TIMELIKE - SPACELIKE INVOLUTE - EVOLUTE CURVE COUPLE ON DUAL LORENTZIAN SPACE

SÜLEYMAN ŞENYURT ${ }^{1, *}$, SÜMEYYE GÜR ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Ordu University, Ordu / Turkey
${ }^{2}$ Department of Mathematics, Faculty Sciences, Ege University, Izmir / Turkey

Abstract

In this paper, Firstly we have defined the involute curves of the dual spacelike curve M_{1} with a dual spacelike binormal in dual Lorentzian space $I D_{1}^{3}$. We have seen that the dual involute curve M_{2} must be a dual timelike vector. Secondly, the relationship between the Frenet frames of couple of the timelike -spacelike involute - evolute dual curve has been found and finally some new characterizations related to the couple of the dual curve has been given.

Keywords: dual lorentzian space, dual involute - evolute curve couple, dual frenet frames.
Mathematics Subject Classification (2000): 53A04, 53

1. Introduction

The consept of the involute of a given curve is a well-known in 3-dimensional Euclidean space $I R^{3},[7,8,9,12,13]$. Some basic notions of Lorentzian space are given, $[3,10,14,15] . M_{1}$ is a timelike curve then the involute curve M_{2} is a spacelike curve with a spacelike or timelike binormal. On the other hand, it has been investigated that the involute and evolute curves of the spacelike curve M_{1} with a spacelike binormal in Minkowski 3-space and it has been seen that the involute curve M_{2} is timelike, [4,5]. The involute curves of the spacelike curve M_{1} with a timelike binormal is defined in Minkowski

[^0]Received August 15, 2012

3-space $I R_{1}^{3}$, [2]. Lorentzian angle defined in,[11]. W.K. Clifford, introduced dual numbers as the set $I D=\left\{\hat{\lambda}=\lambda+\varepsilon \lambda^{*} \mid \lambda, \lambda^{*} \in I R, \quad \varepsilon^{2}=0\right.$ for $\left.\varepsilon \neq 0\right\},[6]$.

Addition, product, division and absolute value operations are defined on $I D$ like below, respectively:

$$
\begin{aligned}
& \left(\lambda+\varepsilon \lambda^{*}\right)+\left(\beta+\varepsilon \beta^{*}\right)=(\lambda+\beta)+\varepsilon\left(\lambda^{*}+\beta^{*}\right) \\
& \left(\lambda+\varepsilon \lambda^{*}\right)\left(\beta+\varepsilon \beta^{*}\right)=\lambda \beta+\varepsilon\left(\lambda \beta^{*}+\lambda^{*} \beta\right), \\
& \frac{\lambda+\varepsilon \lambda^{*}}{\beta+\varepsilon \beta^{*}}=\frac{\lambda}{\beta}+\varepsilon\left(\frac{\lambda^{*}}{\beta}-\frac{\lambda \beta^{*}}{\beta^{2}}\right), \\
& \left|\lambda+\varepsilon \lambda^{*}\right|=|\lambda| .
\end{aligned}
$$

$I D^{3}=\left\{\vec{A}=\vec{a}+\varepsilon \vec{a}^{*} \mid \vec{a}, \vec{a}^{*} \in I R^{3}\right\}$. The elements of $I D^{3}$ are called dual vectors. On this set addition and scalar product operations are respectively

$$
\begin{aligned}
\oplus: I D^{3} \times I D^{3} & \rightarrow I D^{3} \\
(\vec{A}, \vec{B}) & \rightarrow \vec{A} \oplus \vec{B}=\vec{a}+\vec{b}+\varepsilon\left(\vec{a}^{*}+\vec{b}^{*}\right) \\
\square: I D \times I D^{3} & \rightarrow I D^{3} \\
(\lambda, \vec{A}) & \rightarrow \lambda \square \vec{A}=\left(\lambda+\varepsilon \lambda^{*}\right) \square\left(\vec{a}+\varepsilon \vec{a}^{*}\right)=\lambda \vec{a}+\varepsilon\left(\lambda \vec{a}^{*}+\lambda^{*} \vec{a}\right) .
\end{aligned}
$$

The set $\left(I D^{3}, \oplus\right)$ is a module over the ring $(I D,+, \cdot) .(I D-M o d u l)$.
The Lorentzian inner product of dual vectors $\vec{A}, \vec{B} \in I D^{3}$ is defined by

$$
\langle\vec{A}, \vec{B}\rangle=\langle\vec{a}, \vec{b}\rangle+\varepsilon\left(\left\langle\vec{a}, \vec{b}^{*}\right\rangle+\left\langle\vec{a}^{*}, \vec{b}\right\rangle\right)
$$

with the Lorentzian inner product $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right) \in I R^{3}$

$$
\langle\vec{a}, \vec{b}\rangle=-a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} .
$$

Therefore, $I D^{3}$ with the Lorentzian inner product $\langle\vec{A}, \vec{B}\rangle$ is called 3-dimensional dual Lorentzian space and denoted by of $I D_{1}^{3}=\left\{\vec{A}=\vec{a}+\varepsilon \vec{a}^{*} \mid \vec{a}, \vec{a}^{*} \in I R_{1}^{3}\right\}$.

