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Abstract. The fundamental motivation behind this paper is to solve variational inequality for SM-iterative method

under some gentle conditions. We focus on calculating the common results of variational inequality and of SM-

iteration. As application part, convex minimization problem is solved under modified SM-algorithm. Numerical

example is supplied to validate our main result. Our result holds comparison between the SM- and S-algorithms.
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1. INTRODUCTION

Consider C be “closed and convex” non empty subset of “Hilbert space H ” with innerprod-

uct space 〈,〉 and induced norm ‖.‖. Regard T be self mapping over C with projection PC of H

onto the convex set C. Review some definitions over nonlinear operator T : C ⊂H →H is

said to be:

(1) “µ-Lipschitzian if for all a,b ∈ C, there exists a constant µ > 0 such that

‖Ta−Tb‖ ≤ µ‖a−b‖
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(2) non expansive if for all a,b ∈ C, we have

‖Ta−Tb‖ ≤ ‖a−b‖

(3) ([11]) relaxed (ν ,r)-cocoercive if for all a,b ∈ C, there exists constants ν ,r > 0 such

that

〈Ta−Tb,a−b〉 ≥ −ν‖Ta−Tb‖2 + r‖a−b‖2”.

Lemma 1. ([4]) “Let PC : H → C be a projection mapping. Then PC is nonexpansive, that is,

‖PCa−PCb‖ ≤ ‖a−b‖ for all a,b ∈H ”.

In 1964, Stampacchia ([10]) introduced the “variational inequality problem” as given:

finding u ∈H such that 〈Ta,b−a〉 ≥ 0 for all b ∈ C.

The proplem is represented by V I(C,T) and solution set is indicated by Ω(C,T) = {a ∈ C :

〈Ta,b−a〉 ≥ 0,∀ b ∈ C}.

The following lemma gives us the equality connection between “variational inequality” and

“fixed point problem”.

Lemma 2. ([4]) “Consider PC : C→H be a projection mapping. For a given c ∈H ,

a ∈ C satisfies 〈a− c,b−a〉 ≥ 0, for all b ∈ C if and only if a = PC[c].

Moreover,

a ∈Ω(C,T) if and only if u = PC[a−σTa],

where σ > 0 is a constant [7].”

We deal with S as a “nonexpansive mapping” and F(S) represent the solution set of “fixed

point” of mapping S. If a∗ ∈ F(S)∩Ω(C,T), then a∗ ∈ F(S) and a∗ ∈ Ω(C,T). From lemma

(2), We have discovered that

a∗ = Sa∗ = PC[a∗−σTa∗] = SPC[a∗−σTa∗],(1)
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where σ > 0 is a constant ([7]). In 2007, Noor [7] use the fixed formulation techique to solve

the iterative method defined as follows:

a0 ∈ C,

an+1 = (1−β
(1)
n )an +β

(1)
n SPC[bn−σTbn],

bn = (1−β
(2)
n )an +β

(2)
n SPC[cn−σTcn],(2)

cn = (1−β
(3)
n )an +β

(3)
n SPC[an−σTan],

where β
(k)
n are real sequences, for all k = 1,2,3 in [0,1] and S is “nonexpansive operator”

([7]). From algorithm (2), there are several algorithm as special cases for solving “variational

inequality” with “nonexpansive mappings”.

In [7], Noor approximate the algorithm (2) to a point of F(S)∩Ω(C,T), which is common

solution of fixed point set of nonexpansive mapping and “variational inequalities”. Noor [7]

proved the following theorem.

Theorem 3. “Let C be a closed convex subset of a real Hilbert space H . Let T be a relaxed

(ν ,r)-cocoercive and µ-Lipschitzian mapping of C into H , and S be a nonexpansive mapping

of C into C such that F(S)∩Ω(C,T) 6= φ . Let {an} be a sequence defined by algorithm (2), for

any initial point a0 ∈ C, with conditions

0 < σ < 2(r−νµ
2)/µ

2,νµ
2 < r,(3)

β
(k)
n ∈ [0,1] for all k = 1,2,3 and for all n ∈ N and ∑

∞
n=0 β

(1)
n = ∞, then {an} obtained from

algorithm (2) converges strongly to a∗ ∈ F(S)∩Ω(C,T)”.

