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1. INTRODUCTION

Whole of this article, every function like meromorphic function, integral function are defined

on complex plane C be a open complex plane and two functions f and g are non constant

meromorphic functions in C. The fundamentals of value distribution theory of meromorphic

function can be read in [10], [17]. For a meromorphic function f , the order and the lower order

of f is given by

σ( f ) = lim
r→∞

log+ T (r, f )
logr and µ( f ) = lim

r→∞

log+ T (r, f )
logr

While

λ ( f ) = lim
r→∞

log+ N(r, 1
f )

logr and δ (α, f ) = lim
r→∞

m(r, 1
f−α

)

T (r, f ) =1− lim
r→∞

N(r, 1
f−α

)

T (r, f )
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stand for the exponent of convergence of zero sequence of f and the deficiency of f at the

point α , respectively. For a non constant meromorphic function v, we denote by T (r,v) the

Nevanlinna characteristic of v and by S(r,v) any quantity satisfying S(r,v) = o(T (r,v)), as r

runs to infinity outside of a set E ⊂ (0,+∞) of finite linear measure. We say that v is a small

function of f if T (r,v) = S(r,v).

Let b be a small function and k be a positive integer, then denote N(k(r,b; f ) the counting

function for zeros of f (z)− b with multiplicity atleast k, and N(k(r,b; f ) if multiplicity is not

counted and Nk)(r,b; f ) is the counting function for zeros of f (z)−b with multiplicity at most

k and Nk)(r,b; f ) if multiplicity is not counted.

2. PRELIMINARIES

Definition 1. [12] Let k be a non-negative integer or infinity. For α ∈ C∪{∞}, we denote by

Ek(α; f ) the set of all α points of f (z) where an α point of multiplicity m is counted m times if

m≤ k and k+1 times if m > k. If Ek(α; f ) = Ek(α;g), then we say that f , g share the value α

with weight k.

We write f and g share (α,k) to mean that f , g share the value α with weight k.

Definition 2. [12] If s is a positive integer, then we denote by N(r, 1
f−α
|= s) the counting

function of those α points of f whose multiplicity is s, where each α point is counted according

to its multiplicity. For a positive integer m, denote by N(r,α; f |≥ m) the counting function

of those α points of f whose multiplicities are not less than m where each α point is counted

according to its multiplicity.

Definition 3. [13] Denote by N2(r, 1
f−α

) the sum of N(r, 1
f−α

)+N(r, 1
f−α
|≥ 2).

The classical four point and five point theorems of Nevanlinna [15] show f is a Mobius

transformation of g if two meromorphic functions f and g share four distinct values CM, and

f = g if f and g share five distinct values IM. The assumption 4 CM of the four point theorem

and 5 IM of the five-point theorem have been improved to 2 CM+2 IM and 3 CM+1 IM , while

1 CM+3 IM remains an open problem.

Some researchers also considered whether the conditions of shared values can be replaced by
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other conditions. Ozawa [16] obtained the following.

Theorem A. Let f and g be non constant entire functions of finite order such that f and

g share 0 and 1 CM. If δ (0, f )> 1
2 , then f . g = 1 or f = g.

Removing the order restriction Ueda [19] and Yi [22] obtained some improvements of

Theorem A. Especially, Yi [23] obtained the following.

Theorem B. [23] Suppose that f and g are non constant meromorphic functions. If f , g

share 0, 1, ∞ CM and N(r, 1
f )+N(r, f ) < (d + o(1))T (r, f ) for r ∈ 1 and r ∈ ∞, where d is a

positive number satisfying 0 < d < 1
2 , while I ⊂ (0,+∞) is a subset of infinite linear measure,

then f . g = 1 or f = g.

For the sake of relaxing the nature of sharing of values and improving Theorem B, Lahiri in

[12] obtained the following result in terms of the weighted value sharing.

Theorem C. [12] Suppose that f and g are non constant meromorphic functions. Let f

and g share (0,1), (∞,0), (1,∞). If

N
(

r,
1

f −α
|= 1

)
+4N(r, f )< (d +o(1))T (r, f ),

then either f . g = 1 or f = g.

Rubel and Yang [18] in 1977 initiated the study of entire functions sharing values with their

derivatives instead of studying the problem of sharing value of two meromorphic functions f

and g.