A dual vector $\vec{A}=\vec{a}+\varepsilon \vec{a}^{*} \in I D_{1}^{3}$ is called
A dual space-like vector if \vec{a} is spacelike vector,
A dual time-like vector if \vec{a} is timelike vector,
A dual null(light-like) vector if \vec{a} is lightlike vector .
For $\vec{A} \neq 0$, the norm $\|\vec{A}\|$ of $\vec{A}=\vec{a}+\varepsilon \vec{a}^{*} \in I D_{1}^{3}$ is defined by

$$
\|\vec{A}\|=\sqrt{\mid\langle\vec{A}, \vec{A}\rangle}=\|\vec{a}\|+\varepsilon \frac{\left\langle\vec{a}, \vec{a}^{*}\right\rangle}{\|\vec{a}\|},\|\vec{a}\| \neq 0 .
$$

The dual Lorentzian cross-product of $\vec{A}, \vec{B} \in I D_{1}^{3}$ is defined as

$$
\vec{A} \wedge \vec{B}=\vec{a} \wedge \vec{b}+\varepsilon\left(\vec{a} \wedge \vec{b}^{*}+\vec{a}^{*} \wedge \vec{b}\right)
$$

with the Lorentzian cross-product $\vec{a}, \vec{b} \in I R_{1}^{3}$

$$
\vec{a} \wedge \vec{b}=\left(a_{3} b_{2}-a_{2} b_{3}, a_{1} b_{3}-a_{3} b_{1}, a_{1} b_{2}-a_{2} b_{1}\right),[17] .
$$

Dual Frenet trihedron of the differentiable curve M in dual space $I D_{1}^{3}$ and instantaneous dual rotation vector have given in ,[1,16].
The dual angle between \vec{A} and \vec{B} is $\Phi=\varphi+\varepsilon \varphi^{*}$, such that

$$
\left\{\begin{array}{l}
\sinh \Phi=\sinh \left(\varphi+\varepsilon \varphi^{*}\right)=\sinh \varphi+\varepsilon \varphi^{*} \cosh \varphi, \\
\cosh \Phi=\cosh \left(\varphi+\varepsilon \varphi^{*}\right)=\cosh \varphi+\varepsilon \varphi^{*} \sinh \varphi .
\end{array}\right.
$$

The dual Lorentzian sphere and the dual hyperbolic sphere of 1 radius in $I R_{1}^{3}$ are defined by

$$
\begin{aligned}
& S_{1}^{2}=\left\{A=a+\varepsilon a_{0} \mid\|A\|=(1,0) ; a, a_{0} \in I R_{1}^{3}, \text { and } a \text { is spacelike }\right\}, \\
& H_{0}^{2}=\left\{A=a+\varepsilon a_{0} \mid\|A\|=(1,0) ; a, a_{0} \in I R_{1}^{3}, \text { and } a \text { is timelike }\right\}
\end{aligned}
$$

respectively, [15].

2. Preliminaries

Lemma 2.1 Let X and Y be nonzero Lorentz orthogonal vektors in $I D_{1}^{3}$. If X is timelike, then Y is spacelike, [11].

Lemma 2.2 Let X, Y be pozitive (negative) timelike vectors in $I D_{1}^{3}$. Then $\langle X, Y\rangle \leq\|X\|\|Y\|$ with equality if and only if X and Y are linearly dependent, [11].

Lemma 2.3.

$i)$ Let X and Y be pozitive (negative) timelike vectors in $I D_{1}^{3}$. Then we have $\langle X, Y\rangle \leq\|X\|\|Y\|$, there is a unique non negative dual number $\Phi(X, Y)$ such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \cosh \Phi(X, Y)
$$

where $\Phi(X, Y)$ is theLorentzian timelike dual angle between X and Y.
ii) Let X and Y be spacelike vectors in $I D_{1}^{3}$ that span a spacelike vector subspace. Then we have $|\langle X, Y\rangle| \leq\|X\|\|Y\|$. Hence, there is a unique dual number $\Phi(X, Y)$ between 0 and π such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \cos \Phi(X, Y)
$$

where $\Phi(X, Y)$ is the Lorentzian spacelike dual angle between X and Y.
iii) Let X and Y be spacelike vectors in $I D_{1}^{3}$ that span a timelike vector subspace. Then wehave $|\langle X, Y\rangle| \geq\|X\|\|Y\|$. Hence, there is a unique positive dual number $\Phi(X, Y)$ such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \cosh \Phi(X, Y)
$$

where $\Phi(X, Y)$ is the Lorentzian timelike dual angle between X and Y.
iv) Let X be a spacelike vector and Y a positive timelike vector in $I D_{1}^{3}$. Then there is a unique non negative dual number $\Phi(X, Y)$ is the Lorentzian timelike dual angle between X and Y,such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \sinh \Phi(X, Y),[11] .
$$

Let $\{T, N, B\}$ be the dual Frenet trihedron of the differentiable curve M in the dual space $I D_{1}^{3}$ and $T=t+\varepsilon t^{*}, N=n+\varepsilon n^{*}$ and $B=b+\varepsilon b^{*}$ be the tangent, the principal normal and the binormal vector of M, respectively. Depending on the causal character of the curve M, we have an instantaneous dual rotation vector:

Let M be a unit speed timelike dual space curve with dual curvature $\kappa=k_{1}+\varepsilon k_{1}^{*}$ and dual torsion $\tau=k_{2}+\varepsilon k_{2}^{*}$.The Frenet vectors T, N and B of M are timelike vector, spacelike vectors, spacelike vector, respectively, such that

$$
\begin{equation*}
T \wedge N=-B, N \wedge B=T, B \wedge T=-N . \tag{2.1}
\end{equation*}
$$

