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Abstract. In this paper we introduce the concept of fuzzy upper and fuzzy lower (α,β ,θ ,∂ , `)-continuous multi-

functions. Also, we investigate some properties of them and their decomposition. Later, in order to unify several

characterizations of some kind of fuzzy continuity, we introduced and studied generalized form of fuzzy contin-

uous multifunctions namely fuzzy upper and fuzzy lower κκ ′-continuous multifunctions. These multifunctions

enable us to reduce many generalized forms of continuity to a single theoretical unified framework.
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1. INTRODUCTION AND PRELIMINARIES

The theory of fuzzy sets provides a framework for mathematical modeling of those real world

situations, which involve an element of uncertainty, imprecision, or vagueness in their descrip-

tion. Since its inception thirty years ago by Zadeh [21], this theory has found wide applications

in information sciences, engineering, medicine, economics, etc.; for details the reader is re-

ferred to [11, 22]. A fuzzy multifunction is a fuzzy set valued function [4, 12, 18, 19]. Fuzzy
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multifunctions arise in many applications, for instance, the budget multifunction occurs in arti-

ficial intelligence, economic theory and decision theory. The biggest difference between fuzzy

multifunctions and fuzzy functions has to do with the definition of an inverse image. For a

fuzzy multifunction there are two types of inverses. These two definitions of the inverse then

leads to two definitions of continuity, for more details the reader is referred to [1-3, 7-8, 15-

17]. In this paper, we introduce the concept of fuzzy upper (lower) (α,β ,θ ,∂ , `)-continuous

multifunctions and prove that if α,β are fuzzy operators on the fuzzy topological space (X ,τ)

in Šostak sense [14] and θ ,θ ∗,∂ are fuzzy operators on the fuzzy topological space (Y,η) in

Šostak sense and ` is a proper fuzzy ideal on X [13], then a fuzzy multifunction F : X ( Y

is fuzzy upper (resp. lower) (α,β ,θ u θ ∗,∂ , `)-continuous multifunction iff it is both fuzzy

upper (resp. lower) (α,β ,θ ,∂ , `)-continuous and fuzzy upper (resp. lower) (α,β ,θ ∗,∂ , `)-

continuous multifunctions. Also, we introduce new generalized notions that cover many of the

generalized forms of fuzzy upper (resp. lower) semi-continuous multifunctions.

Throughout this paper, X refers to an initial universe. The family of all fuzzy sets in X is

denoted by IX and for λ ∈ IX , λ c(x) = 1−λ (x) for all x ∈ X (where I = [0,1] and I◦ = (0,1]).

For t ∈ I, t(x) = t for all x ∈ X . All other notations are standard notations of fuzzy set theory.

Also, let us define the fuzzy difference between two fuzzy sets λ ,µ ∈ IX as follows:

λ ∧ µ =

 0, if λ ≤ µ,

λ ∧µc, otherwise.

An applications α , β , idX : IX × I◦→ IX are fuzzy operators on X and θ , ∂ , idY : IY × I◦→ IY

are fuzzy operators on Y . Recall that a fuzzy idea ` on X [13], is a map ` : IX −→ I that satisfies

the following conditions:

(i) ∀ λ ,µ ∈ IX and λ ≤ µ ⇒ `(µ)≤ `(λ ).

(ii) ∀ λ ,µ ∈ IX ⇒ `(λ ∨µ)≥ `(λ )∧ `(µ).

Also, ` is called proper if `(1) = 0 and there exists µ ∈ IX such that `(µ)> 0. The simplest

fuzzy ideal `0 on X defined as follows:

`0(λ ) =

 1, if λ = 0,

0, otherwise.
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Let (X ,τ) be a fuzzy topological space in Šostak sense [14]. The closure and the interior of

any fuzzy set λ ∈ IX denoted by Cτ(λ ,r) and Iτ(λ ,r). Any fuzzy set λ ∈ IX is called r-fuzzy

preclosed [10] iff Cτ(Iτ(λ ,r),r)≤ λ , where

PCτ(λ ,r) =
∧
{µ ∈ IX : λ ≤ µ, µ is r-fuzzy preclosed} [10].

A mapping F : X ( Y is called a fuzzy multifunction [5] iff F(x) ∈ IY for each x ∈ X . The

degree of membership of y in F(x) is denoted by F(x)(y) = GF(x,y) for any (x,y) ∈ X ×Y .

