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1. INTRODUCTION 

Nowadays, many authors have their attention toward studying the solution of linear and nonlinear 

partial differential equations. Because, partial differential equations can be used as a proper tool 

for describing most of the natural phenomena of engineering and science models. Moreover, a 

wide range of significant phenomena arising in physics, biology, mathematics, mathematical 
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physics and another fields are modeled through partial differential equations. While, finding the 

exact solutions of partial differential equations has become one of the most significant and 

challenging problems in engineering and physics, biology, mathematics and other science[1]-[2]. 

Therefore, numerical methods were applied to overcome such problems. Currently, the numerical 

methods are in competition with each other to find the best and more accurate approximate 

solutions [3]. 

In this paper, the Successive Approximations Method (SAM) [3]-[6] and Variational Iteration 

Method (VIM) [6]-[11] are applied to, the Klein-Gordon Schrödinger (KGS) Equation. 

 

2. MATHEMATICAL MODEL 

Consider the Klein-Gordon Schrödinger (KGS) Equation [12] 

 

{
𝑖𝑞𝑡 = −𝑎𝑞𝑥𝑥 − 𝑏𝜑𝑞 

𝜑𝑡𝑡 = 𝑐
2𝜑𝑥𝑥 − 𝛽

2𝜑 + 𝜆|𝑞|2 
    ∈ ℝ, 𝑡 ≥ 0 ,   𝑖 = √−1            (1) 

 

Where 𝑎, 𝑏 , 𝑐 , 𝛽 𝑎𝑛𝑑  𝜆   are considered as arbitrary constants. While, 𝒒   is the complex 

nucleon field and 𝝋  is the neutral real meson fields. Moreover, the system (1) has wide-range 

applications in many fields such as quantum physics and modern physics [12]-[13].  

 

We can separate equation (1) into real and imaginary parts. Therefore, one can obtain a tripled 

system (a system of three real equations) in the following form: 

 

{
 

 
𝑢𝑡 = −𝑎𝑣𝑥𝑥 − 𝑏𝑣𝜑                                

𝑣𝑡 = 𝑎𝑢𝑥𝑥 + 𝑏𝑢𝜑 

𝜑𝑡𝑡 = 𝑐
2𝜑𝑥𝑥 − 𝛽

2𝜑 + 𝜆𝑢2 + 𝜆𝑣2    
  𝑥 ∈ ℝ, 𝑡 ≥ 0 ,

  𝑖 = √−1     

          (2) 

For        𝑞 = 𝑢 + 𝑖𝑣                                                     (3) 

Where 𝑢 and 𝑣 and φ are real functions of 𝑥 𝑎𝑛𝑑 𝑡. 
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3. DESCRIPTION OF THE METHODS  

3.1 BASIC IDEA OF SUCCESSIVE APPROXIMATIONS METHOD [3]-[6]: 

Consider the following general nonlinear partial differential equation: 

𝐿𝑈(𝑥, 𝑡) + 𝑅[𝑈(𝑥, 𝑡)] + 𝑁[𝑈(𝑥, 𝑡)]=𝑔(𝑥, 𝑡)                                 (4) 

Subject to the initial condition: 

𝑈(𝑥, 0) = 𝑓(𝑥), 𝐶𝑖 =
𝜕𝑖𝑈(𝑥,𝑡)

𝜕𝑡𝑖
|𝑡=0  𝑈0 =∑ (𝐶𝑖

𝑡𝑖  

   𝑖!  
)

𝑚−1

𝑖=0
                   (5) 

For 𝐿 =
𝜕𝑚

𝜕𝑡𝑚
, 𝑚 ∈ ℕ , is the highest order partial derivative with respect to time 𝑡. Moreover, 

the reminder linear term is 𝑅, the nonlinear operator is 𝑁 and the inhomogeneous source term is 

𝑔(𝑥, 𝑡). 