From here ,

$$
\left[\begin{array}{l}
T^{\prime} \tag{2.2}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right],[18] .
$$

(2.2) leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{1} & 0 & -k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
t^{* \prime} \\
n^{* \prime} \\
b^{* \prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1}^{*} & 0 \\
k_{1}^{*} & 0 & -k_{2}^{*} \\
0 & k_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{1} & 0 & -k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right]}
\end{array}\right.
$$

The Frenet instantaneous rotation vector W of the timelike curve is given by

$$
\begin{equation*}
W=\tau T-\kappa B,[14] . \tag{2.3}
\end{equation*}
$$

(2.3) leaves the real and dual components

$$
\left\{\begin{array}{l}
w=k_{2} t-k_{1} b \\
w^{*}=k_{2}^{*} t+k_{2} t^{*}-k_{1}^{*} b-k_{1} b^{*}
\end{array}\right.
$$

Let $\Phi=\varphi+\varepsilon \varphi^{*}$ be a Lorentzian timelike dual angle between the spacelike binormal unit vector B and the Frenet instantaneous dual rotation vector W. Then $C=c+\varepsilon c^{*}$ is a unit dual vector in direction of W :
a) If $|\kappa|>|\tau|, W$ is a spacelike vector. In this station, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \cosh \Phi \tag{2.4}\\
\tau=\|W\| \sinh \Phi
\end{array} \quad, \quad\|W\|^{2}=\langle W, W\rangle=\kappa^{2}-\tau^{2}\right.
$$

and

$$
\begin{equation*}
C=\sinh \Phi T-\cosh \Phi B \tag{2.5}
\end{equation*}
$$

b) If $|\kappa|<|\tau|, W$ is a timelike vector. In this station, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \sinh \Phi \tag{2.6}\\
\tau=\|W\| \cosh \Phi
\end{array} \quad, \quad\|W\|^{2}=-\langle W, W\rangle=-\left(\kappa^{2}-\tau^{2}\right)\right.
$$

and

$$
\begin{equation*}
C=\cosh \Phi T-\sinh \Phi B \tag{2.7}
\end{equation*}
$$

Let M be a unit speed dual spacelike space curve with spacelike binormal. The Frenet vectors T, N, B of M are spacelike vector, timelike vector, spacelike vector, respectively, such that

$$
\begin{equation*}
T \wedge N=-B, N \wedge B=-T, B \wedge T=N . \tag{2.8}
\end{equation*}
$$

From here,

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.9}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
0 & \kappa & 0 \\
\kappa & 0 & \tau \\
0 & \tau & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right],[18] .
$$

(2.9) leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\mathrm{t}^{\prime} \\
\mathrm{n}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \mathrm{k}_{1} & 0 \\
\mathrm{k}_{1} & 0 & \mathrm{k}_{2} \\
0 & \mathrm{k}_{2} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{t} \\
\mathrm{n} \\
\mathrm{~b}
\end{array}\right]} \\
{\left[\begin{array}{c}
\mathrm{t}^{* \prime} \\
\mathrm{n}^{* \prime} \\
\mathrm{~b}^{* \prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \mathrm{k}_{1}^{*} & 0 \\
\mathrm{k}_{1}^{*} & 0 & \mathrm{k}_{2}^{*} \\
0 & \mathrm{k}_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{t} \\
\mathrm{n} \\
\mathrm{~b}
\end{array}\right]+\left[\begin{array}{ccc}
0 & \mathrm{k}_{1} & 0 \\
\mathrm{k}_{1} & 0 & \mathrm{k}_{2} \\
0 & \mathrm{k}_{2} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{t}^{*} \\
\mathrm{n}^{*} \\
\mathrm{~b}^{*}
\end{array}\right]}
\end{array}\right.
$$

and the Frenet instantaneous rotation vector for the spacelike curve is given by

$$
\begin{equation*}
W=-\tau T+\kappa B,[14] . \tag{2.10}
\end{equation*}
$$

(2.10) leaves the real and dual components

$$
\left\{\begin{array}{l}
\bar{w}=-k_{2} t+k_{1} b, \\
\overline{w^{*}}=-k_{2}^{*} t-k_{2} t^{*}+k_{1}^{*} b+k_{1} b^{*}
\end{array}\right.
$$

Let $\Phi=\varphi+\varepsilon \varphi^{*}$ be a dual angle between the B and the W. If B and W spacelike vectors that span a spacelike vector subspace, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \cos \Phi \tag{2.11}\\
\tau=\|W\| \sin \Phi
\end{array} \quad, \quad\|W\|^{2}=\langle W, W\rangle=\kappa^{2}+\tau^{2}\right.
$$

and

$$
\begin{equation*}
C=-\sin \Phi T+\cos \Phi B \tag{2.12}
\end{equation*}
$$

Let M be a unit speed dual spacelike space curve. The Frenet vectors T, N and B of M are spacelike vector, timelike vector and spacelike vector, respectively, such that

$$
\begin{equation*}
T \wedge N=B, N \wedge B=-T, B \wedge T=-N . \tag{2.13}
\end{equation*}
$$

From here

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.14}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & \tau & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right],[18] .
$$