Also, F is a Crisp iff GF(x,y) = 1 for each x ∈ X , y ∈Y and F is Normalized iff for each x ∈ X ,

there exists y0 ∈Y such that GF(x,y0) = 1. The image F(λ ) of λ ∈ IX , the lower inverse F l(µ)

and the upper inverse Fu(µ) of µ ∈ IY are defined as follows: F(λ )(y) =
∨

x∈X [GF(x,y)∧λ (x)],

F l(µ)(x) =
∨

y∈Y [GF(x,y)∧ µ(y)] and Fu(µ)(x) =
∧

y∈Y [G
c
F(x,y)∨ µ(y)]. All definitions and

properties of image, upper and lower are found in [1].

2. ON FUZZY UPPER AND LOWER (α,β ,θ ,∂ , `)-CONTINUOUS MULTIFUNCTIONS

Definition 2.1. Let F : (X ,τ) ( (Y,η) be a fuzzy multifunction (resp. normalized fuzzy

multifunction). Then F is said to be fuzzy lower (α,β ,θ ,∂ , `)-continuous (resp. fuzzy upper

(α,β ,θ ,∂ , `)-continuous) iff for every µ ∈ IY and r∈ Io, `[α(F l(∂ (µ,r)),r)∧ β (F l(θ(µ,r)),r)]

≥ η(µ) (resp. `[α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ(µ,r)),r)] ≥ η(µ).)

We can see that the above definition generalizes the concept of fuzzy upper (resp. lower)

semi-continuous multifunction [1], when we choose, α = identity operator, β = interior operator,

θ = identity operator, ∂ = identity operator and `= `0.

Let us give a historical justification of the above definition:

1. In 2015, Abbas [2] defined the concept of fuzzy lower almost continuous (resp. fuzzy up-

per almost continuous) multifunction: ∀ µ ∈ IY with η(µ)≥ r, F l(µ)≤ Iτ(F l(Iη(Cη(µ,r),r)),r)

(resp. Fu(µ)≤ Iτ(Fu(Iη(Cη(µ,r),r)),r)). Here α = identity operator, β = interior operator, θ

= interior closure operator, ∂ = identity operator and `= `0.

2. In 2015, Abbas [2] defined the concept of fuzzy lower weakly continuous (resp. fuzzy

upper weakly continuous) multifunction: ∀ µ ∈ IY with η(µ)≥ r, F l(µ)≤ Iτ(F l(Cη(µ,r)),r)
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(resp. Fu(µ) ≤ Iτ(Fu(Cη(µ,r)),r)). Here α = identity operator, β = interior operator, θ =

closure operator, ∂ = identity operator and `= `0.

3. In 2015, Abbas [2] defined the concept of fuzzy lower almost weakly continuous (resp.

fuzzy upper almost weakly continuous) multifunction: ∀ µ ∈ IY with η(µ) ≥ r, F l(µ) ≤

Iτ(Cτ(F l(Cη(µ,r)),r),r) (resp. Fu(µ) ≤ Iτ(Cτ(Fu(Cη(µ,r)),r),r)). Here α = identity opera-

tor, β = interior closure operator, θ = closure operator, ∂ = identity operator and `= `0.

4. In 2014, Hebeshi [6] defined the concept of fuzzy lower precontinuous (resp. fuzzy upper

precontinuous) multifunction: ∀ µ ∈ IY with η(µ) ≥ r, F l(µ) ≤ Iτ(Cτ(F l(µ),r),r) (resp.

Fu(µ) ≤ Iτ(Cτ(Fu(µ),r),r)). Here α = identity operator, β = interior closure operator, θ =

identity operator, ∂ = identity operator and `= `0.

5. In 2014, Hebeshi [6] defined the concept of fuzzy lower strongly precontinuous (resp.

fuzzy upper strongly precontinuous) multifunction: F l(µ)≤ Iτ(PCτ(F l(µ),r),r) (resp. Fu(µ)≤

Iτ(PCτ(Fu(µ),r),r)) ∀ µ ∈ IY with η(µ) ≥ r. Here α = identity operator, β = interior pre-

closure operator, θ = identity operator, ∂ = identity operator and `= `0.

6. In 2015, Hebeshi [7] defined the concept of fuzzy lower strongly semi-continuous (resp.

fuzzy upper strongly semi-continuous) multifunction: ∀ µ ∈ IY with η(µ) ≥ r, F l(µ) ≤

Iτ(Cτ(Iτ(F l(µ), r),r),r) (resp. Fu(µ)≤ Iτ(Cτ(Iτ(Fu(µ),r),r),r)). Here α = identity operator,

β = interior closure interior operator, θ = identity operator, ∂ = identity operator and `= `0.

