among the efficient numerical algo-

rithms for solving unconstrained optimization problems, especially, when the problems are of

large dimension. The CG method are very popular among mathematicians, engineers, and many

more because of its robustness and ability to solve large-scale optimization problems [22]. Con-

sider an unconstrained optimization model

min
x∈Rn

f (x),

where f : Rn → R is a smooth function and g denotes the gradient of f . The CG algorithm

generate a sequence of iterate {xk} via the following recurrence formula:

(1) xk+1 = xk + sk,

where k ≥ 0, sk = αkdk [23]. The parameter αk > 0 is known as the step-size which is often

computed along the search direction dk with formula defined as

(2) dk :=


−gk, k = 0

−gk +βkdk−1, k ≥ 1
,

where βk represent the conjugate gradient parameter that characterize different CG methods.

The classical formula for βk are group into two. The first group include HS method [27], PRP

method [9, 11], and LS method [37] with formula given as

β
HS
k =

gT
k (gk−gk−1)

dT
k−1(gk−gk−1)

,

β
PRP
k =

gT
k (gk−gk−1)

‖gk−1‖2 ,

β
LS
k = −

gT
k (gk−gk−1)

dT
k−1gk−1

.

This group is characterize by their restart properties and efficient numerical performance [21,

38]. Restart strategy is usually employed in conjugate gradient algorithms to improve their

computational efficiency. However, the convergence of most of these methods are yet to be es-

tablished under some line search conditions [24, 35]. The second group include the FR method

[31], the CD method [30], and the DY method [39] with formula given as:
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β
FR
k =

‖gk‖2

‖gk−1‖2 ,

β
CD
k = − ‖gk‖2

dT
k−1gk−1

,

β
DY
k =

‖gk‖2

dT
k−1(gk−gk−1)

.

On the other hand, these methods FR, CD, and DY do not possess the restart strategy and thus

perform poorly due to jamming phenomenon [3]. However, the convergence of these methods

have been established under various line search methods [24, 35]. One of the most frequent

used line search method is the inexact line search, particularly the Wolfe line search method

[18]. For the Wolfe line search, the step-size αk is computed such that:

f (xk +αkdk)≤ f (xk)+ϕαkgT
k dk,(3)

g(xk +αkdk)
T dk ≥ σgT

k dk,(4)

where 0 < ϕ < σ < 1 [32]. Numerous researcher have studied the conjugate gradient method

under the strong Wolfe line search [16]. For more references on advances in conjugate gradient

method (see, [1, 4, 5, 6, 7, 8, 15, 17, 25, 26, 36]).

Motivated by the method of Dai and Yuan [39], we propose a modification of the conjugate

gradient coefficient for solving unconstrained optimization models. The global convergence of

the method is established under some mild conditions. Furthermore, the method was extended

to solve practical application problem of portfolio selection.

The rest sections of this paper is structured as follows: In section 2, we present the derivation

process of the new our method and its algorithm. The convergence result of the proposed

method is discussed in section 3. We report preliminary results of the numerical computation

carried out on some benchmark test problems in section 4. An application problem of portfolio

selection was discussed in section 5. Lastly, section 6 present the conclusion of the paper.
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2. A NEW CONJUGATE GRADIENT METHOD

Ataee et al. [34] a unified quasi-Newton equations those presented by several authors (see

[12, 19, 41]), as follows:

Bk+1sk = yk +ϑ
2( fk− fk+1)+(gk+1 +gk)

T sk

sT
k µk

µk,

where ϑ ∈ [0,1,2,3] and µk is any vector satisfying sT
k µk 6= 0.

Recently, Razieh et al. [29] defined the relation as:

fk+1− fk =
∫ 1

0
∇ f (xk + tsk)dt sk

∼= sT
k gk,

from inspired if ‖sk‖ is small.

By using the unified quasi-Newton equation and above relation we derive a new coefficient

conjugate gradient.