(2.14) leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
-k_{1} & 0 & k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
t^{* \prime} \\
n^{* \prime} \\
b^{* \prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1}^{*} & 0 \\
-k_{1}^{*} & 0 & k_{2}^{*} \\
0 & k_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
-k_{1} & 0 & k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right]}
\end{array}\right.
$$

and the Frenet instantaneous dual rotation vector W of the spacelike curve is given by

$$
\begin{equation*}
W=\tau T-\kappa B,[14] . \tag{2.15}
\end{equation*}
$$

(2.15) leaves the real and dual components

$$
\left\{\begin{array}{l}
w=k_{2} t-k_{1} b, \\
w^{*}=k_{2}^{*} t+k_{2} t^{*}-k_{1}^{*} b-k_{1} b^{*} .
\end{array}\right.
$$

Let $\Phi=\varphi+\varepsilon \varphi^{*}$ be a Lorentzian timelike dual angle between the B and W :
a) If $|\kappa|<|\tau|, W$ is a spacelike vector. In this case, we can write
b)

$$
\left\{\begin{array}{l}
\kappa=\|W\| \sinh \Phi \tag{2.16}\\
\tau=\|W\| \cosh \Phi
\end{array} \quad, \quad\|W\|^{2}=\langle W, W\rangle=\tau^{2}-\kappa^{2}\right.
$$

and

$$
\begin{equation*}
C=\cosh \Phi T-\sinh \Phi B \tag{2.17}
\end{equation*}
$$

c) If $|\kappa|>|\tau|, W$ is a timelike vector. In this case, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \cosh \Phi \tag{2.18}\\
\tau=\|W\| \sinh \Phi
\end{array} \quad, \quad\|W\|^{2}=-\langle W, W\rangle=-\left(\tau^{2}-\kappa^{2}\right)\right.
$$

and

$$
\begin{equation*}
C=\sinh \Phi T-\cosh Ф B \tag{2.19}
\end{equation*}
$$

3．Main Results

Definition 3．1．Let $M_{1}: I \rightarrow I D_{1}^{3} \quad M_{1}=M_{1}(s)$ be the unit speed dual spacelike curve with spacelike binormal and $M_{2}: I \rightarrow I D_{1}^{3} M_{2}=M_{2}(s)$ be the unit speed dual timelike curve．If tangent vector of curve M_{1} is ortogonal to tangent vector of M_{2}, M_{1} is called evolute of curve M_{2} and M_{2} is called involute of M_{1} ．Thus the dual involute－evolute curve couple is denoted by $\left(M_{2}, ~\right.$ 牌 $\left.I_{1}\right)$ ．Since the tangent vector of M_{1} is spacelike，the tangent vector of M_{2} must be timelike vector．So the tangent vector of M_{2} must be timelike vector $\left(M_{2}\right.$, 殏 I_{1} ）is called＂the timelike－spacelike involute－evolute dual curve couple＂．

Fig．2．Involute－evolute curve couple．

Theorem 3．1．Let $\left(M_{2}\right.$, 薪 $\left._{1}\right)$ be the timelike－spacelike involute－evolute dual curve couple． Let $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the dual Frenet frames of M_{1} and M_{2} ，respectively．The dual distance between M_{1} and M_{2} at the corresponding points is

Proof．If M_{2} is the dual involute of M_{1} ，we can write from the fig． 2

$$
\begin{equation*}
M_{2}(s)=M_{1}(s)+\lambda T(s) \text {,战 } \quad \text { 䏼 }=\lambda_{1}+\varepsilon \lambda_{1}^{*} \in I D \tag{3.1}
\end{equation*}
$$

Differentiating（3．1）with respect to s we have

$$
V_{1} \frac{d s^{*}}{d s}=\left(1+\lambda^{\prime}\right) T+\lambda \kappa N
$$

where s and s^{*} are arc parameter of M_{1} and M_{2} ，respectively．Since the direction of T is orthogonal to the direction of V_{1} ，we obtain

$$
\lambda^{\prime}=-1^{\prime}
$$

From here，it can be easily seen

$$
\begin{equation*}
\lambda=\left(c_{1}-s\right)+\varepsilon c_{2} \tag{3.2}
\end{equation*}
$$

Furthermore，the dual distance between the points $M_{1}(s)$ and $M_{2}(s)$

$$
\begin{aligned}
d\left(M_{1}(s), M_{2}(s)\right) & =\sqrt{|\langle\lambda T(s) \lambda T(s)\rangle|} \\
& =\left|\lambda_{1}\right|+\varepsilon \lambda_{1}^{*}
\end{aligned}
$$

Since $\lambda_{1}=\left(c_{1}-s\right), \quad \lambda_{1}^{*}=c_{2}$ ，we have

$$
\begin{equation*}
d\left(M_{1}(s), M_{2}(s)\right)=\left|c_{1}-s\right|+\varepsilon c_{2} \tag{3.3}
\end{equation*}
$$