7. In 2015, Hebeshi [7] defined the concept of fuzzy lower almost strongly semi-continuous

(resp. fuzzy upper almost strongly semi-continuous) multifunction: ∀ µ ∈ IY with µ =

Iη(Cη(µ,r),r), F l(µ) ≤ Iτ(Cτ(Iτ(F l(µ),r),r),r) (resp. Fu(µ) ≤ Iτ(Cτ(Iτ(Fu(µ),r),r),r)).

Here α = identity operator, β = interior closure interior operator, θ = identity operator, ∂ =

identity operator and `= `0.

8. In 2015, Hebeshi [7] defined the concept fuzzy lower weakly strongly semi-continuous

(resp. fuzzy upper weakly strongly semi-continuous) multifunction: ∀ µ ∈ IY with η(µ)≥ r,

F l(µ)≤ Iτ(Cτ(Iτ(F l(Cη(µ,r)),r),r),r) (resp. Fu(µ)≤ Iτ(Cτ(Iτ(Fu(Cη(µ,r)),r),r),r)). Here

α = identity operator, β = interior closure interior operator, θ = closure operator, ∂ = identity

operator and `= `0.



FUZZY (α,β ,θ ,∂ , `)-CONTINUOUS MULTIFUNCTIONS 3953

9. In 2015, Abbas [3] defined the concept of fuzzy lower semi-precontinuous (resp. fuzzy upper

semi-precontinuous) multifunction: ∀ µ ∈ IY with η(µ)≥ r, F l(µ)≤Cτ(Iτ(Cτ(F l(µ),r),r),r)

(resp. Fu(µ)≤Cτ(Iτ(Cτ(Fu(µ),r),r),r)). Here α = identity operator, β = closure interior clo-

sure operator, θ = identity operator, ∂ = identity operator and `= `0.

10. In 2016, Hebeshi [8] defined the concept of fuzzy lower almost semi-precontinuous (resp.

fuzzy upper almost semi-precontinuous): F l(µ) ≤ Cτ(Iτ(Cτ(F l(µ),r),r),r) (resp. Fu(µ) ≤

Cτ(Iτ(Cτ(Fu(µ),r),r),r)) ∀ µ ∈ IY with µ = Iη(Cη(µ,r),r). Here α = identity operator, β =

closure interior closure operator, θ = identity operator, ∂ = identity operator and `= `0.

11. In 2016, Hebeshi [8] defined the concept of fuzzy lower weakly semi-precontinuous (resp.

fuzzy upper weakly semi-precontinuous): F l(µ)≤Cτ(Iτ(Cτ(F l(Cη(µ,r)),r),r),r) (resp. Fu(µ)

≤Cτ(Iτ(Cτ(Fu(Cη(µ,r)),r),r),r)) ∀ µ ∈ IY with η(µ)≥ r. Here α = identity operator, β

= closure interior closure operator, θ = closure operator, ∂ = identity operator and `= `0.

Definition 2.2. Let F : (X ,τ) ( (Y,η) be a fuzzy multifunction (resp. normalized fuzzy

multifunction). Then F is called fuzzy lower k-continuous (resp. fuzzy upper k-continuous) iff

τ(F l(µ))≥ η(µ) (resp. τ(Fu(µ))≥ η(µ)) for each µ ∈ IY satisfies property k.

Let θk : IY × I◦→ IY be an operator on (Y,η) defined as follows:

θk(µ,r) =

 µ, if µ satisfies property k with η(µ)≥ r,

1, otherwise
and r ∈ I◦.

Theorem 2.3 (1) Let F : (X ,τ) ( (Y,η) be a fuzzy multifunction. Then F is fuzzy lower

k-continuous iff it is fuzzy lower (id, Iτ ,θk, id, `0)-continuous.

(2) Let F : (X ,τ) ( (Y,η) be a normalized fuzzy multifunction. Then F is fuzzy upper

k-continuous iff it is fuzzy upper (id, Iτ ,θk, id, `0)-continuous.

Proof. (1) (⇒) Suppose that F is fuzzy lower k-continuous and µ ∈ IY .

Case 1. If µ satisfies property k with η(µ) ≥ r, θk(µ,r) = µ and τ(F l(µ)) ≥ r. Thus, we

obtain F l(µ)≤ Iτ(F l(µ),r) = Iτ(F l(θk(µ,r)),r). Then F l(µ) ∧ Iτ(F l(θk(µ,r)),r) = 0.

Hence `0[F l(µ) ∧ Iτ(F l(θk(µ,r)),r)]≥ η(µ).