Multiplying both side equation (2) by sT
k , we have:

sT
k Bk+1sk = sT

k yk +ϑ2( fk− fk+1)+ϑ(gk+1 +gk)
T sk

= sT
k yk−ϑ2sT

k gk +ϑ(gk+1 +gk)
T sk

= sT
k yk−ϑ2sT

k gk +ϑsT
k gk+1 +ϑsT

k gk

= sT
k yk +ϑsT

k gk+1−ϑsT
k gk

= sT
k yk +ϑsT

k yk.

From above equation, we get:

(5) dT
k Bk+1sk = dT

k yk +ϑdT
k yk = (1+ϑ)dT

k yk

On the other hand, by using conjugacy condition, we obtain:

dT
k+1Gdk = (−gk+1 +βkdk)

T Gdk =−gT
k+1Gdk +βkdT

k Gdk = 0,

where G is Hessian matrix. As a result,

(6) βk =
gT

k+1Gsk

dT
k Gsk

.
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Putting (5) in (6), which yields:

βk =
yT

k gk+1

(1+ϑ)dT
k yk

.

To create algorithms that have global convergence properties, we modify the above formula as

follows:

(7) β
BMS
k =

‖gk+1‖2

(1+ϑ)dT
k yk

,

where ϑ ∈ [0,1,2,3] and yk = gk+1−gk.

A complete algorithm of BMS method could be generated as follows:

Algorithm 2.1. (BMS Method)

Step 1. Given an initial point x0 ∈ Rn, stopping criteria ε = 10−6, parameter σ = 0.001, ϕ =

0.0001 and ϑ = 1.

Step 2. Calculate ‖gk‖, if ‖gk‖ ≤ ε then stop, xk is optimal point. Else, go to Step 3.

Step 3. Calculate βk using (7).

Step 4. Calculate search direction dk (2).

Step 5. Calculate step length αk using the Wolfe line search (3) and (4).

Step 6. Set k := k+1, calculate the next iteration xk+1 using (1), and go to Step 2.

3. CONVERGENCE ANALYSIS

This section, we prove the global convergence of new Algorithm under the following assump-

tion, which has often been used in the convergence analysis of conjugate gradient methods.

Assumption 3.1. (A1) The level set L = {x ∈ Rn| f (x) ≤ f (x0)} is bounded. (A2) In some

neighborhood U of L, f (x) is continuously differentiable and its gradient is Lipschitz continu-

ous, namely, there exists a constant L > 0 such that

(8) ‖g(xk+1)−g(xk)‖ ≤ L‖xk+1− xk‖, ∀ xk+1,xk ∈U

Theorem 3.2. Let {xk+1} is obtained as new Algorithm, then, we have dT
k+1gk+1 ≤ 0 for all k.
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Proof. Since d0 = −g0, we obtained gT
0 d0 = −‖g0‖2 ≤ 0 . Suppose that dT

k gk < 0 . In [39], it

follows from the definition of the direction generated by the Dai-Yuan (DY) method as:

(9) β
DY
k =

gT
k+1dk+1

gT
k dk

.

By the using the new formula, we have:

(10) β
BMS
k =

‖gk+1‖2

(1+ϑ)dT
k yk

=
1

1+ϑ
β

DY
k .

From (9) and (10), we obtained:

β
BMS
k =

1
1+ϑ

gT
k+1dk+1

gT
k dk

.

The above relation can be rewritten as:

(11) gT
k+1dk+1 = (1+ϑ)β BMS

k gT
k dk

Since (1+ϑ) and β DY
k are positive then β BMS

k is always positive, now (11), this yields :

gT
k+1dk+1 = (1+ϑ)β BMS

k gT
k dk < 0.

This finishes the proof. �

The formula (10) is very important in our convergence analysis. Due to playing an important

role in analyzing the convergence property for conjugate gradient, Zoutendijk’s condition [13]

will be proved to be a part of the proposed Algorithm in this study.

Lemma 3.3. Let that dk+1 is generated by (2) and step size αK fulfills (3) and (4), if f (x)

satisfies the Assumption 3.1, then :

(12)
∞

∑
k=1

(gT
k+1dk+1)

2

‖dk+1‖2 < ∞

holds.