Theorem 3．2．Let $\left(M_{2}\right.$, 㧔 $\left.I_{1}\right)$ be the timelike－spacelike involute－evolute dual curve couple． Let $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the dual Frenet frames of M_{1} and M_{2} ，respectively，Since the dual curvature of M_{2} is $P=p+\varepsilon p^{*}$ ，we have

$$
P^{2}=\frac{k_{1}^{2}+k_{2}^{2}}{\left(c_{1}-s\right)^{2} k_{1}^{2}}+\varepsilon\left[\frac{2 k_{2}\left(k_{1} k_{2}^{*}-k_{1}^{*} k_{2}\right)}{\left(c_{1}-s\right)^{2} k_{1}^{3}}-\frac{2 c_{2}\left(k_{1}^{2}+k_{2}^{2}\right)}{\left(c_{1}-s\right)^{3} k_{1}^{2}}\right] .
$$

where the dual curvature of M_{1} is $\kappa=k_{1}+\varepsilon k_{1}^{*}$ ．

Proof．Differentiating（3．1），with respect to s ，we get

$$
\begin{aligned}
& \frac{d M_{2}}{d s^{*}} \frac{d s^{*}}{d s^{2}}=\frac{d M_{1}}{d s}+\frac{d \lambda}{d s} T+\lambda \frac{d T}{d s} \\
& V_{1} \frac{d s^{*}}{d s}=\lambda \kappa N
\end{aligned}
$$

From here, we can write

$$
\begin{equation*}
V_{1}=N \tag{3.4}
\end{equation*}
$$

and

$$
\frac{d s^{*}}{d s}=\lambda \kappa .
$$

By differentiating the last equation and using (2.9), we obtain

$$
\begin{aligned}
& \frac{d V_{1}}{d s^{*}} \frac{d s^{*}}{d s^{2}}=\frac{d N}{d s}=\kappa T+\tau B, \\
& P V_{2}=\frac{1}{\lambda \kappa}(\kappa T+\tau B)
\end{aligned}
$$

From here,we have

$$
\begin{equation*}
P^{2}=\frac{\left(\kappa^{2}+\tau^{2}\right)}{\lambda^{2} \kappa^{2}} \tag{3.5}
\end{equation*}
$$

From the fact that $P=p+\varepsilon p^{*}, \lambda=\lambda_{1}+\varepsilon \lambda_{1}^{*}, \kappa=k_{1}+\varepsilon k_{1}^{*}$ and $\tau=k_{2}+\varepsilon k_{2}^{*}$ we get

$$
\begin{aligned}
P^{2} & =\frac{\left(k_{1}^{2}+2 \varepsilon k_{1} k_{1}^{*}+k_{2}^{2}+2 \varepsilon k_{2} k_{2}^{*}\right)}{\left(\lambda_{1}^{2}+2 \varepsilon \lambda_{1} \lambda_{1}^{*}\right)\left(k_{1}^{2}+2 \varepsilon k_{1} k_{1}^{*}\right)} \\
& =\frac{k_{1}^{2}+k_{2}^{2}}{\lambda_{1}^{2} k_{1}^{2}}+\varepsilon\left[\frac{2 k_{2}\left(k_{1} k_{2}^{*}-k_{1}^{*} k_{2}\right)}{\lambda_{1}^{2} k_{1}^{3}}-\frac{2 \lambda_{1}^{*}\left(k_{1}^{2}+k_{2}^{2}\right)}{\lambda_{1}^{3} k_{1}^{2}}\right] .
\end{aligned}
$$

From here, by using $\lambda_{1}=\left(c_{1}-s\right), \quad \lambda_{2}=c_{2}$, we obtain

$$
\begin{equation*}
P^{2}=\frac{k_{1}^{2}+k_{2}^{2}}{\left(c_{1}-s\right)^{2} k_{1}^{2}}+\varepsilon\left[\frac{2 k_{2}\left(k_{1} k_{2}^{*}-k_{1}^{*} k_{2}\right)}{\left(c_{1}-s\right)^{2} k_{1}^{3}}-\frac{2 c_{2}\left(k_{1}^{2}+k_{2}^{2}\right)}{\left(c_{1}-s\right)^{3} k_{1}^{2}}\right] . \tag{3.6}
\end{equation*}
$$

Theorem 3.3. Let (M_{2}, 戊 I_{1}) be the timelike - spacelike involute - evolute dual curve couple. Let $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the dual Frenet frames of M_{1} and M_{2}, respectively. The dual torsion $\tau=k_{2}+\varepsilon k_{2}^{*}$ of M_{1} and the dual torsion $Q=q+\varepsilon q^{*}$ of M_{2} is the following equation

$$
Q=\frac{k_{2} k_{1}^{\prime}-k_{2}^{\prime} k_{1}}{\left(k_{1}^{2}+k_{2}^{2}\right) k_{1}\left|c_{1}-s\right|}+\varepsilon\left[\frac{k_{1}\left(k_{1}^{\prime} k_{2}^{*}-k_{1} k_{2}^{* \prime}\right)+k_{2}\left(k_{1} k_{1}^{* \prime}-k_{1}^{\prime} k_{1}^{*}\right)}{\left(k_{1}^{2}+k_{2}^{2}\right) k_{1}^{2}\left|c_{1}-s\right|}+\frac{\left(2 k_{1} k_{1}^{*}+2 k_{2} k_{2}^{*}\right)\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)}{\left(k_{1}^{2}+k_{2}^{2}\right)^{2} k_{1}\left|c_{1}-s\right|}\right] .
$$

