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Abstract. In this paper, we study some fixed point theorems for self-mappings satisfying certain contraction

principles on a quasiconvex complete metric space. In addition, we investigate some common fixed point theorems

for a Banach operator pair under certain generalized contractions on a quasiconvex complete metric space. Our

results generalize and improve several recent results in literature.
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1. INTRODUCTION AND PRELIMINARIES

Metric space is a crucial concept in functional and nonlinear analysis. Its topological structure

has attracted the attention of many researchers both in pure and applied mathematics (see [1–

16]). In an attempt to generalized metric spaces, [16] introduced the concept of convex metric

spaces as seen below:

Definition 1.1. [16] Let (X ,d) be a metric space, A mapping W : X ×X × [0,1]→ X is said to

have convex structure on X if for each (x,y,λ ) ∈ X×X× [0,1] and u ∈ X ,

(1) d(u,W (x,y,λ ))≤ λd(u,x)+(1−λ )d(u,y)
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Definition 1.2. [16] A metric space (X ,d) having convex structure W is called a convex metric

space.

Adewale et al. in [5] extend the concept to quasiconvex metric spaces and define them as

follows:

Definition 1.3. [5] Let (X ,d) be a metric space, A mapping γ : X ×X × [0,1]→ X is said to

have quasiconvex structure on X if for each (x,y,λ ) ∈ X×X× [0,1] and u ∈ X ,

(2) d(u,γ(x,y,λ ))≤ max{d(u,x),d(u,y)}

Definition 1.4. [5] A metric space (X ,d) having quasiconvex structure γ is called a quasiconvex

metric space.

Remark 1.5 If max{d(u,x),d(u,y)} = λd(u,x)+ (1−λ )d(u,y) in Definition 2.1 where λ ∈

[0,1], we obtain convex structure in metric spaces as defined by Takahashi [16].

Example 1.6. [5] Considering a linear space, V which is at the same time a metric space with

metric, d. For all x,y ∈V and λ ∈ [0,1] if:

(i) d(x,y) = d(x− y,0), and

(ii) d(λx+(1−λ )y,0) = max{d(x,0),d(y,0)}

Then V is a quasiconvex metric space.

Example 1.7. [5] Considering a linear space, V which is at the same time a metric space with

metric, d defined by

d(x,y) =



0, i f x = y = 0;

1, i f x,y ∈ N;

0.5, Otherwise.

For all x,y,z ∈V and λ ∈ [0,1] if:

(i) d(x,y+ z) = d(x− y,z), and

(ii) d(λx+(1−λ )y,z)≤max{d(x,z),d(y,z)}

Then V is a quasiconvex metric space but not convex metric space because if x = 0,y = 2,z = 3

and λ = 0.5, we obtain d(1,3) = 1 > 0.5d(0,3)+0.5d(2,3) = 0.75.
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Definition 1.8. [5] A subset C of a quasiconvex metric space X is said to be quasiconvex if

γ(x,y,λ ) ∈C for all x.y ∈C and λ ∈ [0,1].

Definition 1.9. [5] Let (X ,d,γ) be a complete quasiconvex metric space and E a nonempty

closed convex subset of X . A mapping T : E→ E is said to be (k,L)-Lipschitzian if there exists

k ∈ [1,∞), L ∈ [0,1) such that

(3) d(T x,Ty)≤ Ld(x,T x)+ kd(x,y),∀x,y ∈ E.

Definition 1.10. [5] Let (X ,d,γ) be a quasiconvex metric space. An open ball S(z,r) in (X ,d,γ)

is defined by

S(z,r) = {(x,y) ∈ X2 : d(z,γ(x,y,λ ))< r}.

Definition 1.11. [5] Let (X ,d,γ) be a quasiconvex metric space. A closed ball S̄(z,r) in (X ,d,γ)

is defined by

S̄(z,r) = {(x,y) ∈ X2 : d(z,γ(x,y,λ ))≤ r}.

The following propositions show that an open ball and a closed ball in quasiconvex metric space

are respectively open and closed subset of the space.

Proposition 1.12. [5] Let X be a quasiconvex metric space. Open ball S(x,r) and closed ball

S̄(x,r) in X are quasiconvex subsets of X .

Definition 1.13. [11] The ordered pair (T,S) of two self-maps of a metric space (X ,d) is called

a Banach operator pair if F(S) is T -invariant, namely T (F(S))⊆ F(S).

Theorem 1.14. [5] Let (X ,d,γ) be a complete quasiconvex metric space, F, a nonempty closed

quasiconvex subset of X and T : F→ F , a (k,L)-Lipschitzian mapping. Suppose ψ : R+→R+

is a comparison function such that for arbitrary x ∈ F there exists q ∈ F with

(4) d(T q,q)≤ ψ(d(T x,x))

Then T has a fixed point in F .

Theorem 1.15. [5] Let (X ,d,γ) be a complete quasiconvex metric space, F, a nonempty closed

quasiconvex subset of X and T : F→ F , a (k,L)-Lipschitzian mapping. Suppose ψ : R+→R+

is a comparison function such that for arbitrary x ∈ F there exists q ∈ F with

(i) d(T q,q)≤ ψ(d(T x,x));
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(ii) d(T q,T x)≤ cd(T x,x), c > 0.

Then T has a fixed point in F .

Theorem 1.16. [5] Let (X ,d,γ) be a complete quasiconvex metric space, F, a nonempty closed

quasiconvex subset of X and T : F→ F , a k-Lipschitzian involution with k ∈ [0,1). Then T has

a fixed point in F .

2. MAIN RESULTS

To prove the next theorem, we need the following lemma.