Theorem D. Let f be a non constant entire function. If f shares two distinct finite val-

ues CM with f ′, then f ≡ f ′.
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More results on the uniqueness of f ′ with its nth derivative f (n) were obtained by several

authors; see [[1], [8], [20]]. In view of the progress on the difference analogues of classical

Nevanlinna theory of meromorphic functions [[4], [9]], it is quite natural to investigate the

uniqueness problems of meromorphic functions and their difference operators; see [3], [6],

[11], [25]. So a natural question arises, that is, how about the uniqueness of the derivatives and

the difference operators of f (z)?

In 2018, Qi et al. [17] obtained some results in the case that f ′(z) shares values with 4 f or

f (z+ c).

Theorem E. Let f be a meromorphic function of finite order. Suppose that f ′ and4 f share

a1, a2, a3, a4 IM, where a1, a2, a3, a4 are four distinct finite values. Then f ′ =4 f .

Theorem F. Let f be a transcendental entire function of finite order, and α be a nonzero

finite value. If f ′(z) and f (z+ c) share 0, α CM, then f ′(z) = f (z+ c) for all z ∈ C.

In 2020 Dong-Mei Wei and Zhi-Gang Huang proved the 1st result which investigates the

uniqueness of meromorphic functions in terms of weighted value sharing and 2nd and 3rd

results on difference operators of f (z) shares some values with its derivatives.

Theorem G. [26] Let f and g be meromorphic functions with finite order, and let c∈C\{0}.

Suppose that f n and gn share (R(z), l), where R(z) is a rational function and l, n are integer. If

one of the following cases holds:

(1) l = 0, n≥ 15;

(2) l = 1, n≥ 10;

(3) l ≥ 2, n≥ 9,

then f = tg or f . g = tα , where tn = 1, αn = R2.

Theorem H. [26] Let f be a non constant entire function of finite order with periodic η 6= 0

such that µ( f ) > 1, where η is a finite nonzero value, and let a1and a2 be two distinct finite
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values, and k be a positive integer. If4 f and f (k) share a1 CM,4 f and f (k) share a2 IM, then

4 f = f (k).

Theorem I. [26] Let f be a non constant meromorphic function of finite order, and let c be a

finite nonzero value, let k be a positive integer satisfying k ≥ 2, and let a1, a2, a3 be three finite

values such that a1 6= 0, a2 6= 0 and N(r, 1
f−a3

) = S(r, f ). If f (z+ c) and f (k)(z) share a1 CM

and a2 IM, then f (z+ c) = f (k)(z) for all z ∈ C.

3. MAIN RESULTS

Theorem 1. Let f and g be meromorphic functions with finite order, and let c ∈ C \ {0}.

Suppose that f nP( f ) and gnP(g) share (R(z), l), where R(z) is a rational function and l, m, n

are integers. If one of the following cases holds:

(1) l = 0, n≥ 13m+15;

(2) l = 1, n≥ 8m+10;

(3) l ≥ 2, n≥ 7m+9,

then f = tg or f . g = tα , where tn+m = 1, αn+m = R2.

Theorem 2. Let f be a non constant entire function of finite order with periodic η 6= 0 such that

µ( f )> 1, where η is a finite nonzero value, and let a1and a2 be two distinct finite values, and k

be a positive integer. If4( f nP( f )) and f (k) share a1 CM,4( f nP( f )) and f (k) share a2 IM, then

4( f nP( f )) = f (k).

Theorem 3. Let f be a non constant meromorphic function of finite order, and let c be a finite

nonzero value, let k be a positive integer satisfying k≥ 2, and let a1, a2, a3 be three finite values

such that a1 6= 0, a2 6= 0 and N(r, 1
f−a3

) = S(r, f ). If f n(z+c)P( f ) and f (k)(z) share a1 CM and

a2 IM, then

f n(z+ c)P( f ) = f (k)(z)

for all z ∈ C.
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4. LEMMAS

Let F and G be two non constant meromorphic functions defined in C. The function H is

defined by:

H =
(F ′′

F ′
− 2F ′

F−1

)
−
(G′′

G′
− 2G′

G−1

)
.

The following Lemmas are used to prove the main results of this paper.