Proof. By differentiating (3.1) three time with respect to s, we get

$$
\begin{aligned}
& M_{2}^{\prime}=\lambda \kappa N \\
& M_{2}^{\prime \prime}=\lambda \kappa^{2} T+\left(\lambda \kappa^{\prime}-\kappa\right) N+\lambda \kappa \tau B \\
& M_{2}^{\prime \prime \prime}=\left(3 \lambda \kappa \kappa^{\prime}-2 \kappa^{2}\right) T+\left(\lambda \kappa^{3}+\lambda \kappa \tau^{2}-2 \kappa^{\prime}+\lambda \kappa^{\prime \prime}\right) N+\left(-2 \kappa \tau+2 \lambda \kappa^{\prime} \tau+\lambda \kappa \tau^{\prime}\right) B
\end{aligned}
$$

The vectorel product of $M_{2}{ }^{\prime}$ and $M_{2}{ }^{\prime \prime}$ are

$$
\begin{equation*}
M_{2}^{\prime} \wedge M_{2}^{\prime \prime}=-\lambda^{2} \kappa^{2} \tau T+\lambda^{2} \kappa^{3} B=\lambda^{2} \kappa^{2}(-\tau T+\kappa B) \tag{3.7}
\end{equation*}
$$

From here, we obtain

$$
\begin{equation*}
\left\|M_{2}^{\prime} \wedge M_{2}^{\prime \prime}\right\|^{2}=|\lambda|^{4}|\kappa|^{4}\left(\kappa^{2}+\tau^{2}\right) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(M_{2}^{\prime}, M_{2}^{\prime \prime}, M_{2}^{\prime \prime \prime}\right)=\lambda^{3} \kappa^{3}\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right) \tag{3.9}
\end{equation*}
$$

Substituting by (3.8) and (3.9) values into $Q=\frac{\operatorname{det}\left(M_{2}{ }^{\prime}, M_{2}{ }^{\prime \prime}, M_{2}{ }^{\prime \prime \prime}\right)}{\left\|M_{2}{ }^{\prime} \wedge M_{2}{ }^{\prime \prime}\right\|^{2}}$, we get

$$
\begin{equation*}
Q=\frac{\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right)}{|\lambda| \kappa\left(\kappa^{2}+\tau^{2}\right)} \tag{3.10}
\end{equation*}
$$

and then substituting $Q=q+\varepsilon q^{*}, \lambda=\lambda_{1}+\varepsilon \lambda_{1}^{*}, \kappa=k_{1}+\varepsilon k_{1}^{*}$ and $\tau=k_{2}+\varepsilon k_{2}^{*}$ into the last equation, we have

$$
\begin{aligned}
Q & =\frac{\left(k_{1}^{\prime}+\varepsilon k_{1}^{* \prime}\right)\left(k_{2}+\varepsilon k_{2}^{*}\right)-\left(k_{1}+\varepsilon k_{1}^{*}\right)\left(k_{2}^{\prime}+\varepsilon k_{2}^{* \prime}\right)}{\left|\lambda_{1}+\varepsilon \lambda_{1}^{*}\right|\left(k_{1}+\varepsilon k_{1}^{*}\right)\left(\left(k_{1}^{2}+k_{2}^{2}\right)+\varepsilon\left(2 k_{1} k_{1}^{*}+2 k_{2} k_{2}^{*}\right)\right)} \\
& =\frac{\left(k_{2} k_{1}^{\prime}-k_{2}^{\prime} k_{1}\right)+\varepsilon\left(k_{1}^{\prime} k_{2}^{*}-k_{1} k_{2}^{* \prime}+k_{1}^{* \prime} k_{2}-k_{1}^{*} k_{2}^{\prime}\right)}{\left(\left|\lambda_{1}\right| k_{1}+\varepsilon\left|\lambda_{1}\right| k_{1}^{*}\right)\left(\left(k_{1}^{2}+k_{2}^{2}\right)+\varepsilon\left(2 k_{1} k_{1}^{*}+2 k_{2} k_{2}^{*}\right)\right)} \\
& =\frac{k_{2} k_{1}^{\prime}-k_{2}^{\prime} k_{1}}{\left|\lambda_{1}\right| k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)}+\varepsilon\left[\frac{k_{1}\left(k_{1}^{\prime} k_{2}^{*}-k_{1} k_{2}^{* \prime}\right)+k_{2}\left(k_{1} k_{1}^{* \prime}-k_{1}^{\prime} k_{1}^{*}\right)}{\left|\lambda_{1}\right| k_{1}^{2}\left(k_{1}^{2}+k_{2}^{2}\right)}+\frac{\left(2 k_{1} k_{1}^{*}+2 k_{2} k_{2}^{*}\right)\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)}{\left|\lambda_{1}\right| k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right]
\end{aligned}
$$

By the fact that $\lambda_{1}=\left(c_{1}-s\right)$, we get
$Q=\frac{k_{2} k_{1}^{\prime}-k_{2}^{\prime} k_{1}}{\left|c_{1}-s\right| k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)}+\varepsilon\left[\frac{k_{1}\left(k_{1}^{\prime} k_{2}^{*}-k_{1} k_{2}^{* \prime}\right)+k_{2}\left(k_{1} k_{1}^{* \prime}-k_{1}^{\prime} k_{1}^{*}\right)}{\left|c_{1}-s\right| k_{1}^{2}\left(k_{1}^{2}+k_{2}^{2}\right)}+\frac{\left(2 k_{1} k_{1}^{*}+2 k_{2} k_{2}^{*}\right)\left(k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}\right)}{\left|c_{1}-s\right| k_{1}\left(k_{1}^{2}+k_{2}^{2}\right)^{2}}\right]$