The SAM considers the approximate solution of an integral equation as a sequence, which is 

usually, convergent to an accurate solution. For solving equation (4) by using SAM, we apply 

𝐿−1[. ], which is: 

𝐿−1[. ] =
1

(𝑚−1)! 
∫  (𝑡 − 𝑠)𝑚−1[. ]𝑑𝑠                        
𝑡

0
           (6) 

on both sides of equation (4), we get: 

𝑈(𝑥, 𝑡) =∑ (𝐶𝑖
𝑡𝑖  

   𝑖!  
)

𝑚−1

𝑖=0
+ 𝐿−1(𝑔(𝑥, 𝑠) − 𝑅[𝑈(𝑥, 𝑠)] − 𝑁[𝑈(𝑥, 𝑠)] )             (7) 

The solution of (7) by SAM is a sequence as follows: 

{𝑈𝑛(𝑥, 𝑡)}𝑛=0
∞                                                     (8) 

Now, for 𝑔(𝑥, 𝑡) = 0, then SAM introduces the recurrence relation of the form: 

𝑈𝑛+1 =∑ (𝐶𝑖
𝑡𝑖  

   𝑖!  
)

𝑚−1

𝑖=0
 − 𝐿−1(𝑅[𝑈(𝑥, 𝑠)]) + 𝐿−1(𝑁[𝑈(𝑥, 𝑠)])                (9) 

Therefore, The solution is computed as: 

lim
𝑛→∞

𝑈𝑛 = 𝑈(𝑥, 𝑡)             and   𝑈(𝑥, 𝑡) = ∑ 𝑈𝑛(𝑥, 𝑡)
∞

𝑛=0
               (10) 

The Successive Approximations Method is simple in its principles. While the difficulties appear 

in proving the convergence of the introduced series [3]. 

3.2 BASIC IDEA OF VARIATIONAL ITERATION METHOD [6]-[11] 

Applying VIM on eq. (4) , then we write the correction functionals of equation (4) as:  

𝑈𝑛+1(𝑥, 𝑡) = 𝑈𝑛(𝑥, 𝑡) + ∫𝜆(𝑠) [(𝐿𝑈𝑛(𝑥, 𝑠) + 𝑅Ũ𝑛(𝑥, 𝑠) + 𝑁Ũ𝑛(𝑥, 𝑠) −  𝑔(𝑥, 𝑠)) ] 𝑑𝑠  

𝑡

0

 

javascript:Insert('Ũ');
javascript:Insert('Ũ');
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Which implies: 

𝑈𝑛+1(𝑥, 𝑡) = 𝑈𝑛(𝑥, 𝑡) + ∫𝜆(𝑠) [(𝐿𝑈𝑛(𝑥, 𝑠) + 𝑅Ũ𝑛(𝑥, 𝑠) + 𝑁Ũ𝑛(𝑥, 𝑠)) ] 𝑑𝑠

𝑡

0

       (11) 

For  𝑔(𝑥, 𝑠) = 0 , 

Where 𝜆  is called a Lagrange multiplier, which will be identified optimally by variational 

iteration method. Now, Ũ𝑛 is a restricted variation, which demonstrates that 𝛿Ũ𝑛 = 0. Creating 

the correct functional of (4), that yields: 

δ𝑈𝑛+1(𝑥, 𝑡) = δ𝑈𝑛(𝑥, 𝑡) + δ∫𝜆(𝑠) [(𝐿𝑈𝑛(𝑥, 𝑠) + 𝑅Ũ𝑛(𝑥, 𝑠) + 𝑁Ũ𝑛(𝑥, 𝑠)) ] 𝑑𝑠

𝑡

0

       (12) 

Therefore, its stationary conditions can be find by applying integration by parts on equation (12). 

Then, we get the general form of Lagrange multiplier as follows [11]: 

                    𝜆(𝑠) =
(−1)𝑚

(𝑚−1)!
 (𝑠 − 𝑡)𝑚−1            (13)                     

Substituting equation (12) into equation (13) resulting the following iteration formula: 

𝑈𝑛+1(𝑥, 𝑡) = 𝑈𝑛(𝑥, 𝑡) 

    +∫
(−1)𝑚 (𝑠 − 𝑡)𝑚−1

(𝑚 − 1)!
 [(𝐿𝑈𝑛(𝑥, 𝑠) + 𝑅𝑈𝑛(𝑥, 𝑠) + 𝑁𝑈𝑛(𝑥, 𝑠)) ]𝑑𝑠

𝑡

0

      (14) 