Lemma 1. [2] Let F and G be two non constant meromorphic functions sharing (1,0) and

H 6= 0. Then

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+2N

(
r,

1
F

)
+N

(
r,

1
G

)
+2N(r,F)+N(r,G)+S(r,F)+S(r,G)

and the same inequality holds for T (r,G).

Lemma 2. [2] Let F and G be two non constant meromorphic functions, sharing (1,1) and

H 6= 0. Then

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+

1
2

N
(

r,
1
F

)
+

1
2

N(r,F)

+S(r,F)+S(r,G)

and the same inequality holds for T (r,G).

Lemma 3. [12] Let f and g be two non constant meromorphic functions sharing (1,2). Then

one of the following cases holds:

i) T (r)≤ N2(r, 1
f )+N2(r, 1

g)+N2(r, f )+N2(r,g)+S(r),

ii) f = g,

iii) f g = 1,

where T (r) = max{T (r, f ),T (r,g)} and S(r) = o{T (r)}, as r 6∈ E, where E ⊂ (0,+∞) is a

subset of finite linear measure.

Lemma 4. [7] Let f and g be two meromorphic functions, and let k be a positive integer. If

Ek(1; f ) = Ek(1;g), then one of the following cases must occur:
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(i) T (r, f )+T (r,g)≤ N2(r,
1
f
)+N2(r,

1
g
)+N2(r, f )+N2(r,g)

+N
(

r,
1

f −1

)
+N

(
r,

1
g−1

)
−N11

(
r,

1
f −1

)
+N(k+1

(
r,

1
f −1

)
+N(k+1

(
r,

1
g−1

)
+S(r, f )+S(r,g);

(ii) f =
(b+1)g+(a−b−1)

bg+(a−b)
, where a(6= 0), b are two constants.

Lemma 5. [21] Let f be a meromorphic function. If

g =
a f +b
c f +d

,

where a, b, c, d ∈ S( f ) and ad−bc 6= 0, then

T (r,g) = T (r, f )+S(r, f ).

Lemma 6. [4] Let f be a non constant meromorphic function, let ε > 0 and let c ∈C. If f is of

finite order, then there exists a set E = E( f ,ε)⊂ (0,+∞) satisfying

lim
r→∞

∫
E∩[1,r)

dt
t

logr
≤ ε,

i.e, of logarithmic density at most ε , such that

m
(

r,
f (z+ c)

f (z)

)
= O

(
logr

r
T (r, f (z))

)
for all out of the set E. If ρ2 = ρ2 < 1 and ε > 0, then

m
(

r,
f (z+ c)

f (z)

)
= o

(
T (r, f (z))
r1−ρ2−ε

)
for all r ∈ (0,+∞) outside of a set of finite logarithmic measure.

Lemma 7. ([1], Lemma 3) Let k be a positive integer, and let f be a non constant meromorphic

function such that f (k+1) 6≡ 0. If N
(

r, 1
f

)
= S(r, f ), then

kN1)(r, f )≤ N(2(r, f )+N1)

(
r,

1
f (k)−1

)
+N

(
r,

1
f (k+1)

)
+S(r, f ).

Lemma 8. [24] Let f be a meromorphic function such that f (k) is not constant. Then

T (r, f )≤ N
(

r,
1
f
)

)
+N1)

(
r,

1
f (k)−1

)
+N(r, f )−N

(
r,

1
f (k+1)

)
+S(r, f ).
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Lemma 9. [24] Let f be a transcendental meromorphic function. Then, for each positive real

number ε and for each positive integer n,

(n−1)N(r, f )≤ (1+ ε)N
(

r,
1

f (n)

)
+(1+ ε)(N(r, f )−N(r, f ))+S(r, f ).

Lemma 10. [4] Let f be a non constant meromorphic function of finite order and c ∈ C. Then

T (r, f (z+ c)) = T (r, f )+S(r, f ),

N(r, f (z+ c)) = N(r, f )+S(r, f ),

N
(

r,
1

f (z+ c)

)
= N

(
r,

1
f (z)

)
+S(r, f ),

N(r, f (z+ c)) = N(r, f )+S(r, f ),

N
(

r,
1

f (z+ c)

)
= N

(
r,

1
f (z)

)
+S(r, f ).