Theorem 3.4. Let $\left(M_{2}\right.$, 浅 $\left.I_{1}\right)$ be the timelike -spacelike involute - evolute dual curve couple. Let $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the dual Frenet frames of M_{1} and M_{2}, respectively and $\Phi=\varphi+\varepsilon \varphi^{*}$ be the Lorentzian dual spacelike angle between binormal vector B and W. For

$$
\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\cosh \Phi & 0 & -\sinh \Phi \\
-\sinh \Phi & 0 & \cosh \Phi
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\cos \varphi & 0 & -\sin \varphi \\
-\sin \varphi & 0 & \cos \varphi
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
v_{1}^{*} \\
v_{2}^{*} \\
v_{3}^{*}
\end{array}\right]=\varphi^{*}\left[\begin{array}{ccc}
0 & 0 & 0 \\
\sin \varphi & 0 & -\cos \varphi \\
-\cos \varphi & 0 & -\sin \varphi
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\cos \varphi & 0 & -\sin \varphi \\
-\sin \varphi & 0 & \cos \varphi
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right]}
\end{array}\right.
$$

Proof. From (2.11), (3.4) and (3.8), we have,

$$
\begin{equation*}
\left\|M_{2}^{\prime} \wedge M_{2}^{\prime \prime}\right\|=\lambda^{2} \kappa^{2}\|W\| . \tag{3.12}
\end{equation*}
$$

By using (3.7) and (3.12) and from the fact that $V_{3}=\frac{M_{2}{ }^{\prime} \wedge M_{2}{ }^{\prime \prime}}{\left\|M_{2}{ }^{\prime} \wedge M_{2}{ }^{\prime \prime}\right\|}$ we obtain

$$
V_{3}=-\frac{\tau}{\|W\|} T+\frac{\kappa}{\|W\|} B
$$

substituning (2.11) into the last equation, we obtain

$$
\begin{equation*}
V_{3}=-\sin \Phi T+\cos \Phi B . \tag{3.13}
\end{equation*}
$$

Since $V_{2}=-V_{3} \wedge V_{1}$, it can be easily seen that

$$
\begin{equation*}
V_{2}=-\cos \Phi T-\sin \Phi B \tag{3.14}
\end{equation*}
$$

Considering (3.4), (3.13) and (3.14) according to dual components, the following equations are obtained:

$$
\left\{\begin{array}{l}
V_{1}=n+\varepsilon n^{*} \tag{3.15}\\
V_{2}=(-\cos \varphi t-\sin \varphi b)+\varepsilon\left[\left(-\cos \varphi t^{*}-\sin \varphi b^{*}\right)+\varphi^{*}(\sin \varphi t-\cos \varphi b)\right] \\
V_{3}=(-\sin \varphi t+\cos \varphi b)+\varepsilon\left[\left(-\sin \varphi t^{*}+\cos \varphi b^{*}\right)+\varphi^{*}(-\cos \varphi t-\sin \varphi b)\right]
\end{array}\right.
$$

written (3.15) in matrix form, the proof is completed.

Theorem 3.5. Let (M_{2}, 敞 I_{1}) be the timelike - spacelike involute - evolute dual curve couple, $W=w+\varepsilon w^{*}$ and $\bar{W}=\bar{w}+\varepsilon \bar{w}^{*}$ be the dual Frenet instantaneous rotation vectors of M_{1} and M_{2} respectively. Thus,

$$
\bar{W}=\frac{1}{|\lambda| \kappa}\left(-\Phi^{\prime} N+W\right)
$$

Proof. From (2.3), we can write

$$
\bar{W}=Q V_{1}-P V_{3}
$$

Using the (3.4), (3.5) , (3.10) and (3.13) the equations, we have

$$
\begin{equation*}
\bar{W}=\frac{\left(\kappa^{\prime} \tau-\kappa \tau^{\prime}\right)}{|\lambda| \kappa\left(\kappa^{2}+\tau^{2}\right)} N-\frac{\sqrt{\kappa^{2}+\tau^{2}}}{|\lambda| \kappa}(-\sin \Phi T+\cos \Phi B) . \tag{3.16}
\end{equation*}
$$

Substituning (2.11) into the last equation, we obtain

$$
\bar{W}=\frac{1}{|\lambda| \kappa}\left(\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{\kappa^{2}+\tau^{2}} N-W\right)
$$

and then, we get

$$
\begin{equation*}
\bar{W}=\frac{1}{|\lambda| \kappa}\left(-\Phi^{\prime} N+W\right) \tag{3.17}
\end{equation*}
$$

Considering (3.17) according to dual components and substituting $\lambda_{1}=\left(c_{1}-s\right)$ into (3.17), we leaves the real and dual components

$$
\left\{\begin{array}{l}
\bar{w}=\frac{-\varphi^{\prime} n+w}{\left|c_{1}-s\right| k_{1}} \tag{3.18}\\
\overline{w^{*}}=\frac{-\varphi^{\prime} n^{*}-\varphi^{* \prime} n+w^{*}}{\left|c_{1}-s\right| k_{1}}-\frac{k_{1}^{*}\left(-\varphi^{\prime} n+w\right)}{\left|c_{1}-s\right| k_{1}^{2}}
\end{array}\right.
$$