Theorem 3.4. Suppose that assumptions holes. Let {xk} be generated by Algorithm, where the

step length satisfies the Wolfe line search conditions. Then :

(13) lim
k→∞

inf ‖gk‖= 0.
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Proof. By contradiction, we suppose that the conclusion is not true. Then there exists a constant

ξ > 0 such that ‖gk+1‖2 ≥ ξ 2. From search direction, it follows that dk+1 + gk+1 = βkdk .

Implies that:

(14) ‖dk+1‖2 +‖gk+1‖2 +2dT
k+1gk+1 = (βk)

2‖dk‖2

Dividing both sides of this inequality by
(
dT

k+1gk+1
)2 , that:

‖dk+1‖2(
dT

k+1gk+1
)2 = − 2

dT
k+1gk+1

− ‖gk+1‖2(
dT

k+1gk+1
)2 +

(βk)
2‖dk‖2(

dT
k+1gk+1

)2

= −

(
‖gk+1‖

dT
k+1gk+1

+
1

‖gk+1‖

)2

+
1

‖gk+1‖2 +
1

(1+ϑ)

‖dk‖2(
dT

k gk
)2

≤ 1
‖gk+1‖2 +

1
(1+ϑ)

‖dk‖2(
dT

k gk
)2

Since ϑ ∈ [0,1,2,3], then
1

1+ϑ
< 1. Hence, we obtain:

‖dk+1‖2(
dT

k+1gk+1
)2 ≤

1
‖gk+1‖2 +

‖dk‖2(
dT

k gk
)2 .

The above inequality implies
‖dk+1‖2(

dT
k+1gk+1

)2 ≤
k+1

∑
i=1

1
‖gk‖2

Thus,
‖dk+1‖2(

dT
k+1gk+1

)2 <
k+1
ξ 2

this implies that
∞

∑
k=1

(
gT

k dk
)2

‖dk‖2 = ∞.

This contradicts Lemma 3.3. Therefore, (13) holds. �

4. NUMERICAL EXPERIMENTS

In this section, we report the numerical results of a comparison between the proposed method

(denoted by BMS) and RMIL+ method [40]. Our experiments have been used 49 test functions

selected from Andrei [28] and Jamil-Yang [20], as listed in Table 1, with variation dimensions

from 2 to 50,000. Attempts to complete each test function are limited to the termination cri-

terion ‖gk‖ ≤ 10−6 or to a maximum of 10,000 iterations. All the algorithms are coded in
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MATLAB R2019a by using a personal laptop with specifications; processor Intel Core i7, 16

GB RAM, Windows 10 Pro 64 bit and the algorithms implemented the Wolfe line search con-

ditions with σ = 0.001 and ϕ = 0.0001.

TABLE 1. List of Test Functions.

No Function No Function

F1 Extended White & Holst F26 POWER

F2 Extended Rosenbrock F27 Quadratic QF1

F3 Extended Freudenstein & Roth F28 Quartic

F4 Extended Beale F29 Matyas

F5 Raydan 1 F30 Colville

F6 Extended Tridiagonal 1 F31 Dixon and Price

F7 Diagonal 4 F32 Sphere

F8 Extended Himmelblau F33 Sum Squares

F9 FLETCHCR F34 DENSCHNA

F10 NONSCOMP F35 DENSCHNF

F11 DENSCHNB F36 Staircase S1

F12 Extended Penalty F37 Staircase S2

F13 Hager F38 Staircase S3

F14 BIGGSB1 F39 Extended Block-Diagonal BD1

F15 Extended Maratos F40 HIMMELBH

F16 Six Hump Camel F41 Tridiagonal White and Holst

F17 Three Hump Camel F42 ENGVAL1

F18 Booth F43 Linear Perturbed

F19 Trecanni F44 QUARTICM

F20 Zettl F45 Brent

F21 Shallow F46 Deckkers-Aarts

F22 Generalized Quartic F47 El-Attar-Vidyasagar-Dutta

(Continued on next page)
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Table 1 – Continued

No Function No Function

F23 Quadratic QF2 F48 Rotated Ellipse 2

F24 Generalized Tridiagonal 1 F49 Zirilli or Aluffi-Pentini’s

F25 Generalized Tridiagonal 2

TABLE 2. Numerical Results.