5. PROOF OF MAIN RESULTS

Proof of Theorem 1

Set F = f nP( f )
R , G = gnP(g)

R , clearly, F and G share (1, l). Write T (r) = max{T (r, f ),T (r,g)}

and S(r) = o(T (r)) as r 6∈ E and r→∞, where E ⊂ (0,+∞) is a subset of finite linear measure.

Case 1. l = 0 and n≥ 13m+15

Assume that H 6= 0. By Lemma 1, we have

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+2N

(
r,

1
F

)
+N

(
r,

1
G

)
+2N(r,F)+N(r,G)+S(r,F)+S(r,G).

Clearly,

(n+m)T (r, f )≤ 4N
(

r,
1
F

)
+3N

(
r,

1
G

)
+4N(r,F)+3N(r,G)+S(r,F)+S(r,G)

≤ 4N
(

r,
1

f nP( f )

)
+3N

(
r,

1
gnP(g)

)
+4N(r, f nP( f ))+3N(r,gnP(g))

+S(r, f )+S(r,g)

(n+m)T (r, f )≤ 8(1+m)T (r, f )+6(1+m)T (r,g)+S(r, f )+S(r,g).(1)
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Similarly, we have

(2) (n+m)T (r,g)≤ 8(1+m)T (r,g)+6(1+m)T (r, f )+S(r, f )+S(r,g).

Now (1) and (2) yield

(n−13m−14)(T (r, f )+T (r,g))≤ S(r, f )+S(r,g).

Hence

(n−13m−14)T (r)≤ S(r),

which contradicts n≥ 13m+15.

Therefore, H ≡ 0 and we have

(3)
(

F ′′

F ′
− 2F ′

F−1

)
−
(

G′′

G′
− 2G′

G−1

)
= 0.

It follows from (3) that

(4)
1

F−1
=

A
G−1

+B,

where A 6= 0, B are constants.

Subcase 1.1. If B = 0, then (4) leads to F = G−1+A
A and G = AF− (A−1). Suppose that A = 1.

Clearly, we have F = G, and thus f nP( f ) = tgnP(g), where tn+m = 1. If A 6= 1, then we have

N
(
r, 1

G

)
= N

(
r, 1

F−A−1
A

)
and N

(
r, 1

F

)
= N

(
r, 1

G+(A−1)

)
.

By Nevanlinna’s second fundamental theorem,

T (r,F)≤ N
(

r,
1
F

)
+N

(
r,

1
F− A−1

A

)
+N(r,F)+S(r,F)

≤ N
(

r,
1
F

)
+N

(
r,

1
G

)
+N(r,F)+S(r,F).

Thus,

(n+m)T (r, f )≤ N
(

r,
1

f P( f )

)
+N(r,gP(g))+N(r, f P( f ))+S(r, f )

≤ 2(1+m)T (r, f )+(1+m)T (r,g)+S(r, f ).

(5)

Similarly, we have

(n+m)T (r,g)≤ 2(1+m)T (r,g)+(1+m)T (r, f )+S(r,g).(6)
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Combining (5) and (6), we obtain

(m+n−3−3m)(T (r, f )+T (r,g))≤ S(r, f )+S(r,g)

(n−2m−3)T (r)≤ S(r)

Clearly, it is a contradiction by n≥ 13m+15,

Subcase 1.2 B 6= 0.

If A 6= B, then we have F = (B+1)G−(B−A+1)
BG+(A−B) . Applying Nevanlinna’s second fundamental the-

orem to F with considering 0 point, 1 point, and ∞ point, we can also get a contradiction by

similar discussion as in Subcase 1.1.

Case 2. l = 1 and n≥ 8m+10.

Assume that H 6= 0. By Lemma 2, we have

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)+

1
2

N
(

r,
1
F

)
+

1
2

N(r,F)

+S(r,F)+S(r,G)

≤ 5
2

N
(

r,
1

f nP( f )

)
+

5
2

N(r, f nP( f ))+2N
(

r,
1

gnP(g)

)
+2N(r,gnP(g))

+S(r, f )+S(r,g).

Thus,

(n+m)T (r, f )≤ 5(1+m)T (r, f )+4(1+m)T (r,g)+S(r, f )+S(r,g).(7)

Similarly, we have

(n+m)T (r,g)≤ 5(1+m)T (r,g)+4(1+m)T (r, f )+S(r, f )+S(r,g).(8)

Combining (7) and (8) yields

(m+n−9−9m)(T (r, f )+T (r,g))≤ S(r, f )+S(r,g),

which contradicts n≥ 8m+10.