In 2007, Agarwal [1] gives S-algorithm which is better than “Picard’s iteration” [8] and

“Mann iteration” [6] under contraction mappings. Construction of S-algorithm is independent

of Picard’s and Mann iterations, which is the following:

a0 ∈ C,

sn+1 = (1−α
(1)
n )T(sn)+α

(1)
n T(un),

un = (1−α
(2)
n )sn +α

(2)
n T(sn), for all n ∈ N.
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in which {α(k)
n }, for k = 1,2 are real sequences in [0,1] with T as a self-mapping over C. In

2021, Erturk [3] used the same formulation tehnique for S-algorithm to create a reasonable and

common solution to the “fixed point and variational problems”, which are described as follows:

a0 ∈ C,

sn+1 = (1−α
(1)
n )Ξ(sn)+α

(1)
n Ξ(un),(4)

un = (1−α
(2)
n )sn +α

(2)
n Ξ(sn), for all n ∈ N.

where Ξ : C→ C is an operator illustrated as

“Ξ = SPC[I−σT].”(5)

Here S : C→ C,T : C→H and PC : H → C defined in theorem (3) with the imposed condition

(3), then for all a,b ∈ C, we obtain

‖Ξ(a)−Ξ(b)‖=‖SPC[a−σTa]−SPC[b−σTb]‖

≤‖PC[a−σTa]−PC[b−σTb]‖

≤‖a−σTa− (b−σTb)‖

=‖a−b−σ(Ta−Tb)‖(6)

Now, from the “relaxed (ν ,r)-cocoercive”and “µ-Lipschitzian”definition on T, we get

‖a−b−σ(Ta−Tb)‖2 =‖a−b‖2−2σ〈Ta−Tb,a−b〉+σ
2‖Ta−Tb‖2

≤‖a−b‖2 +2σν‖Ta−Tb‖2−2σr‖a−b‖2 +σ
2‖Ta−Tb‖2

≤[1+2σνµ
2−2σr+σ

2
µ

2]‖a−b‖2 = τ
2‖a−b‖2,(7)

which implies

‖a−b−σ(Ta−Tb)‖ ≤ τ‖a−b‖,(8)

where

τ =
√

1+2σνµ2−2σr+σ2µ2.(9)
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Substituting (8) in (6), we get

‖Ξ(a)−Ξ(b)‖ ≤ τ‖a−b‖.(10)

Condition (3) implies τ < 1 which gives us that Ξ : C→ C is contration. Thus, by “Banach

Contraction Principle”, Ξ has a unique “fixed point” and the assumption F(S)∩Ω(C,T) 6= φ in

theorem (3) is important.

Definition 1.1. ([5]) “Let {a(i)n }∞
n=0 for i = 1,2 be two iterations converging to the same fixed

point a∗. We say that {a(1)n }∞
n=0 converges faster than {a(2)n }∞

n=0 to a∗ if

lim
n→∞

‖a(1)n −a∗‖
(‖a(2)n −a∗‖)

= 0.”

In 2020, Rathee [9] introduced the SM-iteration, defined as follow:

a0 ∈ C

an+1 = S((1−α
(3)
n )Scn +α

(3)
n Sbn)

bn = S((1−α
(4)
n )an +α

(4)
n cn)

cn = San

where {α(3)
n } and {α(4)

n } in [0,1].

The primary goal of this paper is to suggest the modified SM-algorithm for solving V I(C,S,T)

as under

an+1 = S((1−α
(3)
n )Ξcn +α

(3)
n Ξbn)

bn = S((1−α
(4)
n )an +α

(4)
n cn)(11)

cn = Ξan

where Ξ is explained by (6).

We prove that iteration (11) strongly converges to the solution of V I(C,S,T) and compare the

convergence of algorithm (11) with algorithm (4). Also we depict a numerical example to

support our result. On the other hand, an altered version of algorithm (11) is presented for

solving “convex minimization problems” with the support of numerical example.

The accompanying lemmas will be expected to understand our results:
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Lemma 4. [2] “Let {ϒ(i)
n }∞

n=0 for i= 1,2 be a non-negative sequences of real numbers satisfying

ϒ
(1)
n+1 ≤ λϒ

(1)
n +ϒ

(2)
n for all n ∈ N,

where λ ∈ [0,1) and limn→∞ ϒ
(2)
n = 0. Then, limn→∞ ϒ

(1)
n = 0.”