Functions Dimensions Initial Points BMS RMIL+

NOI NOF CPU NOI NOF CPU
F1 1,000 (-1.2,1,-1.2,1) - - - 16 102 0.0582
F1 10,000 (-1.2,1,-1.2,1) - - - 16 102 0.3839
F2 1,000 (-1.2,1,-1.2,1) 6574 20205 5.0919 27 176 0.0401
F2 10,000 (-1.2,1,-1.2,1) 7056 21651 51.639 32 192 0.3618
F3 10 (0.5,2,0.5,-2) - - - 12 62 0.0155
F3 100 (0.5,-2,0.5,-2) - - - - - -
F4 1,000 (1,0.8,1,0.8) 425 1326 0.6103 52 191 0.0889
F4 10,000 (1,0.8,1,0.8) 458 1425 6.4805 54 199 1.0128
F5 10 (1,...,1) 31 143 0.0032 27 105 0.0027
F5 100 (1,...,1) 218 1211 0.0549 102 629 0.0331
F6 500 (2,...,2) 9883 23068 6.1981 6 37 0.0117
F6 1,000 (2,...,2) - - - 7 40 0.0364
F7 500 (1,...,1) 187 560 0.1136 - - -
F7 1,000 (1,...,1) 193 578 0.1435 - - -
F8 1,000 (1,...,1) 21 74 0.0318 11 44 0.015
F8 10,000 (1,...,1) 22 77 0.1625 12 47 0.1184
F9 10 (0,...,0) 142 525 0.1252 72 311 0.0052
F9 100 (0,...,0) 7508 23301 1.0162 3030 9841 0.4331
F10 5 (3,...,3) 226 693 0.0167 - - -
F10 9 (3,...,3) - - - - - -
F11 1,000 (10,...,10) 16 67 0.0154 8 37 0.0145
F11 10,000 (10,10) 16 67 0.1473 7 34 0.0887
F12 10 (1,...,10) 50 168 0.0049 27 112 0.0047
F12 100 (1,...,100) 279 938 0.0455 30 137 0.0236
F13 50 (1,...,1) 28 128 0.0297 20 91 0.0052
F13 100 (1,...,1) 37 217 0.1116 25 138 0.0142
F14 3 (0.1,...,0.1) 1 3 0.002 1 3 0.0117
F14 3 (1,...,1) 0 0 2.79E-04 0 0 0.0053
F15 10 (1.1,0.1,1.1,0.1) 1773 5628 0.0853 207 923 0.0204
F15 50 (1.1,0.1,1.1,0.1) - - - 48 292 0.0163
F16 2 (-1,2) 12 48 0.0014 8 36 8.67E-04

(Continued on next page)
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Table 2 – Continued
Functions Dimensions Initial Points BMS RMIL+