Then, the approximate solution of equation (4) is given by:  

                             𝑈(𝑥, 𝑡) = lim
𝑛→∞

𝑈𝑛(𝑥, 𝑡)           (15)  

 

4. DERIVATION OF SAM AND VIM FOR SOLVING KGS-SYSTEM 

4.1 DERIVATION OF SAM FOR SOLVING KGS-SYSTEM 

Applying 𝐿−1 [.] on both sides of equation (2) we get: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢0  − 𝐿
−1 [𝑎

𝜕2𝑣𝑛

𝜕𝑥2
+ 𝑏𝑣𝑛𝜑𝑛],    𝑚 = 1                            (16) 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣0 + 𝐿
−1 [𝑎

𝜕2𝑢𝑛

𝜕𝑥2
+ 𝑏𝑢𝑛𝜑𝑛],    𝑚 = 1                            (17) 

𝜑𝑛+1(𝑥, 𝑡) = 𝜑0 + 𝐿
−1 [𝑐2

𝜕2𝜑𝑛

𝜕𝑥2
− 𝛽2𝜑𝑛 + 𝜆𝑢𝑛

2 + 𝜆𝑣𝑛
2] , 𝑚 = 2                 (18) 

Using equation (6) and substituting it in equations (16), (17) and (18), to determine the several 

successive approximations of the system (2) as follow: 

javascript:Insert('Ũ');
javascript:Insert('Ũ');
javascript:Insert('Ũ');
javascript:Insert('Ũ');
javascript:Insert('Ũ');
javascript:Insert('Ũ');
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𝑢𝑛+1(𝑥, 𝑡) = 𝑢0  − ∫ (𝑎
𝜕2𝑣𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝑏𝑣𝑛(𝑥, 𝑠)𝜑𝑛(𝑥, 𝑠))𝑑𝑠

𝑡

0

            (19) 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣0  + ∫ (𝑎
𝜕2𝑢𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝑏𝑢𝑛(𝑥, 𝑠)𝜑𝑛(𝑥, 𝑠))𝑑𝑠

𝑡

0

             (20) 

𝜑𝑛+1(𝑥, 𝑡) = 𝜑0  

+ ∫((𝑡 − 𝑠)(𝑐2
𝜕2𝜑𝑛(𝑥, 𝑠)

𝜕𝑥2
− 𝛽2𝜑𝑛(𝑥, 𝑠) + 𝜆𝑢𝑛(𝑥, 𝑠)

2

𝑡

0

+ 𝜆𝑣𝑛(𝑥, 𝑠)
2))𝑑𝑠                             (21)  

 For all 𝑛 ≥ 0  . 

To find the initial approximations, we use equation (5), so we get: 

𝑢0 = 𝑢(𝑥, 0),    𝑣0 = 𝑣(𝑥, 0) and  

  𝜑0 = 𝜑(𝑥, 0) + 𝑡𝜑𝑡(𝑥, 0)                                                                                    (22)    

Then, the approximate solutions will take the forms: 

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛 (𝑥, 𝑡) ≈ 𝑢𝑛(𝑥, 𝑡)                            (23)    

𝑣(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛 (𝑥, 𝑡)  ≈ 𝑣𝑛(𝑥, 𝑡)                          (24) 

𝜑(𝑥, 𝑡) = lim
𝑛→∞

𝜑𝑛 (𝑥, 𝑡) ≈ 𝜑𝑛(𝑥, 𝑡)                              (25) 

Where 𝑛 is the closing iteration step. 