Therefore, H ≡ 0. We can deduce the same conclusion by similar discussion as in case 1.

Case 3. l ≥ 2 and n≥ 7m+9.
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Subcase 3.1. l = 2.

From Lemma 3, if (i) holds, then we deduce that

(9) max{T (r,F),T (r,G)} ≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2 (r,G)+S(r,F)+S(r,G).

That is,

(m+n)T (r) = (m+n) max{T (r,F),T (r,G)}

≤ 2N
(

r,
1

f nP( f )

)
+2N

(
r,

1
gnP(g)

)
+2N(r, f nP( f ))

+2N(r,gnP(g))+S(r, f )+S(r,g)

≤ 8(1+m)T (r)+S(r).

Therefore, (m+ n− 8− 8m)T (r) ≤ S(r), which contradicts n ≥ 7m+ 9. Thus we have F = G

or FG = 1. If F = G, then f nP( f ) = gnP(g), which yields f = tg, where tn+m = 1. If FG = 1,

then ( f nP( f )gnP(g)) = R2, which yields ( f g)n+m = R2, f g = tα , where tn+m = 1, αn+m = R2.

Subcase 3.2. l ≥ 3.

By Lemma 4, either (i) or (ii) holds. If (i) holds, then we obtain

T (r,F)+T (r,G)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N2(r,F)+N2(r,G)

+N
(

r,
1

F−1

)
+N

(
r,

1
G−1

)
−N11

(
r,

1
F−1

)
+N(k+1

(
r,

1
F−1

)
+N(k+1

(
r,

1
G−1

)
+S(r,F)+S(r,G)

≤ N2(r,F)+N2(r,G)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+

1
2

N
(

r,
1

F−1

)
+

1
2

N
(

r,
1

G−1

)
+S(r,F)+S(r,G)

≤ N2(r,F)+N2(r,G)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+T (r,F)+T (r,G)+S(r,F)+S(r,G).
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Therefore, we get

1
2

T (r,F)+
1
2

T (r,G)≤ 2N(r, f P( f ))+2N(r,gP(g))+2N
(

r,
1

f P( f )

)
+2N

(
r,

1
gP(g)

)
+S(r, f )+S(r,g).

(10)

Consequently,

1
2
(m+n){T (r, f )+T (r,g)} ≤ 4(1+m){T (r, f )+T (r,g)}+S(r, f )+S(r,g),

which leads to (
1
2
(m+n)−4(1+m)

)
{T (r, f )+T (r,g)} ≤ S(r, f )+S(r,g).

This is a contradiction since n≥ 7m+9

Hence, (ii) holds, which means

F =
(b+1)G+(a−b−1)

bG+(a−b)
,

where a 6= 0, b are constants.

Suppose that b = 0. Then we have F = G when a− 1 = 0, that is, f = tg, where tn+m = 1. If

a− 1 6= 0, then we obtain F = G+a−1
a and G = a

(
F + 1−a

a

)
, and so N

(
r, 1

F

)
= N

(
r, 1

G+a−1

)
,

N
(
r, 1

G

)
= N

(
r, 1

F+ 1−a
a

)
. By Nevanlinna’s second fundamental theorem we get

T (r,G)≤ N
(

r,
1
G

)
+N

(
r,

1
G+a−1

)
+N(r,G)+S(r,G).

This yields

(m+n)T (r,g)≤ 2(1+m)T (r,g)+(1+m)T (r, f )+S(r,g).

Similarly, we have

(m+n)T (r, f )≤ 2(1+m)T (r, f )+(1+m)T (r,g)+S(r, f ).

Thus we obtain (n−2m−3)(T (r, f )+T (r,g))≤ S(r, f )+S(r,g), which is a contradiction with

n≥ 7m+9. Suppose that b =−1. If a+1 = 0, then F. G≡ 1. Hence f .g = tα, where tn+m = 1,

αn+m = R2. If a+1 6= 0, similarly to above, then we can obtain a contradiction. Suppose b 6= 0

and b 6=−1. By similar reasoning to the case b = 0, we can also obtain a contradiction.