Theorem 3.6. Let $\left(M_{2}\right.$, 樾 $)$) be the timelike - spacelike involute - evolute dual curve couple, $C=c+\varepsilon c^{*}$ and $\bar{C}=\bar{c}+\varepsilon c^{-*}$ be unit dual vector of W and \bar{W}, respectively. Thus,

$$
\bar{C}=-\frac{-\Phi^{\prime}}{\sqrt{\left|\kappa^{2}+\tau^{2}+\Phi^{\prime 2}\right|}} N+\frac{\sqrt{\kappa^{2}+\tau^{2}}}{\sqrt{\left|\kappa^{2}+\tau^{2}+\Phi^{\prime 2}\right|}} C
$$

Proof. From the fact that the unit dual vector of \bar{W} is $\bar{C}=\frac{\bar{W}}{\|\bar{W}\|}$ we obtain

$$
\begin{equation*}
\bar{C}=\frac{-\Phi^{\prime} N+W}{\sqrt{\left|\kappa^{2}+\tau^{2}+\Phi^{\prime 2}\right|}}, \tag{3.19}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{C}=-\frac{-\Phi^{\prime}}{\sqrt{\left|\kappa^{2}+\tau^{2}+\Phi^{\prime 2}\right|}} N+\frac{\sqrt{\kappa^{2}+\tau^{2}}}{\sqrt{\left|\kappa^{2}+\tau^{2}+\Phi^{\prime 2}\right|}} C \tag{3.20}
\end{equation*}
$$

(3.20) leaves the real and dual components

$$
\left\{\begin{array}{l}
\bar{c}=\frac{1}{\sqrt{\left|k_{1}^{2}+k_{2}^{2}+\varphi^{\prime 2}\right|}}\left(-\varphi^{\prime} n+\sqrt{k_{1}^{2}+k_{2}^{2}} c\right) . \tag{3.21}\\
\overline{c^{*}} \frac{1}{\sqrt{\left|k_{1}^{2}+k_{2}^{2}+\varphi^{\prime 2}\right|}}\left(-\varphi^{\prime} n^{*}-\varphi^{* *} n+\sqrt{k_{1}^{2}+k_{2}^{2}} c^{*}+\frac{k_{1} k_{1}^{*}+k_{2} k_{2}^{*}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} c\right)
\end{array}\right.
$$

REFERENCES

[1] N. Ayyıldız and A. C. Çöken, On The Dual Darboux Rotation Axis of The Spacelike Dual Space Curve, Demonstr. Math., 37(1), (2004),197-202.
[2] M. Bilici and M. Çalışkan, On the Involutes of the Spacelike Curve with a Timelike Binormal in Minkowski 3-Space, Int. Math. Forum, 4(31), (2009), 1497-1509.
[3] G. S. Birman and K. Nomizu, Trigonometry in Lorentzian Geometry, Amer. Math. Monthly, 91(9), (1984), 543-549.
[4] B. Bükcü and M. K. Karacan, On The Involute and Evolute Curves of The Spacelike Curve with a Spacelike Binormal in Minkowski 3-Space, Int. J. Contemp. Math. Sciences, 2(5), (2007), 221-232.
[5] B. Bükcü and M. K. Karacan, On The Involute and Evolute Curves of The Timelike Curve in Minkowski 3Space, Demonstr. Math., 40(3), (2007), 721-732.
[6] W. K. Clifford, Preliminary Sketch of Biquatenions, London Math. Soc., 4(1),(1871),381-395.
[7] W. Fenchel, On The Differential Geometry of Closed Space Curves, Bull. Amer. Math. Soc., 57(1), (1951), 44-54.
[8] H. H. Hacısalihoglu, Differential Geometry, Hacısalihoglu Published, (2000), Turkey.
[9] M.Çalışkan and M. Bilici, Some Characterizations for The Pair of Involute-Evolute Curves in Euclidean Space E3, Bulletin Pure Appl. Sci., 21E(2), (2002), 289-294.
[10] B. O'neill, Semi Riemann Geometry, Academic Press, (1983), New York, London.
[11] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, Inc., (1994), New York.
[12] R. S. Millman and G. D. Parker ,Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, (1977), New Jersey.
[13] J. Dirk. Struik, Lectures on Classical Differential Geometry, Second Edition Addision Wesley, (1988), Dover.
[14] H. H. Uğurlu, On The Geometry of Timelike Surfaces, Commun. Fac. Sci. Ank. Series, A1(46), (1997), 211-223.
[15] Y. Yaylı,A. Çalışkan and H. H. Uğurlu,The E. Study mapping of circles on Dual Hyperbolic an Lorentzian Unit Speheres H_{0}^{2} and S_{1}^{2}, Math. Proc. R. Ir. Acad., 102A(1), (2002), 37-47.
[16] A. Yücesan, A. C. Çöken and N. Ayyıldız, On the dual Darboux Rotation Axis of the Timelike Dual Space Curve, Balkan J. Geom. Appl., 7(2), (2002), 137-142.
[17] K. Akutagawa, S. Nishikawa, The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Math. J., 42,(1990),67-82.
[18] V. D. I. Woestijne, Minimal Surface of the 3-Dimensional Minkowski Space, World Scientific Pub., (1990), Singapore.
[19] H. H. Hacisalihoglu, Acceleration Axes in Spatial Kinamatics I, Commun. S'erie A: Math'ematiques, Physique et Astronomie, A(20), (1971),1-15.

[^0]: *Corresponding author