2. MAIN RESULTS

Theorem 5. Assume H ,C,S and T be defined in theorem (3) and Ξ in (5) with imposed condi-

tion in (9) gratified. Consider {an} be an iteration given by algorithm (11) with the sequences

{α(3)
n } and {α(4)

n } in [0,1], then {an} strongly convergent to a∗ ∈ F(S)∩Ω(C,S,T) with the

appropriate condition:

‖an+1−a∗‖ ≤ τ
n+1‖a0−a∗‖ for all n ∈ N,

in which τ is expressed in (9).

Proof. The contractivness condition of operator Ξ gives the existence of solution a∗ ∈ F(S)∩

Ω(C,S,T) of V I(C,S,T) which is unique in number. As we have

a∗ = S((1−α
(3)
n )Ξa∗+α

(3)
n Ξa∗) = S((1−α

(4)
n )a∗+α

(4)
n a∗) = Ξa∗.(12)

We pursue from (10), (11) and (12), that

‖an+1−a∗‖=(1−α
(3)
n )τ‖cn−a∗‖+α

(3)
n τ‖bn−a∗‖

≤(1−α
(3)
n )τ2‖an−a∗‖+α

(3)
n τ{(1−α

(4)
n )‖an−a∗‖+α

(4)
n τ‖an−a∗‖}

=[(1−α
(3)
n )τ2 +α

(3)
n τ(1−α

(4)
n (1− τ))]‖an−a∗‖

=τ[(1−α
(3)
n )τ +α

(3)
n (1−α

(4)
n (1− τ))]‖an−a∗‖

≤· · ·

=τ
n+1

n

∏
i=0

[(1−α
(3)
i )τ +α

(3)
i (1−α

(4)
i (1− τ))]‖a0−a∗‖

=τ
n+1

n

∏
i=0

[τ +α
(3)
i (1− τ)−α

(3)
i α

(4)
i (1− τ)]‖a0−a∗‖(13)
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where τ is defined by (9).

Since {α(3)
n },{α(4)

n } ⊂ [0,1] and τ < 1, then τ +α
(3)
i (1− τ)−α

(3)
i α

(4)
i (1− τ) < 1 for every

i = 0,1,2, ...n.. As a consequence of this, (13) gives

‖an+1−a∗‖ ≤ τn+1‖a0−a∗‖ for all n ∈ N.(14)

By taking limit on both side in (14), there is a limn→∞‖an+1−a∗‖= 0 which gives us an→ a∗

as n→ ∞. �

Theorem 6. Assume H ,C,S,T and Ξ are defined in theorem (5) and τ expressed in equation

(9). Consider {sn}∞
n=0 with {an}∞

n=0 be two iterations explained in equations (4) and (11),

jointly, where {α(k)
n }∞

n=0 ⊂ [0,1] for all k = 1,2,3,4. Assume that the facts in (3) holds. Then

the respective assertions hold:

(i) If

{
max{k=1,2,3,4}{1−α

(k)
n (1− τ)}

a(1)n

}∞

n=0

is “bounded” with ∑
∞
n=0 α

(1)
n = ∞, then {an− sn}∞

n=0 strongly convergent to point 0 with

the accompanying calculation:

‖an+1− sn+1‖ ≤ τ‖an− sn‖+(τ2 +3τ) max
{k=1,2,3,4}

{1−α
(k)
n (1− τ)}‖an−a∗‖,

for all n ∈ N and {an}∞
n=0 strongly convergent to a∗ ∈ F(S)∩Ω(C,S,T).

(ii) If {sn}∞
n=0 sequence converges to a∗ ∈ F(S)∩Ω(C,S,T), then the sequence {sn− an}∞

n=0

strongly convergent to point 0 with the successive condition:

‖sn+1−an+1‖ ≤ τ
2‖sn−an‖+(τ2 +3τ) max

{k=1,2,3,4}
{1−α

(k)
n (1− τ)}‖sn−a∗‖

for every n ∈ N and the sequence {sn}∞
n=0 strongly convergent to the point a∗ ∈ F(S)∩