4.2 DERIVATION OF VIM FOR SOLVING KGS-SYSTEM 

The variational iteration formula in equation (14) is used to find the iteration formulas of equation 

(2) as follow: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) + ∫  𝜆1(𝑠) [
𝜕𝑢𝑛(𝑥, 𝑠)

𝜕𝑡
+ 𝑎

𝜕2𝑣𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝑏𝑣𝑛(𝑥, 𝑠)𝜑𝑛(𝑥, 𝑠) ] 𝑑𝑠  

𝑡

0

(26) 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡) + 

                    ∫ 𝜆2(𝑠) [
𝜕𝑣𝑛(𝑥, 𝑠)

𝜕𝑡
− 𝑎

𝜕2𝑢𝑛(𝑥, 𝑠)

𝜕𝑥2
− 𝑏𝑢𝑛(𝑥, 𝑠)𝜑𝑛(𝑥, 𝑠) ] 𝑑𝑠

𝑡

0

                    (27) 
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𝜑𝑛+1(𝑥, 𝑡) = 𝜑𝑛(𝑥, 𝑡) + ∫𝜆3(𝑠)[
𝜕2𝜑𝑛(𝑥, 𝑠)

𝜕𝑡2
− 𝑐2

𝜕2𝜑𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝛽2𝜑0(𝑥, 𝑠)

𝑡

0

 

                      −𝜆(𝑢𝑛(𝑥, 𝑠))
2 − 𝜆(𝑣𝑛(𝑥, 𝑠))

2 ]𝑑𝑠                                                               (28) 

Then, we can find the Lagrange multiplier by using equation (13), so we get 𝜆1 = 𝜆2 = −1 and 

𝜆3 = (𝑠 − 𝑡), and substitute them in equations (26), (27) and (28) respectively, then the iteration 

formulas will become as follow: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − ∫  [
𝜕𝑢𝑛(𝑥, 𝑠)

𝜕𝑡
+ 𝑎

𝜕2𝑣𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝑏𝑣𝑛(𝑥, 𝑠)𝜑𝑛(𝑥, 𝑠) ] 𝑑𝑠   

𝑡

0

(29) 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡) + ∫  [−
𝜕𝑣𝑛(𝑥, 𝑠)

𝜕𝑡
+ 𝑏

𝜕2𝑢𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝑏𝑢𝑛(𝑥, 𝑠)𝜑𝑛(𝑥, 𝑠) ] 𝑑𝑠 

𝑡

0

   (30) 

𝜑𝑛+1(𝑥, 𝑡) = 𝜑𝑛(𝑥, 𝑡) + 

∫(𝑠 − 𝑡) [
𝜕2𝜑𝑛(𝑥, 𝑠)

𝜕𝑥2
− 𝑐2

𝜕2𝜑𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝛽2𝜑0(𝑥, 𝑠) − 𝜆(𝑢𝑛(𝑥, 𝑠))

2

𝑡

0

− 𝜆(𝑣𝑛(𝑥, 𝑠))
2 ] 𝑑𝑠                                  (31) 

For all 𝑛 ≥ 0  . With initial approximations in equation(22). 

Then, the approximate solutions will take the forms: 

𝑢(𝑥, 𝑡) = lim
𝑛→∞

𝑢𝑛 (𝑥, 𝑡) ≈ 𝑢𝑛(𝑥, 𝑡)                                                  (32)    

𝑣(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛 (𝑥, 𝑡)  ≈ 𝑣𝑛(𝑥, 𝑡)                                                 (33) 

𝜑(𝑥, 𝑡) = lim
𝑛→∞

𝜑𝑛 (𝑥, 𝑡) ≈ 𝜑𝑛(𝑥, 𝑡)                                              (34) 

Where 𝑛 is the closing iteration step. 

 

5. APPLICATION WITH NUMERICAL RESULTS (TABLES, FIGURES) 

This section will be devoted to find the numerical results (Tables, Figures) of Klein-Gordon 

Schrödinger (KGS) Equation by using Successive Approximation Method (SAM) and Variationals 

Iteration Method (VIM). 
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Example:  

If we take the arbitrary constants of equations (1) and (2) to be: 

{𝑏 =  𝑐 = 𝜆 = 𝛽 = 1 𝑎𝑛𝑑  𝑎 =
1

2
 } [14]. Then we get: 

{
𝑖𝑞𝑡 = −

1

2
𝑞𝑥𝑥 − 𝜑𝑞         

𝜑𝑡𝑡 = 𝜑𝑥𝑥 − 𝜑 + |𝑞|
2   
               𝑥 ∈ ℝ, 𝑡 ≥ 0 ,   𝑖 = √−1                         (35) 

and 

{
 
 