This completes the proof of Theorem 1.
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Proof of Theorem 2

Without loss of any generality, we can assume a1 = 0, a2 = 1. Since4( f n(z)P( f )), f (k) share

0 CM, we have

(11)
4( f n(z)P( f ))

f (k)
= eR,

Where R is a polynomial of degree n+m.

Since the period of f is c ∈ C\{0}, we have eR(z) = eR(z+c).

Consequently, eR(z+c)−R(z) = 1, which leads to R′(z+ c) = R′(z). Then R′(z) has a period c and

R′(z) must be a constant.

Now write

R(z) = f n+m(z)am + f n+m−1(z)am−1 + ...+a0.

Where a, n, m are constants.

Since4( f n(z)P( f )), f (k) share 1 IM, we get

(12)
4( f n(z)P( f ))−1

f (k)−1
= α(z),

where α is a meromorphic functin.

By (11), (12) and R(z) = f n+m(z)am + f n+m−1(z)am−1 + ...+a0, we deduce

(13) α(z) =
f (k)eR−1
f (k)−1

.

By Lemma 5, we obtain

(14) T (r,α) = T (r, f (k))+S(r, f ) = (k+1)T (r, f )+S(r, f ).

Now we estimate the number of zeros, poles of α . From the assumption that µ( f ) > 1, we

know that T (r,eR) = S(r, f ).

Since 4( f n(z)P( f )), f (k) share 1 IM, it follows from (13) that the zero of 4( f n(z)P( f ))− 1

and f (k)−1 must be the zero of eR−1. Noting that f (k)−1 have the same poles with f (k)eR−1,

then by (12), we have

N(r,α) = N
(

r,
1

f (k)−1

)
≤ N

(
r,

1
eR−1

)
= S(r, f )
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and

N
(

r,
1
α

)
= N

(
r,

1
4( f nP( f )−1

)
≤ N

(
r,

1
eR−1

)
= S(r, f ).

Therefore, from the Nevanlinna second fundamental theorem, we obtain

(15) T (r,α)≤ N(r,α)+N
(

r,
1
α

)
+N

(
r,

1
α− eR

)
+S(r,α).

Combining (11) and (12), we may write α− eR = 4( f n(z)P( f ))−1
f (k)−1

− 4( f n(z)P( f ))
f (k)

= eR−1
f (k)−1

.

Then, by (15), we conclude that

(16) T (r,α)≤ 3N
(

r,
1

eR−1

)
+S(r, f ) = S(r, f ).

It contradicts (14).

Therefore,4( f nP( f )) = f (k). This completes the proof of Theorem 2.

Proof of Theorem 3

Some ideas of our proof come from [1], [26]. Without loss of generality, we assume that

f n(z + c)P( f ) and f (k)(z) share 1 CM and ∞ IM, and N
(

r, 1
f

)
= S(r, f ). For the general

case, we take the transformation T (z) = z−a3
z−a1

a2−a1
a2−a3

, and so T (a1) = ∞, T (a2) = 1, T (a3) = 0.

Suppose that f n(z+ c)P( f ) 6≡ f (k)(z). Set

(17) G(z) =
1

f n(z+ c)P( f )

(
f (k+1)(z)

f (k)(z)−1
− ( f n(z+ c)P( f ))′

f n(z+ c)P( f )−1

)
(18)

G(z) =
f (k)(z)

f n(z+ c)P( f )

(
f (k+1)(z)

f (k)(z)−1
− f (k+1)(z)

f (k)(z)

)
−
(

( f n(z+ c)P( f )′

f n(z+ c)P( f )−1
− ( f n(z+ c)P( f ))′

f n(z+ c)P( f )

)
It follows from the lemma of the logarithmic derivative, Lemma 6 and (18) that m(r,G) =

S(r, f ).