Ω(C,S,T).
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Proof. (i) By above theorem (5), there we have limn→∞‖an−a∗‖= 0. We prove that limn→∞‖an−

sn‖= 0 and limn→∞‖sn−a∗‖= 0. It depict from (4), (10), (11) and (12) that

‖an+1− sn+1‖

=‖an+1−a∗+a∗− sn+1‖

≤‖an+1−a∗‖+‖a∗− sn+1‖

=(1−α
(3)
n )‖Ξcn−Ξa∗‖+α

(3)
n ‖Ξbn−Ξa∗‖+(1−α

1
n )‖Ξa∗−Ξsn‖+α

1
n‖Ξa∗−Ξun‖

+(1−α
(3)
n )τ‖cn−a∗‖+α

(3)
n τ‖bn−a∗‖+(1−α

(1)
n )τ‖a∗− sn‖+α

(1)
n τ‖a∗−un‖

≤(1−α
(3)
n )τ2‖an−a∗‖+α

(3)
n τ{(1−α

(4)
n )‖an−a∗‖+α

(4)
n ‖cn−a∗‖}

+(1−α
(1)
n )τ{‖a∗−an‖+‖an− sn‖}+α

(1)
n τ{(1−α

(2)
n )‖a∗− sn‖+α

(2)
n τ‖a∗− sn‖}

≤(1−α
(1)
n )τ‖an− sn‖+((1−α

(3)
n )τ2

+(1−α
(1)
n )τ)‖an−a∗‖+α

(3)
n τ(1−α

(4)
n (1− τ))‖an−a∗‖

+α
(1)
n τ((1−α

(2)
n (1− τ))‖a∗− sn‖

≤ [(1−α
(1)
n )τ +α

(1)
n τ(1−α

(2)
n (1− τ))]‖an− sn‖

+[(1−α
(3)
n )τ2 +(1−α

(1)
n )τ +α

(3)
n τ(1−α

(4)
n (1− τ))+α

(1)
n τ(1−α

(2)
n (1− τ))]‖an−a∗‖

(15)

Since {α(k)
n } ⊂ [0,1] for all k = 1,2,3,4 and τ < 1, then 1−α

(2)
n (1− τ) < 1,(1−α

(3)
n ) ≤

(1−α
(3)
n (1− τ)) and (1−α

(1)
n )≤ (1−α

(1)
n (1− τ)) for every n ∈ N

Making use of these inequalities in equation (15), we find

‖an+1− sn+1‖ ≤ τ‖an− sn‖+(τ2 +3τ) max
{k=1,2,3,4}

{1−α
(k)
n (1− τ)}‖an−a∗‖(16)

Set

ϒ
(1)
n = ‖an− sn‖ ≥ 0

ν = τ ∈ (0,1)

ϒ
(2)
n = (τ2 +3τ) max

{k=1,2,3,4}
{1−α

(k)
n (1− τ)}‖an−a∗‖ for every n ∈ N.
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Since {max{k=1,2,3,4}{1−α
(k)
n (1− τ)}}∞

n=0 is “bounded”, so is

{(τ2 +3τ)maxk∈{1,2,3,4}{1−α
(k)
n (1− τ)}}∞

n=0 and thus there is a constant R > 0 such that

|(τ2 +3τ) max
k=1,2,3,4

{1−α
(k)
n (1− τ)}|< R ∀ n ∈ N

Let ε > 0 and ζn = ‖an−a∗‖ converges to point 0 and ε

R > 0 thus there exists n0 ∈ N such that

|ζn|< ε

R ∀ n≥ n0. Hence

|(τ2 +3τ) max
k=1,2,3,4

{1−α
(k)
n (1− τ)}|< ε ∀ n≥ n0.

As a result, we have limn→∞ ϒ
(2)
n = 0 fulfils the condition of lemma (4) and we get, limn→∞‖an−

sn‖= 0. As limn→∞‖an−a∗‖= 0 along with

‖sn−a∗‖ ≤ ‖sn−an‖+‖an−a∗‖,

we find that limn→∞‖sn−a∗‖= 0.

