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Abstract. Let P(z) =
n
∑
j=0

c jz j be a polynomial of degree n having all its zeros in |z| ≤ 1, then Dubinin [J. Math.

Sci., 143(2007), 3069-3076.] proved

max
|z|=1
|P′(z)| ≥

{
n
2
+

1
2
|cn|− |c0|
|cn|+ |c0|

}
max
|z|=1
|P(z)|.

In this paper, we shall first obtain an integral inequality for the polar derivative of the above inequality. As an

application of this result, we prove another inequality which is the Lr analogue of an inequality in polar derivative

proved recently by Mir et al. [J. Interdisciplinary Math. 21(2018), 1387-1393].

Keywords: polynomial; polar derivatives; integral mean inequalities.

2010 AMS Subject Classification: 30C10, 30C15.

1. INTRODUCTION

Let Pn be the class of polynomials P(z) =
n
∑
j=0

c jz j of degree n and P′(z) be the derivative of

P(z). It was shown by Turán [15] that if P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then

max
|z|=1
|P′(z)| ≥ n

2
max
|z|=1
|P(z)|.(1.1)
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Inequality (1.1) was refined by Aziz and Dawood [2], who under the same hypothesis proved

that

(1.2) max
|z|=1
|P′(z)| ≥ n

2

{
max
|z|=1
|P(z)|+ min

|z|=1
|P(z)|

}
.

Equalities hold in (1.1) and (1.2) for polynomial P(z) = αzn +β , |α|= |β |.

In the literature, there exist several refinements and generalisations of (1.1) and (1.2), for

example see Shah [13], Malik [8], Mir [10], Govil [7], Dewan et al. [5], Dewan and Mir [4],

Dubinin [6] etc.

Dubinin [6] used the Classical Schwarz Lemma and obtained an interesting refinement of

(1.1) by proving that if P ∈ Pn and P(z) has all it zeros in |z| ≤ 1, then

max
|z|=1
|P′(z)| ≥

{
n
2
+

1
2
|cn|− |c0|
|cn|+ |c0|

}
max
|z|=1
|P(z)|.(1.3)

For P ∈ Pn, the polar derivative [9] of P(z) with respect to a point α , real or complex, is

defined as

DαP(z) = nP(z)+(α− z)P′(z).

Note that DαP(z) is polynomial of degree at most (n−1). It generalizes the ordinary deriva-

tive in the sense that

lim
α→∞

DαP(z)
α

= P
′
(z).

It is of interest to extend ordinary inequalities into polar derivatives because the later versions

are the generalizations of the former.

Shah [13] extended inequality (1.1) to the polar derivative of P(z) and proved the following

result.

Theorem 1.1. If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for every complex number α

with |α| ≥ 1,
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max
|z|=1
|DαP(z)| ≥ n(|α|−1)

2
max
|z|=1
|P(z)|.(1.4)

Equality holds in (1.4) for P(z) =
(

z−1
2

)n

.

Clearly Theorem 1.1 generalizes inequality (1.1) and to obtain (1.1) we simply divide both

sides of (1.4) by |α| and let |α| → ∞.

Recently, Mir et al. [11] extended inequality (1.3) into its polar derivative version by proving:

Theorem 1.2. If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for every real or complex

number α with |α| ≥ 1,

max
|z|=1
|DαP(z)| ≥ |α|−1

2

{
n+
|cn|− |c0|
|cn|+ |c0|

}
max
|z|=1
|P(z)|.(1.5)

Inequality (1.5) is best possible and the extremal polynomial is p(z) = (z−1)n with real α ≥ 1.

We know from analysis ([12], [14]) that if P ∈ Pn, then for each r > 0

lim
r→∞

 1
2π

2π∫
0

∣∣∣P(eiθ )
∣∣∣r dθ


1
r

= max
|z|=1
|P(z)|.(1.6)

2. MAIN RESULTS

In this paper, we extend inequality (1.3) to its integral analogue for the polar derivative of

a polynomial and thereby obtain a generalization of it. Further, as an application of Theorem

2.1, we obtain a more general result which, as special cases, yield interesting generalizations

and refinements of (1.2) and (1.3). First, we prove the following, which is the corresponding Lr

extension of Theorem 1.2.

Theorem 2.1. If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for every complex number α

with |α| ≥ 1 and r > 0,

(2.1)
{∫ 2π

0

∣∣∣DαP(eiθ )
∣∣∣r dθ

} 1
r

≥ (|α|−1)
2

{
n+
|cn|− |c0|
|cn|+ |c0|

}{∫ 2π

0

∣∣∣P(eiθ )
∣∣∣r dθ

} 1
r

.



INTEGRAL MEAN INEQUALITIES 4035

Remark 2.2. Since P(z) has all its zeros in |z| ≤ 1, therefore |cn| ≥ |c0|. Thus, it follows that

Theorem 2.1 strengthens the inequality (1.4). If we divide both sides of inequality (2.1) by |α|

and let |α| → ∞, we get Lr version of inequality (1.3) due to Dubinin [6].