Case 2. If µ does not satisfies property k, θk(µ,r)= 1. Thus, we obtain F l(µ)≤ Iτ(F l(1),r)=

Iτ(F l(θk(µ,r)),r). Then F l(µ) ∧ Iτ(F l(θk(µ,r)),r) = 0 and hence

`0[F l(µ) ∧ Iτ(F l(θk(µ,r)),r)]≥ η(µ).
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Then F is fuzzy lower (id, Iτ ,θk, id, `0)-continuous.

(⇐) Suppose there exists µ ∈ IY such that τ(F l(µ)) � η(µ). There exists r ∈ I◦ such that

τ(F l(µ))< r <η(µ). Since `0[F l(µ)∧ Iτ(F l(θk(µ,r)),r)]≥η(µ). Thus, F l(µ)∧ Iτ(F l(θk(µ,r)),r)=

0 and F l(µ) ≤ Iτ(F l(θk(µ,r)),r) for each µ ∈ IY . If µ satisfies property k with η(µ) ≥ r,

θk(µ,r) = µ and hence F l(µ) ≤ Iτ(F l(µ),r). Thus τ(F l(µ)) ≥ r, it is a contradiction. Then

τ(F l(µ))≥ η(µ) and hence F is fuzzy lower k-continuous.

(2) Similar to the proof in (1).

Definition 2.4 If α and β are operators on (X ,τ), the intersection operator α u β is defined

as follows: (α uβ )(λ ,r) = α(λ ,r)∧β (λ ,r), ∀ λ ∈ IX . The operators α and β are said to be

mutually dual if α uβ is the identity operator.

Theorem 2.5 Let F : (X ,τ) ( (Y,η) be a normalized fuzzy multifunction and ` be a fuzzy

ideal on X . Let α , β be operators on (X ,τ) and θ , θ ∗ and ∂ be operators on (Y,η). Then F is

fuzzy upper (α,β ,θ u θ ∗,∂ , `)-continuous iff it is both fuzzy upper (α,β ,θ ,∂ , `)-continuous

and fuzzy upper (α,β ,θ ∗,∂ , `)-continuous.

Proof. If F is both fuzzy upper (α,β ,θ ,∂ , `)-continuous and fuzzy upper (α,β ,θ ∗,∂ , `)-

continuous then for each µ ∈ IY , `[α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ(µ,r)),r)]≥ η(µ) and

`[α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ ∗(µ,r)),r)]≥ η(µ).

Thus, we obtain

`[[α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ(µ,r)),r)]∨ [α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ ∗(µ,r)),r)]]≥ η(µ).

But

α(Fu(∂ (µ,r)),r) ∧ β (Fu((θ uθ
∗)(µ,r)),r)

= α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ(µ,r)∧θ
∗(µ,r)),r)

= α(Fu(∂ (µ,r)),r) ∧ [β (Fu(θ(µ,r)),r)∧β (Fu(θ ∗(µ,r)),r)]

= [α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ(µ,r)),r)]∨ [α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ ∗(µ,r)),r)].

Thus, `[α(Fu(∂ (µ,r)),r) ∧ β (Fu((θ u θ ∗)(µ,r)),r)] ≥ η(µ). Then F is fuzzy upper (α,β ,

θ uθ ∗,∂ , `)-continuous.
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Conversely; if F is fuzzy upper (α,β ,θ uθ ∗,∂ , `)-continuous and µ ∈ IY , then

`[α(Fu(∂ (µ,r)),r) ∧ β (Fu((θ uθ
∗)(µ,r)),r)]≥ η(µ).

Now, by the above equalities, we get that

`[[α(Fu(∂ (µ,r)),r)∧β (Fu(θ(µ,r)),r)]∨ [α(Fu(∂ (µ,r)),r)∧β (Fu(θ ∗(µ,r)),r)]]≥ η(µ).

Then `[α(Fu(∂ (µ,r)),r) ∧ β (Fu(θ(µ,r)),r)]≥ η(µ) and `[α(Fu(∂ (µ,r)),r) ∧

β (Fu(θ ∗(µ,r)),r)] ≥ η(µ). Hence F is both fuzzy upper (α,β ,θ ,∂ , `)-continuous and

fuzzy upper (α,β ,θ ∗,∂ , `)-continuous.

Theorem 2.6 Let F : (X ,τ)( (Y,η) be a fuzzy multifunction and ` be a fuzzy ideal on X . Let

α , β be operators on (X ,τ) and θ , θ ∗ and ∂ be operators on (Y,η). Then F is fuzzy lower

(α,β ,θ u θ ∗,∂ , `)-continuous if it is both fuzzy lower (α,β ,θ ,∂ , `)-continuous and fuzzy

lower (α,β ,θ ∗,∂ , `)-continuous.