(ii) Now, we show that limn→∞‖sn− an‖ = 0 and limn→∞‖sn− a∗‖ = 0. It depicts from (4),

(10), (11) and (12) that

‖sn+1−an+1‖

≤‖sn+1−a∗‖+‖a∗−an+1‖

≤(1−α
(1)
n )τ‖sn−a∗‖+α

(1)
n τ‖un−a∗‖+(1−α

(3)
n )τ‖a∗− cn‖+α

(3)
n τ‖a∗−bn‖

≤(1−α
(1)
n )τ‖sn−a∗‖+α

(1)
n τ{(1−α

(2)
n )‖sn−a∗‖+α

(2)
n τ‖sn−a∗‖}

+(1−α
(3)
n )τ2{‖a∗− sn‖+‖ sn−an‖}+α

(3)
n {(1−α

(4)
n )‖a∗−an‖+α

(4)
n ‖a∗− cn‖}

≤(1−α
(3)
n )τ2‖sn−an‖+[(1−α

(1)
n )τ +α

(1)
n (1−α

(2)
n (1− τ))+(1−α

(3)
n τ

2)]‖sn−a∗‖

+α
(3)
n τ(1−α

(4)
n (1− τ))‖a∗−an‖

≤[(1−α
(3)
n )τ2 +α

(3)
n τ(1−α

(4)
n (1− τ))]‖sn−an‖

+[(1−α
(1)
n )τ +α

(1)
n (1−α

(2)
n (1− τ))+(1−α

(3)
n τ

2 +α
(3)
n τ(1−α

(4)
n (1− τ))]‖sn−a∗‖

(17)

Since {α(k)
n } ⊂ [0,1] for all k = 1,2,3,4 and τ < 1, then 1−α

(2)
n (1− τ) < 1,(1−α

(3)
n ) ≤

(1−α
(3)
n (1− τ)) and (1−α

(1)
n ) ≤ (1−α

(1)
n (1− τ)) for every n ∈ N , making use of these
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inequalities in equation (17), we find

‖sn+1−an+1‖ ≤ τ
2‖sn−an‖+(τ2 +3τ) max

{k=1,2,3,4}
{1−α

(k)
n (1− τ)}‖sn−a∗‖(18)

Set

ϒ
(1)
n = ‖an− sn‖ ≥ 0

ν = τ
2 ∈ (0,1)

ϒ
(2)
n = (τ2 +3τ) max

{k=1,2,3,4}
{1−α

(k)
n (1− τ)}‖sn−a∗‖ ∀ n ∈ N

Since max{k=1,2,3,4}{1−α
(k)
n (1−τ)} is “bounded”, so is (τ2+3τ)max{k=1,2,3,4}{1−α

(k)
n (1−

τ)}, thus there is a constant M > 0 such that

|(τ2 +3τ) max
k=1,2,3,4

{1−α
(k)
n (1− τ)}|< M ∀ n ∈ N

Let ε > 0 and βn = ‖sn− a∗‖ converges to point 0 and ε

M > 0 ∃ m0 ∈ N in such a way that

|βn|< ε

M ∀ n≥ m0. Hence

|(τ2 +3τ) max
k=1,2,3,4

{1−α
(k)
n (1− τ)}|< ε ∀ n≥ m0.

As a result, we have limn→∞ ϒ
(2)
n = 0 fulfils the condition of lemma (4) and we obtain, limn→∞‖sn−

an‖= 0. As limn→∞‖sn−a∗‖= 0 and

‖an−a∗‖ ≤ ‖an− sn‖+‖sn−a∗‖,

we find that limn→∞‖an−a∗‖= 0. �

Theorem 7. Assume H ,C,S,T and Ξ are defined in earlier theorem (5) with τ expressed in

equation (9). Consider {sn}∞
n=0 with {an}∞

n=0 as two iterations, defined by algorithm (4) and

(11), jointly, in which {α(k)
n }∞

n=0 as subset of [0,1] for every k = 1,2,3,4 and {α(1)
n }∞

n=0 with

{α(3)
n }∞

n=0 holds limn→∞ α
(1)
n = 0 and limn→∞ α

(3)
n = 0. If the circumstances defined in (3)

remains the same then {an}∞
n=0 iteration converges faster and easier than {sn}∞

n=0 iteration, to

the point a∗ ∈ F(S)∩Ω(C,S,T) by assuming that a0 = s0.