 
 𝑢𝑡 = −

1

2
𝑣𝑥𝑥 − 𝑣𝜑                    

𝑣𝑡 =
1

2
𝑢𝑥𝑥 + 𝑢𝜑                        

𝜑𝑡𝑡 = 𝜑𝑥𝑥 − 𝜑 + 𝑢
2 + 𝑣2    

       𝑥 ∈ ℝ, 𝑡 ≥ 0 ,   𝑖 = √−1                       (36) 

The exact solitary wave solution of system (35) as in [13]-[14] are: 

{
  
 

  
 

𝑞(𝑥, 𝑡) =

3Sech[
𝑥 − 𝑥0 − 𝑡𝛼

2√1 − 𝛼2
]2   ⅇ

𝑖(𝑥𝛼+𝑡(−
𝛼2

2
+

1
2−2𝛼2

))

2√2 − 2𝛼2
         

𝜑(𝑥, 𝑡) = −

3Sech[
𝑥 − 𝑥0 − 𝑡𝛼

2√1 − 𝛼2
]2

4(𝛼2 − 1)

                     (37) 

With the initial conditions: 

{
 
 

 
 
𝑞(𝑥, 0) =

3Sech[
𝑥 − 𝑥0
2√1 − 𝛼2

]2   ⅇ𝑖𝑥𝛼

2√2 − 2𝛼2
         

𝜑(𝑥, 0) = −

3Sech [
𝑥 − 𝑥0
2√1 − 𝛼2

]
2

4(𝛼2 − 1)
            

                     (38) 

Where |𝛼| > 0 is the propagating velocity of the wave and 𝑥0 is the initial phase[13]. 

Therefore, the exact solitary wave solutions the system (36) are: 

{
 
 
 
 

 
 
 
 
𝑢(𝑥, 𝑡) =

3Sech[
𝑥 − 𝑥0 − 𝑡𝛼

2√1 − 𝛼2
]2Cos[𝑥𝛼 + 𝑡(−

𝛼2

2 +
1

2 − 2𝛼2
)]

2√2 − 2𝛼2
                   

𝑣(𝑥, 𝑡) =  

3Sech[
𝑥 − 𝑥0 − 𝑡𝛼

2√1 − 𝛼2
]2Sin[𝑥𝛼 + 𝑡(−

𝛼2

2 +
1

2 − 2𝛼2
)]

2√2 − 2𝛼2
                  

𝜑(𝑥, 𝑡) = −

3Sech [
𝑥 − 𝑥0
2√1 − 𝛼2

]
2

4(𝛼2 − 1)
                                                                  

             (39) 
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With the initial conditions 

{
 
 
 
 

 
 
 
 
𝑢(𝑥, 0) =

3Sech[
𝑥 − 𝑥0
2√1 − 𝛼2

]2Cos[𝑥𝛼]

2√2 − 2𝛼2
                   

𝑣(𝑥, 0) =  

3Sech[
𝑥 − 𝑥0
2√1 − 𝛼2

]2Sin[𝑥𝛼]

2√2 − 2𝛼2
                  

𝜑(𝑥, 0) = −

3Sech [
𝑥 − 𝑥0
2√1 − 𝛼2

]
2

4(𝛼2 − 1)
                                  

                                             (40) 

Where |𝛼| > 0 is the propagating velocity of the wave and 𝑥0 is the initial phase [13]. 

 

In this section we considered initial-values (𝜶 = 𝟎. 𝟖, 𝒙𝟎 = −𝟏𝟎)[14]. 

Table 1. The absolute errors of the two terms approximate solutions 𝑞(𝑥, 𝑡) obtained by SAM 

and VIM of equation (35), 𝑥 = 10 and 𝑡 ∈ [ 0,1 ]. 