Definition 2.7 Let α and β be operators on (X ,τ). Then α v β iff α(λ ,r)≤ β (λ ,r), ∀ λ ∈ IX .

Theorem 2.8 (1) Let F : (X ,τ)( (Y,η) be a fuzzy multifunction and ` be a fuzzy ideal on X .

Let α , β be operators on (X ,τ) and θ , θ ∗ and ∂ be operators on (Y,η) with θ v θ ∗. If F is

fuzzy lower (α,β ,θ ,∂ , `)-continuous then it is fuzzy lower (α,β ,θ ∗,∂ , `)-continuous.

(2) Let F : (X ,τ)( (Y,η) be a normalized fuzzy multifunction and ` be a fuzzy ideal on X .

Let α , β be operators on (X ,τ) and θ , θ ∗ and ∂ be operators on (Y,η) with θ v θ ∗. If F is

fuzzy upper (α,β ,θ ,∂ , `)-continuous then it is fuzzy upper (α,β ,θ ∗,∂ , `)-continuous.

Proof. (1) If F is fuzzy lower (α,β ,θ ,∂ , `)-continuous. Thus,

`[α(F l(∂ (µ,r)),r) ∧ β (F l(θ(µ,r)),r)]≥ η(µ).

Now we know that θ v θ ∗, then for every µ ∈ IY , β (F l(θ(µ,r)),r) ≤ β (F l(θ ∗(µ,r)),r).

Therefore

α(F l(∂ (µ,r)),r) ∧ β (F l(θ ∗(µ,r)),r)≤ α(F l(∂ (µ,r)),r) ∧ β (F l(θ(µ,r)),r).

Thus, `[α(F l(∂ (µ,r)),r)∧β (F l(θ ∗(µ,r)),r)]≥ `[α(F l(∂ (µ,r)),r)∧β (F l(θ(µ,r)),r)]≥η(µ).

Then F is fuzzy lower (α,β ,θ ∗,∂ , `)-continuous.

(2) Similar to the proof in (1).
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Definition 2.9 An operator β on (X ,τ) induces another operator Iτ(β ) defined as follows:

Iτ(β )(λ ,r) = Iτ(β (λ ,r),r), ∀ λ ∈ IX . Observe that Iτ(β ,r)v β .

Theorem 2.10 Let α and β be operators on (X ,τ), θ and ∂ be operators on (Y,η) and ` a proper

ideal on X . If F : (X ,τ)( (Y,η) is fuzzy upper (resp. lower) (α,β ,θ ,∂ , `)-continuous multi-

function and β [Fu(µ),r] ≤ β [Fu(Iη(µ,r)),r] (resp. β [F l(µ),r] ≤ β [F l(Iη(µ,r)),r]) ∀ µ ∈ IY

and r ∈ I◦. Then F is fuzzy upper (resp. lower) (α,β , Iη(θ),∂ , `)-continuous multifunction.

Proof. If F is fuzzy upper (α,β ,θ ,∂ , `)-continuous. Thus,

`[α(Fu(∂ (µ,r)),r) ∧β (Fu(θ(µ,r)),r)]≥ η(µ).

Since β [Fu(θ(µ,r)),r]≤ β [Fu(Iη(θ(µ,r),r)),r],

α(Fu(∂ (µ,r)),r)∧β (Fu(Iη(θ(µ,r),r)),r)≤ α(Fu(∂ (µ,r))r)∧β (Fu(θ(µ,r)),r).

Hence, `[α(Fu(∂ (µ,r)),r) ∧ β (Fu(Iη(θ(µ,r),r)),r)] ≥ `[α(Fu(∂ (µ,r)),r) ∧

β (Fu(θ(µ,r)),r)]≥ η(µ). Then F is fuzzy upper (α,β , Iη(θ),∂ , `)-continuous.

Definition 2.11 Let (X ,τ) be a fts, λ ∈ IX and r ∈ I◦. Then λ is called r-fuzzy θ -compact iff

for every family {µi ∈ IX | τ(µi) ≥ r}i∈Γ such that λ ≤
∨

i∈Γ µi, there exists a finite subset Γ◦

of Γ such that λ ≤
∨

i∈Γ◦ θ(µi,r).

Definition 2.12 ([1]) Let F : X ( Y be a fuzzy multifunction between two fts,s (X ,τ), (Y,η)

and r ∈ I◦. Then F is called compact-valued iff F(xt) is r-fuzzy compact for each xt ∈ dom(F).