By (17), we see that the possible poles of G can occur at the zeros of f n(z+ c)P( f ), the 1-

points of f n(z+ c)P( f ) and f (k)(z), and the poles of f n(z+ c)P( f ) and f (k)(z). If z0 is a 1-

point of f n(z+ c)P( f ), then by a short calculation with Laurent series and (17) we see that

G(z) is analytic at z0. Since f n(z+ c)P( f ) and f (k)(z) share 1 CM, we know the 1 points

of f n(z+ c)P( f ) and f (k)(z) are not the poles of G(z). If f n(z+ c)P( f ) has a pole z0 with

multiplicity (n+m)p (≥ 1), we need to consider two cases: (i) z0 is also a pole of f (k)(z), then
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by (17) G(z) = O((z− z0)
(n+m)p−1); (ii) z0 is not a pole of f (k)(z), and hence z0 is not a pole of

f (k+1)(z). Then we also have G(z) = O((z−z0)
(n+m)p−1). Similarly, the poles of f (k)(z) are not

also the poles of G(z). Therefore, the poles of F can only occur at the zeros of f n(z+c)P( f ). By

Lemma 7 and the hypothesis of Theorem 3, it follows that N
(

r, 1
f n(z+c)P( f )

)
= N

(
r, 1

f n(z+c)

)
+

N
(

r, 1
P( f )

)
+S(r, f ) = S(r, f ), and so we have N(r,G) = S(r, f ). Thus,

(19) T (r,G) = S(r, f ).

If G ≡ 0, then, by (17), we find that f (k)(z)− 1 = t( f n(z+ c)P( f )− 1), with t 6= 0 constant.

Thus, (1− t)m(r, 1
f )≤ m

(
r, f (k)(z)

f (z)

)
+m

(
r, f n(z+c)P( f )

f nP( f )

)
= S(r, f ). Since N

(
r, 1

f

)
= S(r, f ), we

have T
(

r, 1
f

)
= S(r, f ). It is a contradiction. Then G 6≡ 0. And so we deduce from (17) and

(19) that

m(r, f n(z+ c)P( f ))≤ m
(

r,
1
G

)
+m

(
r,

f (k+1)(z)

f (k)(z)−1
− ( f n(z+ c)P( f ))′

f n(z+ c)P( f )−1

)

≤ T (r,G)+S(r, f )

= S(r, f ).

(20)

If z0 is a pole of f n(z+ c)P( f ) of multiplicity (n+m)p ≥ 2, then by (17) we know that z0 is

possible a zero of G with multiplicity (n+m)p−1. Consequently, it follows from (19) that

(21) N(2(r, f n(z+ c)P( f ))≤ 2N
(

r,
1
G

)
≤ 2T (r,G)+O(1) = S(r, f ).

Let z0 be a simple pole of f n(z+ c)P( f ). Set

(22) H(z) =
f (k+1)(z)( f n(z+ c)P( f )−1)
( f n(z+ c)P( f ))′( f (k)(z)−1)

.

By a short calculation with Laurent series, it follows that H(z0) = k+1. If H(z) ≡ k+1, then

we have f (k)(z)−1 = t( f n(z+c)P( f )−1)k+1 with t 6= 0 constant. This is a contradiction, since

f (k)(z) and f n(z+ c)P( f ) share 1 CM. Thus H 6≡ k+1, and so,

(23) N1)(r, f n(z+ c)P( f ))≤ N
(

r,
1

H− (k+1)

)
≤ T (r,H)+O(1).

We now estimate the poles of H. Clearly, the poles of H can only occur at the 1 points of

f (k)(z), the zeros of ( f n(z+ c)P( f ))′, and the poles of f n(z+ c)P( f ) and f (k+1)(z). Since
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f (k)(z), ( f n(z+ c)P( f )) share 1 CM and ∞ IM, H is holomorphic at the 1 points of f (k)(z) and

the poles of f n(z+ c)P( f ) and f (k+1)(z). Thus

(24) N(r,H)≤ N0

(
r,

1
( f n(z+ c)P( f ))′

)
+S(r, f ),

where N0

(
r, 1

( f n(z+c)P( f ))′

)
denotes the zeros of ( f n(z+ c)P( f ))′ which are not zeros of

f n(z+ c)P( f )−1. Again by (22), we see that

(25) m(r,H) = S(r, f ),

From this, (23) and (24) we find that

(26) N1)(r, f n(z+ c)P( f ))≤ N0

(
r,

1
( f n(z+ c)P( f ))′

)
+S(r, f ).