Time |𝒒𝑺𝑨𝑴− 𝒒𝑬𝒙𝒂𝒄𝒕| |𝒒𝑽𝑰𝑴 − 𝒒𝑬𝒙𝒂𝒄𝒕| 

0 0 0 

0.1 2.030110674*10-17 2.030110674*10-17 

0.2 1.67971031*10-16 1.67971031*10-16 

0.3 5.864410163*10-16 5.864410163*10-16 

0.4 1.4382761*10-15 1.4382761*10-15 

0.5 2.907058086*10-15 2.907058086*10-15 

0.6 5.199395215*10-15 5.199395215*10-15 

0.7 8.547065525*10-15 8.547065525*10-15 

0.8 1.320930239*10-14 1.320930239*10-14 

0.9 1.947523274*10-14 1.947523274*10-14 

1 2.766648102*10-14 2.766648102*10-14 
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Table 2. The absolute errors of the two terms approximate solutions 𝜑(𝑥, 𝑡) obtained by SAM 

and VIM of equation (35), 𝑥 = 10 and 𝑡 ∈ [ 0,1 ]. 

Time |𝝋𝑺𝑨𝑴−𝝋𝑬𝒙𝒂𝒄𝒕| |𝝋𝑽𝑰𝑴 −𝝋𝑬𝒙𝒂𝒄𝒕| 

0 0 0 

0.1 2.389954647*10-17 1.919379919*10-18 

0.2 2.079472414*10-16 3.210590896*10-17 

0.3 7.630275695*10-16 1.695630726*10-16 

0.4 1.964709902*10-15 5.579792421*10-16 

0.5 4.163329138*10-15 1.415808318*10-15 

0.6 7.793832134*10-15 3.046116159*10-15 

0.7 1.338535651*10-14 5.846159384*10-15 

0.8 2.157050366*10-14 1.031665839*10-14 

0.9 3.309426236*10-14 1.707072094*10-14 

1 4.882253312*10-14 2.684236656*10-14 

 

 

Figure 1: The comparison between SAM and VIM with exact solution for |𝑞(𝑥, 𝑡)|, when 𝑥 =

10 and 𝑡 ∈ [0,1]. 
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Figure 2: The comparison between SAM and VIM with exact solution for 𝜑(𝑥, 𝑡), when 𝑥 = 10 

and 𝑡 ∈ [0,1]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:The surfaces of exact solutions |𝒒(𝒙, 𝒕)|, when 𝑥 ∈ [−10,20] and  𝑡 ∈ [0,0.5]. 

 

|𝒒(𝒙, 𝒕)| 
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Figure 4: The surfaces of exact solutions 𝝋(𝒙, 𝒕), when 𝑥 ∈ [−10,20] and 𝑡 ∈ [0,0.5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The surfaces of approximate solutions|𝒒(𝒙, 𝒕)| by SAM, when        

 𝑥 ∈ [−10,20] and   𝑡 ∈ [0,0.5]. 

𝝋(𝒙, 𝒕) 

|𝒒(𝒙, 𝒕)| 
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Figure 6: The surfaces of approximate solutions𝝋(𝒙, 𝒕), by SAM, when        

 𝑥 ∈ [−10,20] and   𝑡 ∈ [0,0.5]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The surfaces of approximate solutions|𝒒(𝒙, 𝒕)| by VIM, when        

 𝑥 ∈ [−10,20] and   𝑡 ∈ [0,0.5]. 

𝝋(𝒙, 𝒕) 

|𝒒(𝒙, 𝒕)| 
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Figure 8: The surfaces of approximate solutions 𝝋(𝒙, 𝒕), by VIM, when        

 𝑥 ∈ [−10,20] and 𝑡 ∈ [0,0.5]. 

 

6. CONCLUSION 

In this paper the Klein-Gordon Schrödinger (KGS) system was solved numerically by using 

Successive Approximations Method and Variational Iteration Method. We took an example of 

(KGS) equation to find the comparison between our solutions and the exact solution, and we 

showed that both methods are very accurate and effective in solving (KGS) equation. However, it 

is clear form Table1 and Fingure1 that the obtained solutions for 𝒒(𝒙, 𝒕) by both methods are 

equivalent. While, Table2 and Figure2 showed that the obtained solutions for 𝝋(𝒙, 𝒕) by VIM is 

more accurate than SAM. 
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