Theorem 2.13 Let F : X ( Y be a crisp fuzzy upper (α, Iτ ,θ ,∂ , `0)-continuous and compact-

valued between two fts,s (X ,τ), (Y,η) and λ ≤ α(λ ,r), µ ≤ ∂ (µ,r) ∀ λ ∈ IX , µ ∈ IY . Then

F(λ ) is r-fuzzy θ -compact if λ is r-fuzzy compact.

Proof. Let {µi ∈ IY | η(µi)≥ r}i∈Γ with F(λ )≤
∨

i∈Γ µi. Since λ =
∨

xt∈λ xt , we have

F(λ ) = F(
∨

xt∈λ

xt) =
∨

xt∈λ

F(xt)≤
∨
i∈Γ

µi.

It follows that for each xt ∈ λ , F(xt) ≤
∨

i∈Γ µi. Since F is compact-valued, then there exists

finite subset Γxt of Γ such that F(xt)≤
∨

n∈Γxt
µn = µxt . Thus, we have xt ≤Fu(F(xt))≤Fu(µxt )

and λ =
∨

xt∈λ xt ≤
∨

xt∈λ Fu(µxt ). Since F is fuzzy upper (α, Iτ ,θ ,∂ , `0)-continuous,

Fu(µ)≤ α(Fu(∂ (µ,r)),r)≤ Iτ(Fu(θ(µ,r)),r)≤ Fu(θ(µ,r)).
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Then λ ≤
∨

xt∈λ Iτ(Fu(θ(µxt ,r)),r). Since λ is r-fuzzy compact (see [9]), there exists finite

index set N of Γxt such that λ ≤
∨

n∈N Iτ(Fu(θ(µx(tn),r)),r)≤
∨

n∈N Fu(θ(µx(tn),r)).

It follows that, F(λ )≤F(
∨

n∈N Fu(θ(µx(tn),r)))=
∨

n∈N F(Fu(θ(µx(tn),r)))≤
∨

n∈N θ(µx(tn),r).

Then F(λ ) is r-fuzzy θ -compact.

Corollary 2.14 (1) Let F : X (Y be a crisp fuzzy upper semi-continuous and compact-valued

between two fts,s (X ,τ), (Y,η). Then F(λ ) is r-fuzzy compact if λ ∈ IX is r-fuzzy compact.

(2) Let F : X ( Y be a crisp fuzzy upper almost continuous and compact-valued between

two fts,s (X ,τ), (Y,η). Then F(λ ) is r-fuzzy nearly compact if λ ∈ IX is r-fuzzy compact.

(3) Let F : X ( Y be a crisp fuzzy upper weakly continuous and compact-valued between

two fts,s (X ,τ), (Y,η). Then F(λ ) is r-fuzzy almost compact if λ ∈ IX is r-fuzzy compact.

Proof. (1) Let α = identity operator, β = interior operator, θ = identity operator, ∂ = identity

operator, `= `0. Then the result follows from Theorem 2.13.

(2) Let α = identity operator, β = interior operator, θ = interior closure operator, ∂ = identity

operator and `= `0. Then the result follows from Theorem 2.13.

(3) Let α = identity operator, β = interior operator, θ = closure operator, ∂ = identity operator

and `= `0. Then the result follows from Theorem 2.13.

3. A UNIFIED THEORY OF GENERALIZED FORMS OF FUZZY CONTINUOUS MULTI-

FUNCTIONS

In order to unify several characterizations of some kind of forms of fuzzy continuity, we in-

troduced and study generalized form of fuzzy continuous multifunctions namely fuzzy upper

(lower) κκ ′-continuous multifunctions. These multifunctions enable us to reduce many gener-

alized forms of continuity to a single theoretical unified framework. Let X , Y be nonempty sets

and κ : IX → I, κ ′ : IY → I be any maps on X and Y , respectively.

Definition 3.1 Let F : X ( Y be a fuzzy multifunction (resp. normalized fuzzy multifunc-

tion). Then F is said to be fuzzy lower κκ ′-continuous (resp. fuzzy upper κκ ′-continuous) iff

κ(F l(µ))≥ κ ′(µ) (resp. κ(Fu(µ))≥ κ ′(µ)) for each µ ∈ IY .

Remark 3.2 1. Observe that if in Definition 3.1, κ and κ ′ are fuzzy topology on X and Y ,

respectively, we just obtain the notion of fuzzy lower semi-continuous (resp. fuzzy upper semi-

continuous) multifunction introduced in [1].
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2. The concept of fuzzy r-minimal structure was introduced by Yoo et al. [20] which is an

extension of fuzzy topology introduced by Šostak [14], as a fuzzy mapping M : IX −→ I on

X is said to be fuzzy r-minimal structure if the family Mr = {λ ∈ IX | M(λ ) ≥ r} contains 0

and 1. Now if in Definition 3.1, κ = Mr and κ ′ = M′r are fuzzy r-minimal structures on X and

Y , respectively, we just obtain the notion of fuzzy lower MrM′r-continuous (resp. fuzzy upper

MrM′r-continuous) multifunction.