Further, we prove the following theorem as an application of Theorem 2.1.

Theorem 2.3. If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for every complex number α

with |α| ≥ 1 and 0≤ t < 1,


2π∫
0

(∣∣∣DαP(eiθ )
∣∣∣−mnt|α|

)r
dθ


1
r

≥ (|α|−1)
2

{
n+
|cn|− tm−|c0|
|cn|− tm+ |c0|

}

×


2π∫
0

(∣∣∣P(eiθ )
∣∣∣− tm

)r
dθ


1
r

,(2.2)

where m = min
|z|=1
|P(z)|.

Remark 2.4. If we let t = 0 in inequality (2.2) of Theorem 2.3, we get inequality (2.1) of Theo-

rem 2.1.

Taking limit as r→ ∞ on both sides of (2.2) we have the following result concerning polar

derivative recently proved by Mir et al. [11].

Corollary 2.5. If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for every complex number α

with |α| ≥ 1 and 0≤ t < 1,

max
|z|=1
|DαP(z)| ≥ n

2

{
(|α|−1)max

|z|=1
|P(z)|+(|α|+1)tm

}
+
|α|−1

2

(
|cn|− tm−|c0|
|cn|− tm+ |c0|

){
max
|z|=1
|P(z)|− tm

}
.(2.3)

where m = min
|z|=1
|P(z)|.

Equality hold in (2.3) for P(z) = (z−1)n with real α ≥ 1.
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Remark 2.6. Corollary 2.5 reduces to Theorem 1.2 when we put t = 0.

Remark 2.7. Divide both sides of inequality (2.3) of corollary 2.5 by |α| and making |α| → ∞,

we have the following improvement as well as generalization of inequality (1.2) proved by Aziz

and Dawood [2].

Corollary 2.8. If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for 0≤ t < 1,

max
|z|=1
|P′(z)| ≥ n

2

{
max
|z|=1
|P(z)|+ tm

}
+

1
2

(
|cn|− tm−|c0|
|cn|− tm+ |c0|

){
max
|z|=1
|P(z)|− tm

}
.(2.4)

Remark 2.9. Taking limit as t → 1 in inequality (2.4) and using (1.6) we obtain an improved

bound of inequality (1.2).

3. LEMMAS

For the proof of the theorems, we need the following lemmas.

The first lemma is due to Malik [8].

Lemma 3.1. If P ∈ Pn and P(z) 6= 0 in |z|< k, k ≥ 1, then for |z|= 1,

(3.1) k|P′(z)| ≤ |Q′(z)|,

where Q(z) = znP
(

1
z̄

)
.

By applying Lemma 3.1 to Q(z) = znP
(

1
z

)
, we immediately get the following result.

Lemma 3.2. If P ∈ Pn and P(z) has all its zeros in |z| ≤ k, k ≤ 1, then for |z|= 1,

(3.2) |Q′(z)| ≤ k|P′(z)|.

where Q(z) is defined as in Lemma 3.1.

Lemma 3.3. If P ∈ Pn and P(z) has all its zeros in |z| ≤ 1, then for each point z on |z| = 1 at

which P(z) 6= 0,

(3.3) Re
(

zP′(z)
P(z)

)
≥
{

n
2
+

1
2

(
|cn|− |c0|
|cn|+ |c0|

)}
.
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The above Lemma is due to Dubinin [6].

4. PROOF OF THE THEOREMS

Proof of Theorem 2.1. If Q(z) = znP
(

1
z

)
, it can be easily verified that for |z|= 1,

|Q′(z)|= |nP(z)− zP′(z)|.

Since P(z) has all its zeros in |z| ≤ 1, therefore, by Lemma 3.2 for k = 1, we have

|P′(z)| ≥ |Q′(z)|

= |nP(z)− zP′(z)| for |z|= 1.(4.1)

Now for every complex number α with |α| ≥ 1, we have for |z|= 1

|DαP(z)| =
∣∣nP(z)+(α− z)P′(z)

∣∣
≥ |α||P′(z)|−

∣∣nP(z)− zP′(z)
∣∣ ,

which gives with the help of (4.1)

(4.2) |DαP(z)| ≥ (|α|−1)|P′(z)| for |z|= 1.

For any r > 0 and 0≤ θ < 2π , from (4.2) we have∣∣∣DαP(eiθ )
∣∣∣r ≥ (|α|−1)r

∣∣∣P′(eiθ )
∣∣∣r ,

which equivalently gives

(4.3)
{∫ 2π

0

∣∣∣DαP(eiθ )
∣∣∣r dθ

} 1
r

≥ (|α|−1)
{∫ 2π

0

∣∣∣P′(eiθ )
∣∣∣r dθ

} 1
r

.

By Lemma 3.3 , we have for each z on |z|= 1 at which P(z) 6= 0,

Re
(

zP′(z)
P(z)

)
≥
{

n
2
+

1
2

(
|cn|− |c0|
|cn|+ |c0|

)}
,

which implies by using the fact

Re
(

zP′(z)
P(z)

)
≤
∣∣∣∣zP′(z)

P(z)

∣∣∣∣
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that

(4.4) |P′(z)| ≥
{

n
2
+

1
2

∣∣∣∣ |cn|− |c0|
|cn|+ |c0|

∣∣∣∣} |P(z)| for |z|= 1.