Proof. From (13), we find

‖an+1−a∗‖= τ
n+1‖a0−a∗‖

n

∏
i=0

[τ +α
(3)
i (1− τ)−α

(3)
i α

(4)
i (1− τ)] for all n ∈ N.(19)



VI FOR SM-ITERATION 4149

Using (4) and (10), we find

‖sn+1−a∗‖ ≥(1−α
(1)
n )τ‖sn−a∗‖−α

(1)
n τ‖un−a∗‖

≥(1−α
(1)
n )τ‖sn−a∗‖−α

(1)
n τ(1−α

(2)
n )‖sn−a∗‖−α

(2)
n τ‖sn−a∗‖

=[(1−α
(1)
n )τ−α

(1)
n τ(1−α

(2)
n (1− τ))]‖sn−a∗‖(20)

As (1−α
(1)
n (1− τ))< 1 for all n ∈ N, (20) becomes

‖sn+1−a∗‖ ≥(1−2α
(1)
n )τ‖sn−a∗‖

≥· · ·

≥‖a0−a∗‖τ
n

∏
i=0

[(1−2α
(1)
n )] for all n ∈ N.(21)

From (19) and (21) with assumption a0 = s0, we obtain

‖an+1−a∗‖
(‖sn+1−a∗‖)

=
(τn+1

∏
n
i=0[τ +α

(3)
i (1− τ)−α

(3)
i α

(4)
i (1− τ)])

τ(∏n
i=0[1−2α

(1)
i ])

=
τn

∏
n
i=0[τ +α

(3)
i (1− τ)−α

(3)
i α

(4)
i (1− τ)]

∏
n
i=0[1−2α

(1)
i ]

for all n ∈ N.

Define

φn =
τn

∏
n
i=0[τ +α

(3)
i (1− τ)−α

(3)
i α

(4)
i (1− τ)]

∏
n
i=0[1−2α

(1)
i ]

∀ n ∈ N

Since α
(4)
n+1 ∈ [0,1] ∀ n ∈ N and τ < 1, then α

(4)
n+1(1− τ) is “bounded” ∀ n ∈ N. Hence by

assumption limn→∞ α
(1)
n = 0 = limn→∞ α

(3)
n = 0, we calculated

lim
n→∞

φn+1

φn
= lim

n→∞

τ[τ +α
(3)
n+1(1− τ)−α

(3)
n+1α

(4)
n+1(1− τ)]

[1−2α
(1)
n+1]

= τ
2 < 1.

By “ratio test”, the series ∑
∞
n=0 φn absolutely converges. Thus

0≤ lim
n→∞

‖an+1−a∗‖
(‖sn+1−a∗‖)

≤ lim
n→∞

φn = 0.

As a result, from definition (1.1), {an}∞
n=0 converges faster and easier than {sn}∞

n=0 to point

a∗ ∈ F(S)∩Ω(C,S,T). �
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Example 2.1. Consider H = ℜ with C = [0,1]. As ℜ is a “Hilbert space” with the induced

norm ‖x‖ = |x| by “inner product” 〈a,b〉 = a.b. Assume T : [0,1]→ ℜ and S be the same as

defined in example 2.4 of [3]. T is 4-Lipschitzian mapping with relaxed ( 1
17 ,1)-cocoercive. We

select σ = 1/157. As all the constants σ ,µ,ν satisfies the condition (3).

If we consider α
(1)
n = α

(3)
n = 1

n+3 ,α
(2)
n = α

(4)
n = 7n+3

8n−3 for every n ∈ N in (4) and (11) for S

and T, then Table (1) along with Figure (1) shows the convergence of iterative algorithm (11)

{an}∞
n=0 for a0 = s0 = 0.01 and compare its convergence with {sn}∞

n=0, where we find that

{an}∞
n=0 converges easily than {sn}∞

n=0 to a∗ = 0 ∈ F(S)∩Ω(C,S,T). α
(1)
n = α

(3)
n = 1

n+3 and

α
(2)
n = α

(4)
n = 7n+3

8n−3 ,σ = 1/157,S = sinx and T(a) = a(3)+a

TABLE 1. Compare the convergence rate of algorithm (4) with (11)

n Algorithm (4) Algorithm (11)

1 0.03 0.03

2 0.007571645 0.009290658

3 0.001908139 0.000625897

4 0.000480656 0.000101706

5 0.000121047 2.10889E-05

6 3.04794E-05 4.93255E-06

8 1.93188E-06 3.27996E-07

9 4.86318E-07 8.98379E-08

11 3.08132E-08 7.26813E-09

13 1.95E-09 6.30612E-10

15 1.23651E-10 5.74197E-11

16 3.11198E-11 1.75683E-11

17 7.83191E-12 5.41656E-12

18 1.97102E-12 1.68128E-12
...