Let θκ : IX × I◦→ IX be an operator on X defined as follows:

θκ(λ ,r) =

 λ , if κ(λ )≥ r,

1, otherwise
and r ∈ I◦.

In the case that κ is a generalized fuzzy topology (or supra fuzzy topology), we obtain other

operators Iκ(λ ,r) and Cκ(λ ,r) of λ , respectively, as follows:

Iκ(λ ,r) =
∨
{µ ∈ IX : µ ≤ λ ,κ(µ)≥ r}.

Cκ(λ ,r) =
∧
{µ ∈ IX : λ ≤ µ,κ(µc)≥ r}.

Similarly, in the case of a fuzzy r-minimal structure Mr on X (see[20]). The fuzzy r-minimal

interior and fuzzy r-minimal closure of λ , denoted by Im(λ ,r) and Cm(λ ,r), respectively, are

defined as Im(λ ,r) =
∨
{µ ∈ IX : µ ≤ λ , µ ∈Mr}; Cm(λ ,r) =

∧
{µ ∈ IX : λ ≤ µ, µc ∈Mr}.

Remark 3.3 Observe that if Mr has the Yoo property (see[20]), then the above operators,

respectively, agree. Also, each fuzzy r-minimal structure with the Yoo property is a generalized

fuzzy topology.

The following results give the relationship between fuzzy lower κκ ′-continuity (resp. fuzzy

upper κκ ′-continuity) and fuzzy lower (α,β ,θ ,∂ , `)-continuity (resp. fuzzy upper (α,β ,θ ,∂ , `)-

continuity). We obtain some interesting properties of fuzzy lower κκ ′-continuous (resp. fuzzy

upper κκ ′-continuous) multifunction.

Theorem 3.4 Let F : X ( Y be a fuzzy multifunction and κ : IX → I, κ ′ : IY → I be any maps

on X and Y , respectively. If κ(1) = 1, then F is fuzzy lower κκ ′-continuous iff F is fuzzy lower

(θκ , id,θκ ′, id, `0)-continuous.

Proof. (⇒) Suppose that F is fuzzy lower κκ ′-continuous and µ ∈ IY .
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Case 1. If κ ′(µ) ≥ r, θκ ′(µ,r) = µ and κ(F l(µ)) ≥ r. Thus, we obtain F l(θκ ′(µ,r)) =

F l(µ) = θκ(F l(µ),r). Then θκ(F l(µ),r) ∧ F l(θκ ′(µ,r)) = 0. Hence

`0[θκ(F l(µ),r) ∧ F l(θκ ′(µ,r))]≥ κ
′(µ).

Case 2. If κ ′(µ) � r, θκ ′(µ,r) = 1. Thus, we obtain F l(θκ ′(µ,r)) = F l(1) ≥ θκ(F l(µ),r).

Then θκ(F l(µ),r) ∧ F l(θκ ′(µ,r)) = 0 and hence `0[θκ(F l(µ),r) ∧ F l(θκ ′(µ,r))]≥ κ ′(µ).

Then F is fuzzy lower (θκ , id,θκ ′, id, `0)-continuous.

(⇐) Suppose there exist µ ∈ IY such that κ(F l(µ)) � κ ′(µ). There exist r ∈ I◦ such that

κ(F l(µ)) < r < κ ′(µ). Since `0[θκ(F l(µ),r) ∧ F l(θκ ′(µ,r))] ≥ κ ′(µ). Thus, we obtain

θκ(F l(µ),r)∧F l(θκ ′(µ,r)) = 0 and θκ(F l(µ),r)≤F l(θκ ′(µ,r)) for each µ ∈ IY . If κ ′(µ)≥ r,

θκ ′(µ,r) = µ and θκ(F l(µ),r) ≤ F l(µ). Thus, we obtain θκ(F l(µ),r) = F l(µ) and hence

κ(F l(µ)) ≥ r, it is a contradiction. Then κ(F l(µ)) ≥ κ ′(µ) and hence F is fuzzy lower κκ ′-

continuous.

Theorem 3.5 Let F : X ( Y be a normalized fuzzy multifunction and κ : IX → I, κ ′ : IY → I

be any maps on X and Y , respectively. If κ(1) = 1, then F is fuzzy upper κκ ′-continuous iff F

is fuzzy upper (θκ , id,θκ ′ , id, `0)-continuous.