NOI NOF CPU NOI NOF CPU
F16 2 (-5,10) 9 46 5.56E-04 11 66 0.0068
F17 2 (0.5,0.5) 21 398 0.0039 - - -
F17 2 (0.5,0) 23 434 0.0049 - - -
F18 2 (5,5) 16 48 0.0016 2 6 1.99E-04
F18 2 (10,10) 7 21 3.18E-04 2 6 0.0026
F19 2 (-1,0.5) 1 3 4.52E-04 1 3 1.15E-04
F19 2 (-5,10) 9 36 8.78E-04 5 23 0.0086
F20 2 (-1,2) 84 262 0.0071 16 69 0.0038
F20 2 (10,10) 43 134 0.0033 - - -
F21 1,000 (2,...,2) 99 307 0.2032 8 39 0.0146
F21 5,000 (2,...,2) 104 322 0.2904 8 39 0.0535
F22 1,000 (-0.5,...,-0.5) 507 8992 1.3872 - - -
F22 7,000 (-0.5,...,-0.5) - - - - - -
F23 50 (0.5,...,0.5) 157 536 0.0234 78 280 0.0148
F23 500 (0.5,...,0.5) 1391 4695 0.6698 581 2031 0.2735
F24 10 (2,...,2) 31 102 0.0065 22 74 0.0031
F24 100 (2,...,2) 32 116 0.0136 23 78 0.0162
F25 4 (1,...,1) 14 38 0.0035 7 21 0.001
F25 500 (1,...,1) 59 350 0.054 34 190 0.047
F26 10 (1,...,1) 278 834 0.0137 123 369 0.0114
F26 100 (1,...,1) - - - - - -
F27 50 (1,...,1) 143 429 0.0148 69 207 0.0065
F27 500 (1,...,1) 1241 3723 0.4803 447 1341 0.1815
F28 4 (20,20,20,20) 2404 8112 0.3912 803 2809 0.0523
F28 4 (1,1,1,1) 2372 7827 0.1092 766 2532 0.0679
F29 2 (1,1) 7 49 8.77E-04 - - -
F29 2 (20,20) 9 63 0.0011 - - -
F30 4 (2,2,2,2) 3845 12774 0.1636 1032 4339 0.0562
F30 4 (10,10,10,10) 5991 21091 0.2244 669 2819 0.1592
F31 3 (1,1,1) 73 232 0.0057 - - -
F31 3 (2,2,2) 96 329 0.0388 - - -
F32 100 (1,...,1) 1 3 3.15E-04 1 3 7.10E-04
F32 5,000 (1,...,1) 1 3 0.0061 1 3 0.0123
F33 50 (0,1,0,1) 128 384 0.6765 46 138 0.0111
F33 5,000 (0,1,0,1) - - - 2659 7977 6.8666
F34 10,000 (7,...,7) 52 345 1.4298 12 66 0.2259
F34 50,000 (7,...,7) 54 351 5.3625 12 66 0.9863
F35 5,000 (100,-100) 24 140 0.12 11 91 0.0832
F35 10,000 (100,-100) 24 140 0.4653 11 91 0.197
F36 2 (1,1) 4 207 9.59E-04 4 208 0.0019
F36 2 (-1,-1) 4 208 0.0049 4 208 0.0086

(Continued on next page)
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Table 2 – Continued
Functions Dimensions Initial Points BMS RMIL+

NOI NOF CPU NOI NOF CPU
F37 2 (-1,-1) 1 3 0.0019 1 3 2.00E-04
F37 2 (7,7) 1 3 0.0034 1 3 0.0154
F38 2 (2,2) 1 3 0.0028 1 3 2.26E-04
F38 2 (7,7) 1 3 0.0046 1 3 0.0114
F39 1,000 (1,...,1) 13 275 0.1483 13 247 0.0556
F39 10,000 (1,...,1) 14 309 0.5904 13 254 0.4916
F40 200 (0.8,...,0.8) 14 71 0.0102 5 15 0.0026
F40 900 (0.8,...,0.8) - - - 5 29 0.0123
F41 2 (-1.2,1) 782 2382 0.0411 11 51 6.85E-04
F41 2 (0,0) 820 2525 0.0785 11 49 0.0104
F42 50 (2,...,2) 28 568 0.0164 47 817 0.0165
F42 100 (2,...,2) 28 509 0.0268 - - -
F43 100 (0,...,0) 180 540 0.0263 89 267 0.0138
F43 10,000 (0,...,0) - - - 6542 19626 39.009
F44 1,000 (2,...,2) 3 27 - - -
F44 10,000 (2,...,2) 3 27 0.1277 - - -
F45 2 (-1,-1) 2 7 1.75E-04 - - -
F45 2 (4,4) 1 3 7.65E-04 1 3 0.0087
F46 2 (-5,0) 2 23 4.02E-04 - - -
F46 2 (0,-5) 2 15 0.0435 2 15 4.91E-04
F47 2 (1,1) 17 66 0.0302 11 50 6.80E-03
F47 2 (-2,-2) 38 137 0.0033 - - -
F48 2 (1,1) 1 2 7.43E-04 1 2 1.88E-04
F48 2 (-2,-2) 1 2 1.56E-04 1 2 2.19E-04
F49 2 (1,1) 15 30 6.77E-04 - - -
F49 2 (-2,-2) 17 38 7.83E-04 - - -

Numerical results are provided in Table 2 in the form number of iterations (NOI), number of

function evaluations (NOF), and central processing unit (CPU) time. We symbolizes ’-’, if the