Further, it is evident that inequality (4.4) follows trivially for those z on |z| = 1 at which

P(z) = 0 as well.

Also from (4.4), we have for 0≤ θ < 2π and r > 0

(4.5)
{∫ 2π

0

∣∣∣P′(eiθ )
∣∣∣r dθ

} 1
r

≥
{

n
2
+

1
2
|cn|− |c0|
|cn|+ |c0|

}{∫ 2π

0

∣∣∣P(eiθ )
∣∣∣r dθ

} 1
r

.

Combining (4.3) and (4.5), we get

(4.6)
{∫ 2π

0

∣∣∣DαP(eiθ )
∣∣∣r dθ

} 1
r

≥ (|α|−1)
{

n
2
+

1
2
|cn|− |c0|
|cn|+ |c0|

}{∫ 2π

0

∣∣∣P(eiθ )
∣∣∣r dθ

} 1
r

.

This completes the proof of Theorem 2.1. �

Proof of Theorem 2.3. Let P ∈ Pn and P(z) has all its zeros in |z| ≤ 1. If P(z) has a zero on

|z| = 1, then m = min
|z|=1
|P(z)| = 0 and the result follows from Theorem 2.1 in this case. Hence-

forth, we suppose that all the zeros of P(z) lie in |z|< 1 so that m > 0.

Now, as m≤ |P(z)| for |z|= 1, therefore, if λ is any complex number such that |λ |< 1, then

(4.7) |mλ zn|< |P(z)| for |z|= 1.

Since, all the zeros of P(z) lie in |z| < 1, it follows by Rouche’s Theorem that all zeros of

P(z)−λmzn also lie in |z|< 1. Hence, by Theorem 2.1, we have for |α| ≥ 1 and for any r > 0,{∫ 2π

0

∣∣∣DαP(eiθ )−λmnαei(n−1)θ
∣∣∣r dθ

} 1
r

≥ |α|−1
2

{
n+
|cn−λm|− |c0|
|cn−λm|+ |c0|

}

×
{∫ 2π

0

∣∣∣P(eiθ )−λmeinθ

∣∣∣r dθ

} 1
r

.(4.8)

Since, for every λ with |λ |< 1, we have

|cn−λm| ≥ |cn|−m|λ |.
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and because the function

(4.9)
x−|c0|
x+ |c0|

is a non-decreasing function of x, we have

|cn−λm|− |c0|
|cn−λm|+ |c0|

≥ |cn|−m|λ |− |c0|
|cn|−m|λ |+ |c0|

.

Also by triangle inequality, we have for |z|= 1,

|P(z)−λmzn| ≥
∣∣|P(z)|− |λ |m∣∣

= |P(z)|− |λ |m. [by (4.7)].(4.10)

Applying the argument of (4.9) to the second factor and inequality (4.10) to the third factor

of (4.8) respectively, we have{∫ 2π

0

∣∣∣Dα(P(eiθ )−λmnαei(n−1)θ )
∣∣∣r dθ

} 1
r

≥ (|α|−1)
2

{
n+
|cn|− |λ |m−|c0|
|cn|− |λ |m+ |c0|

}

×
{∫ 2π

0

(∣∣∣P(eiθ )
∣∣∣−|λ |m)r

dθ

} 1
r

.(4.11)

It is a simple consequence of Laguerre Theorem [9, p.52] on the polar derivative of polyno-

mial that for every α with |α| ≥ 1, the polynomial

(4.12) Dα(P(z)−λmzn) = DαP(z)−λmnαzn−1

has all its zeros in |z|< 1. This implies that,

(4.13) |DαP(z)| ≥ mn|α||z|n−1 for |z| ≥ 1.

Now choosing the argument of λ suitably on the left hand side of (4.11) such that∣∣DαP(z)−λmnαzn−1∣∣= |DαP(z)|−mn|λ ||α| for |z|= 1,

which is possible by (4.13), we get{∫ 2π

0

(∣∣∣DαP(eiθ )
∣∣∣−mn|λ ||α|

)r
dθ

} 1
r

≥ (|α|−1)
2

{
n+
|cn|− |λ |m−|c0|
|cn|− |λ |m+ |c0|

}

×
{∫ 2π

0

(∣∣∣P(eiθ )
∣∣∣−|λ |m)r

dθ

} 1
r

.(4.14)
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Put |λ |= t in inequality (4.14), we get{∫ 2π

0

(∣∣∣DαP(eiθ )
∣∣∣−mnt|α|

)r
dθ

} 1
r

≥ (|α|−1)
2

{
n+
|cn|− tm−|c0|
|cn|− tm+ |c0|

}

×
{∫ 2π

0

(∣∣∣P(eiθ )
∣∣∣− tm

)r
dθ

} 1
r

,(4.15)

where 0≤ t < 1 and this completes the proof of Theorem 2.3.
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