In the case that κ is a generalized fuzzy topology, the following result is obtained.

Theorem 3.6 Let F : X ( Y be a fuzzy multifunction, κ be a generalized fuzzy topology on

X and κ ′ : IY → I be any map on Y . Then F is fuzzy lower κκ ′-continuous iff F is fuzzy lower

(id, Iκ ,θκ ′, id, `0)-continuous.

Proof. (⇒) Suppose that F is fuzzy lower κκ ′-continuous and µ ∈ IY .

Case 1. If κ ′(µ)≥ r, θκ ′(µ,r)= µ and κ(F l(µ))≥ r. Thus, we obtain F l(µ)≤ Iκ(F l(µ),r)=

Iκ(F l(θκ ′(µ,r)),r). Then F l(µ) ∧ Iκ(F l(θκ ′(µ,r)),r) = 0. Hence

`0[F l(µ) ∧ Iκ(F l(θκ ′(µ,r)),r)]≥ κ
′(µ).

Case 2. If κ ′(µ)� r, θκ ′(µ,r)= 1. Thus, we obtain F l(µ)≤ Iκ(F l(1),r)= Iκ(F l(θκ ′(µ,r)),r).

Then F l(µ) ∧ Iκ(F l(θκ ′(µ,r)),r) = 0. and hence `0[F l(µ) ∧ Iκ(F l(θκ ′(µ,r)),r)]≥ κ ′(µ).

Then F is fuzzy lower (id, Iκ ,θκ ′, id, `0)-continuous.
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(⇐) Suppose there exist µ ∈ IY such that κ(F l(µ)) � κ ′(µ). There exist r ∈ I◦ such that

κ(F l(µ)) < r < κ ′(µ). Since `0[F l(µ) ∧ Iκ(F l(θκ ′(µ,r)),r)] ≥ κ ′(µ). Thus, we obtain

F l(µ)∧ Iκ(F l(θκ ′(µ,r)),r) = 0 and F l(µ)≤ Iκ(F l(θκ ′(µ,r)),r) for each µ ∈ IY . If κ ′(µ)≥ r,

θκ ′(µ,r) = µ and hence F l(µ) ≤ Iκ(F l(µ),r). Thus κ(F l(µ)) ≥ r, it is a contradiction. Then

κ(F l(µ)) ≥ κ ′(µ) and hence F is fuzzy lower κκ ′-continuous.

Theorem 3.7 Let F : X ( Y be a normalized fuzzy multifunction, κ be a generalized fuzzy

topology on X and κ ′ : IY → I be any map on Y . Then F is fuzzy upper κκ ′-continuous iff F is

fuzzy upper (id, Iκ ,θκ ′ , id, `0)-continuous.

Corollary 3.8 Let F : X (Y be a fuzzy multifunction (resp. normalized fuzzy multifunction),

κ be a generalized fuzzy topology on X and κ ′ : IY → I be any map on Y . If F is fuzzy lower

κκ ′-continuous (resp. fuzzy upper κκ ′-continuous), then F is fuzzy lower (id, Iκ ,θκ ′, id, `)-

continuous (resp. fuzzy upper (id, Iκ ,θκ ′, id, `)-continuous).

Corollary 3.9 Let F : X (Y be a fuzzy multifunction (resp. normalized fuzzy multifunction),

κ be a generalized fuzzy topology on X and κ ′ : IY → I be any map on Y . If F is fuzzy lower

κκ ′-continuous (resp. fuzzy upper κκ ′-continuous), then F is fuzzy lower (id, id,θκ ′, id, `)-

continuous (resp. fuzzy upper (id, id,θκ ′, id, `)-continuous).

4. CONCLUSION

In our theoretical work, we introduce the concept of fuzzy upper (lower) (α,β ,θ ,∂ , `)-

continuous multifunctions and prove that if α,β are fuzzy operators on the fuzzy topological

space (X ,τ) based on the sense of Šostak and θ ,θ ∗,∂ are fuzzy operators on the fuzzy topo-

logical space (Y,η) based on the sense of Šostak and ` is a proper fuzzy ideal on X , then a

fuzzy multifunction F : X (Y is fuzzy upper (resp. lower) (α,β ,θ uθ ∗,∂ , `)-continuous mul-

tifunction iff it is both fuzzy upper (resp. lower) (α,β ,θ ,∂ , `)-continuous and fuzzy upper

(resp. lower) (α,β ,θ ∗,∂ , `)-continuous multifunctions. Also, we introduce new generalized

notions that cover many of the generalized forms of fuzzy upper (resp. lower) semi-continuous

multifunctions.
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