...
...
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FIGURE 1. Plot the value of algorithm (4) with (11) for example (2.1)

3. APPLICATION: “CONVEX MINIMIZATION PROBLEM”

Consider a convex mapping f : C→ℜ where C is “closed and convex subset of Hilbert space

H ”. The problem of “ convex minimization problem” is:

min
a∈C

g(x),(22)

in which g is Frechet differentiable and ∇g is gradient of g. As already known, a∗ is solution of

problem (22) only if the successive “variational inequality” hold:

a∗ ∈ C,〈∇ga∗,a−a∗〉 ≥ 0 for all a ∈ C.

it means, a∗ ∈Ω(C,T).

Equitably, a∗ solves the situation (22) iff a∗=PC(a∗−σ∇g(a∗)). Gradient projection technique

is much fascinating tool for solving (22) and defined as:

an+1 = PC(an−σ∇g(a∗))(23)
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Considering S = I in the iterative algorithm (11) while T is gradient of convex function g, then

the accompanying iteration converges to the existing solution of problem (22):

a0 ∈ C,

an+1 = (1−α
(3)
n )PC(cn−ρ∇gcn)+α

(3)
n PC(bn−ρ∇gbn)

bn = (1−α
(4)
n )an +α

(4)
n cn(24)

cn = PC(an−ρ∇gan) ∀ n ∈ N.

where α
(3)
n and α

(4)
n ⊂ [0,1].

Theorem 8. Presume that the problem (22)can be solved. Consider a convex mapping g : C→

ℜ, having its “gradient relaxed (ν ,r)-cocoercive and ν-Lipschitzian mapping” from C to H

and satisfied condition (3). Let {an} be the iteration defined in equation (24) with α
(3)
n and

α
(4)
n ⊂ [0,1], then {an} converges to a∗ which is also solution of (22) with the accompanying

assumption:

‖an+1−a∗‖ ≤ τ
n+1‖a0−a∗‖ for all n ∈ N,

in which τ expressed by (9).

Proof. By assuming T= ∇g and S = I in the above theorem (5). As I is trivially nonexpansive.

Proceeding according to theorem (5), we obtain that

a∗ ∈ F(S)∩Ω(C,§,T) = Ω(C,T) = {a ∈ C : 〈Ta,b−a〉 ≥ 0,∀b ∈ C} which gives us that point

a∗ is the result of problem (22). �

Example 3.1. Consider H ,g,∇g( f ) = 3 f from the example 2.6 of [3]. For this situation it is

not difficult to see that the problem (24) converges to 0 for any {α(3)
n }∞

n=0,{α
(4)
n }∞

n=0 ⊂ [0,1].

Take α
(3)
n = α

(4)
n = 1/(n+3) and σ = 1/6, then we have

an+1 =

(
1− 1

n+3

)
PC
(cn

2

)
+α

(3)
n PC

(
bn

2

)
bn =

(
1− 1

n+3

)
an +

1
n+3

cn

cn = PC
(an

2

)
(25)



VI FOR SM-ITERATION 4153

where

PC(x) =
x
2

for all x ∈ C.

FIGURE 2. Convergence behaviour of ‖an+1−0‖2 for initial guess a0(a) = a

TABLE 2. Convergence behaviour of algorithm (25)

n Algorithm (25) ‖an+1−0‖2

0 a 0.077790953

1 5a
48 0.007596773

2 125a
12288 0.000702701

3 185a
196608 6.22184E-05

4 3145a
37748736 5.31713E-06

5 210715a
29565009024 1.92123E-07

...
...

...

Table (2) along with the Figure (2), shows the convergence of algorithm (25) to point 0 for

the starting point a0(a) = a..
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4. CONCLUSION

In Theorem (6), we obtain the convergence results of two iteartive schemes generated by (4)

and (11). Theorem (7) compare the convergence of algorithm and showed that algorithm (11)

converges faster than algorithm (4). This technique is same as used by Erturk [3] in 2021.
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