NOI of methods exceeds 10,000 or never reaches the optimal value. We also use a performance

profile suggested by Dolan and Moré [10], to describe the performance profile of the BMS and

RMIL+ methods on NOI, NOF and CPU time. Suppose that V is a set of solvers with ns solvers

and M is a set of problems set with nm test problems. For each problem m∈M and solver s∈V ,

we denotes cm,s as NOI or NOF or CPU required to solve problem m∈M by solver v∈V . Then

comparison of the solvers is defined as follows:

zm,s =
cm,s

min{cm,s : m ∈M ands ∈V}
.
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Thus, the overall performance appraisal of the solver is obtained from the performance profile

function given by

ρs(τ) =
1

nm
size{m : 1≤ m≤ nm, log2 zm,s ≤ τ},

where τ ≥ 0.

FIGURE 1. Performance profiles based on NOI.

FIGURE 2. Performance profiles based on NOF.
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FIGURE 3. Performance profiles based on CPU.

According to performance profiles are plotted in Figs. 1-3, where Fig. 1 shows the perfor-

mance profiles based on NOI, Fig. 2 shows the performance profiles based on NOF and lastly

Fig. 3 is the performance profiles based on CPU time. From the all figures we can see that the

BMS method is very competitive with RMIL+ conjugate gradient method.

5. APPLICATION IN PORTFOLIO SELECTION

Portfolio selection plays an important role in financial mathematics, risk management and

economics. Portfolio selection is useful for assessing the combination of available alternative

securities. It aims to maximize the investment return of investors which can be done by maxi-

mizing return or minimizing risk [14].

In this article, we only consider a securities of stock and choose four blue chip stocks in

Indonesia, namely, PT Bank Central Asia Tbk (BBCA.JK), PT Ace Hardware Indonesia Tbk

(ACES.JK), PT Adaro Energy Tbk (ADRO.JK) and PT Gudang Garam Tbk (GGRM.JK). We

use the weekly closing price which taken from http://finance.yahoo.com, with a period of three

years (Jan 1, 2018-Dec 31, 2020). For return (Ti), expected of return (E(Ti)), and variance of
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TABLE 3. Mean and variance of return for four Stocks

Stocks BBCA ACES ADRO GGRM

Mean -0.00204 -0.00072 0.00497 0.00577

Variance 0.00134 0.00264 0.00594 0.00222

TABLE 4. Covariance of return for four stocks

Covariance BBCA ACES ADRO GGRM

BBCA 0.00134 0.00071 0.00132 0.00064

ACES 0.00071 0.00266 0.00115 0.00051

ADRO 0.00132 0.00115 0.00597 0.00103

GGRM 0.00064 0.00051 0.00103 0.00224

return (σ2
i ) of each stock can be obtained by formula as follows:

Tt =
It− It−1

It−1
,(15)

E(Ti) =
∑

n
t=1 Tt

n
,(16)

σ
2
i = Var(Ti) =

∑
n
t=1(Tt−E(Ti))

2

n−1
,(17)

where Tt is a stock return in period t, It is a closing stock price in period t, It−1 is a closing stock

price one period before t and N is number of observation periods.

By using data in http://finance.yahoo.com, (15), (16) and (17), we get the mean, variance and

covariance of each return stock as in Tables 3 and 4.
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Since our portfolio consists four stocks then we have formula for expected of return and

variance of return of portfolio as follows [33]:

µ = E

(
4

∑
i=1

biTi

)
=

4

∑
i=1

biE(Ti),(18)

σ
2 = Var

(
4

∑
i=1

biTi

)
=

4

∑
i=1

4

∑
j=1

bib jCov(Ti,Tj),(19)

where b1,b2,b3,b4 are proportion of the BBCA, ACES, ADRO and GGRM stocks respectively

and Cov(Ti,Tj) is the covariance of return between two stocks. Since what we want here is risk

avoidance, therefore, we want a small variance of the return (i.e. low risk), so that our problem

about portfolio selection can be written by

(20)


minimize : σ2 = ∑

4
i=1 ∑

4
j=1 bib jCov(Ti,Tj).

subject to : ∑
4
i=1 bi = 1.