Combining this, Nevanlinna’s second fundamental theorem ( [10], Theorem 3.2]) for

f n(z+ c)P( f ) , (21) and the hypothesis N
(

r, 1
f (z)

)
= S(r, f ) we have

T (r, f n(z+ c)P( f ))≤ N
(

r,
1

f n(z+ c)P( f )

)
+N

(
r,

1
f n(z+ c)P( f )−1

)
+N(r, f n(z+ c)P( f ))

−N0

(
r,

1
( f n(z+ c)P( f ))′

)
+S(r, f n(z+ c)P( f ))

≤ N
(

r,
1

f n(z+ c)P( f )−1

)
+S(r, f )

≤ N1)

(
r,

1
f n(z+ c)P( f )−1

)
+N(2

(
r,

1
f n(z+ c)P( f )−1

)
+S(r, f ).

(27)

From this and Nevanlinna’s first fundamental theorem, it is easy to deduce that

(28)

m
(

r,
1

f n(z+ c)P( f )−1

)
+N(2

(
r,

1
f n(z+ c)P( f )−1

)
≤N(2

(
r,

1
f n(z+ c)P( f )−1

)
+S(r, f ),

which implies

(29) m
(

r,
1

f n(z+ c)P( f )−1

)
+N(2

(
r,

1
f n(z+ c)P( f )−1

)
= S(r, f ).
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From (29), we see that

T (r, f n(z+ c)P( f )) = m
(

r,
1

f n(z+ c)P( f )−1

)
+N1)

(
r,

1
f n(z+ c)P( f )−1

)
+N(2

(
r,

1
f n(z+ c)P( f )−1

)
+S(r, f )

= N1)

(
r,

1
f n(z+ c)P( f )−1

)
+S(r, f ).

(30)

Since f n(z+ c)P( f ) and f (k)(z) share 1 CM, it follows from Lemma 7 and (21) that

(31) (k−1)N1)(r, f n(z+ c)P( f ))≤ N
(

r,
1

f (k+1)(z)

)
+S(r, f ).

By Lemma 8, (29) (30) and (21), we have

N
(

r,
1

f (k+1)(z+ c)

)
≤ N

(
r,

1
f n(z+ c)P( f )

)
+N1)(r, f n(z+ c)P( f ))+N

(
r,

1
f n(z+ c)P( f )−1

)
−T (r, f n(z+ c)P( f ))+S(r, f n(z+ c)P( f ))

≤ N1)(r, f n(z+ c)P( f ))+S(r, f ).

(32)

It follows from Lemma 10 that

N
(

r,
1

f (k+1)(z)

)
= N

(
r,

1
f (k+1)(z+ c)

)
+S(r, f )

From this, (31) and (32), we see that (k− 2)N1)(r, f n(z+ c)P( f )) = S(r, f ). If k ≥ 3, then

N1)(r, f n(z+ c)P( f )) = S(r, f ). Combining this, (20) and (21), we have T (r, f n(z+ c)P( f )) =

S(r, f ), which is a contradiction.

Let k = 2.

Case 1. If f (z) is transcendental, then by Lemma 9, for a positive constant ε < 1 we have

2N1)(r, f n(z+ c)P( f ))≤ (1+ ε)N
(

r,
1

f (k+1)(z+ c)

)
+(1+ ε)[N(r, f n(z+ c)P( f ))

−N(r, f n(z+ c)P( f ))]+S(r, f )

(33)

From this and (21) we have

(1− ε)N1)(r, f n(z+ c)P( f )) = S(r, f ).
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Combining this, (20) and (21), we have T (r, f n(z+ c)P( f )) = S(r, f ). This is contradiction.

Case 2. If f (z) is rational, then by N
(

r, 1
f

)
= S(r, f ) we know that f has no zeros, and hence

we can write f n(z+ c)P( f ) = 1
P(z) , where P(z) is a non constant polynomial. Set

Φ =
f (k+1)(z)

f (k)(z)−1
− ( f n(z+ c)P( f ))′

f n(z+ c)P( f ))−1
−2

( f n(z+ c)P( f ))′

f n(z+ c)P( f )
.

Clearly T (r,Φ) = S(r, f ). Combining this and (17), we have

(34) 2( f n(z+ c)P( f ))′ = G f 2−Φ f .

Substituting f n(z + c)P( f ) = 1
P(z) into (34) we obtain −2P′ = G−ΦP. This shows that

T (r,P′) = T (r,P)+S(r, f ) and so T (r,P) = S(r, f ). This is a contradiction.

Therefore, f n(z+ c)P( f ) = f (k)(z). This completes the proof of Theorem 3.
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