Suppose b4 = 1−b1−b2−b3 and by using values in Table 4 then the problem (20) will become

an unconstrained optimization problem as follows:

min
(b1,b2,b3)∈R3

[
(0.70e−3b1 +0.7e−4b2 +0.68e−3b3 +0.64e−3)b1 +(0.20e−3b1

+0.215e−2b2 +0.64e−3b3 +0.51e−3)b2 +(0.29e−3b1 +0.12e−3b2

+0.494e−2b3 +0.103e−2)b3 +(−0.160e−2b1−0.173e−2b2

−0.121e−2b3 +0.224e−2)(1−b1−b2−b3)
]

The next step we solve the above problem by using BMS method with randomly initial point

(b1,b2,b3) = (0.3,0.3,0.4), thus we will get b1 = 0.57,b2 = 0.19,b3 = −0.03 and b4 = 0.27.

Furthermore, based on Table 3, Table 4, (18) and (19), we have µ = 0.0001 and σ2 = 0.001.

Hence, the weight of the proportion of each stock that makes up the optimal portfolio with

minimal risk is 57% for BBCA, 19% ACES, −3% ADRO and 27% GGRM with expected

portfolio return is 0.0001 and the portfolio risk is 0.001. In this case, investor is allowed to

do short selling as in ADRO stock. Another consideration regarding the application of the CG

method in portfolio selection can be seen in [2].
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6. CONCLUSION

The conjugate gradient methods have recently been explored by many researchers. This is

due to their nice convergence properties, low memory requirement, efficient numerical result,

in addition to real-life practical application. In this paper, we have derive a new conjugate

gradient parameter for unconstrained optimization problems. The global convergence properties

of the proposed method is established under some mild conditions. An interesting feature of

our method is the ability to reduce to the classical DY method. Numerical results have been

presented to illustrate the performance of the method especially for the large-scale problems.

The proposed method was further extended to solve real-life application problem of portfolio

selection.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] A.B. Abubakar, P. Kumam, H. Mohammad, A.M. Awwal, An efficient conjugate gradient method for convex

constrained monotone nonlinear equations with applications, Mathematics, 7 (9) (2019), 767.

[2] A.B. Abubakar, P. Kumam, M. Malik, P. Chaipunya, A.H. Ibrahim, A hybrid FR-DY conjugate gradient

algorithm for unconstrained optimization with application in portfolio selection, AIMS Math. 6 (6) (2021),

6506-6527.

[3] A.O. Umar, I.M. Sulaiman, M. Mamat, M.Y. Waziri, H.M. Foziah, A.J. Rindengan, D.T. Salaki, New hybrid

conjugate gradient method for solving fuzzy nonlinear equations, J. Adv. Res. Dyn. Control Syst. 12 (2)

(2020), 1585-590.

[4] B.A. Hassan, A modified quasi-Newton methods for unconstrained Optimization, J. Pure Appl. Math. 2019

(42) (2019), 504-511.

[5] B.A. Hassan, A new type of quasi-newton updating formulas based on the new quasi-newton equation, Nu-

mer. Algebra Control Optim. 10 (2020), 227–235.

[6] B.A. Hassan, H.N. Jabbar, A New Transformed Biggs ’s Self-Scaling Quasi-Newton Method for Optimiza-

tion, ZANCO J. Pure Appl. Sci. 31 (2018), 1-5.

[7] B. A. Hassan, W.T. Mohammed, A New Variants of Quasi-Newton Equation Based on the Quadratic Function

for Unconstrained Optimization, Indonesian J. Electric. Eng. Computer Sci. 19 (2) (2020), 701-708.



A VARIANT OF DAI-YUAN CONJUGATE GRADIENT METHOD 4171

[8] B. Baluch, Z. Salleh, A. Alhawarat, U.A.M. Roslan, A new modified three-term conjugate gradient method

with sufficient descent property and its global convergence, J. Math. 2017 (2017), 2715854.

[9] B.T. Polyak, The conjugate gradient method in extremal problems, USSR Comput. Math. Math. Phys. 9 (4)

(1969), 94-112.
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