Lemma 2.1. Let (X ,d,γ) be a quasiconvex metric space, then the following statements hold:

a d(x,y) = 1
2 [d(x,γ(x,y,λ ))+d(y,γ(x,y,λ ))] ∀(x,y,λ ) ∈ X×X× I.

b d(x,γ(x,y,λ )) = d(y,γ(x,y,λ )) = d(x,y) ∀x,y ∈ X .

Proof:

a For any (x,y,λ ) ∈ X×X× I, we have

d(x,y) =
1
2
[d(x,γ(x,y,λ ))+d(y,γ(x,y,λ ))](5)

=
1
2
[max{d(x,x),d(x,y)}+max{d(y,x),d(y,y)}](6)

=
1
2
[d(x,y)+d(y,x)](7)

=
1
2
×2d(x,y)(8)

= d(x,y)(9)

b d(x,γ(x,y,λ )) = max{d(x,x),d(x,y)}= d(x,y).

Similarly, d(y,γ(x,y,λ )) = max{d(y,x),d(y,y)}= d(y,x).

Hence, d(x,γ(x,y,λ )) = d(y,γ(x,y,λ )) = d(x,y)∀x,y ∈ X .

We prove existence and uniqueness of fixed point for (γ−φ)-contraction mapping under differ-

ent assumptions in this section.

Theorem 2.2. Let E be a nonempty closed quasiconvex subset of a quasiconvex complete met-

ric space (X ,d,γ) and T : E → E. If there exist a,b,c,k ∈ R such that a+ b+ c = 1, k ≥ 2,

c+1 < k and

ad(x,T x)+bd(y,Ty)+ cd(T x,Ty)≤ kd(x,y),
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for all x,y ∈ E, then T has at least one fixed point.

Proof: Suppose x0 ∈ E is arbitrary. We define a sequence {xn}n=0
∞ by:

(10) xn = γ(xn−1,T xn−1,λ ),n ∈ N.

Since E is quasiconvex, xn ∈ E for all n ∈ N. Using Lemma 2.1b and (2.6), we obtain:

(11) d(xn−1,xn) = d(xn,T xn−1) = d(xn−1,T xn−1).

For all n ∈ N,

(12) ad(xn,T xn)+bd(xn−1,T xn−1)+ cd(T xn,T xn−1)≤ kd(xn,xn−1).

which implies

(13) ad(xn,xn+1)+bd(xn−1,xn)+ cd(T xn,T xn−1)≤ kd(xn,xn−1).

Then

(14) d(xn,xn+1)≤
[

b+ c
k−a− c

]
d(xn−1,xn)

Let q = b+c
k−a−c , then

(15) d(xn,xn+1)≤ qd(xn−1,xn) = q2d(xn−2,xn−1) = ...= qnd(x0,x1).

So,

a+b+ c = 1,k ≥ 2,c+1 < k⇒ b+ c
k−a− c

∈ [0,1).

Hence, {xn}∞
n=1 is a contraction sequence in E. Therefore, it is a Cauchy sequence. Since E is

a closed subset of a complete space, there exists u ∈ E such that limn→∞ xn = u and

(16) ad(xn,T xn)+bd(u,Tu)+ cd(T xn,Tu)≤ kd(xn,u).

As n→ ∞, we obtain

(17) d(u,Tu)≤ 0.

Which implies Tu = u. Therefore, u is a fixed point of T .

Corollary 2.3. Let E be a nonempty closed quasiconvex subset of a quasiconvex complete
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metric space (X ,d,γ) and T : E→ E. If there exist a,b,k ∈ R such that a+b = 1, k ≥ 2, 1 < k

and

ad(x,T x)+bd(y,Ty)≤ kd(x,y),

for all x,y ∈ E, then T has at least one fixed point.

Proof: Set c = 0 in Theorem 2.2.

Corollary 2.4. Let E be a nonempty closed quasiconvex subset of a quasiconvex complete

metric space (X ,d,γ) and T : E→ E. If there exist a,k ∈ R such that k ≥ 2 and

ad(T x,Ty)≤ kd(x,y),

for all x,y ∈ E, then T has at least one fixed point.

Proof: Set a = b = 0 in Theorem 2.2.

Corollary 2.4. Let E be a nonempty closed quasiconvex subset of a quasiconvex complete

metric space (X ,d,γ) and T : E→ E. If there exist k ∈ R such that k ≥ 2 and

d(T x,Ty)≤ kd(x,y),

for all x,y ∈ E, then T has at least one fixed point.

Proof: Set a = 1 in Corollary 2.4.

Definition 2.5. Let (X ,d,γ) be a quasiconvex metric space and E be a quasiconvex subset of X .

A self-mapping T on E has a property I if T (W (x,y,λ )) = W (T (x),T (y),λ ) for each x,y ∈ E

and λ ∈ [0,1].

Theorem 2.6. Let E be a nonempty closed quasiconvex subset of a quasiconvex complete

metric space (X ,d,γ), T,S : E → E maps for which there exists the real numbers a,b,c,k ∈ R

satisfying a+b+ c = 1, k ≥ 2, c+1 < k and

ad(Sx,T x)+bd(Sy,Ty)+ cd(T x,Ty)≤ kd(Sx,Sy),

for all x,y∈E with a Banach operator pair, (T,S), property I on S and a nonempty closed subset,

F(S), of E, then F(T,S) is nonempty.

Proof: From

ad(Sx,T x)+bd(Sy,Ty)+ cd(T x,Ty)≤ kd(Sx,Sy),



4434 C. ILUNO, O. K. ADEWALE

we obtain

ad(x,T x)+bd(y,Ty)+ cd(T x,Ty)≤ kd(x,y)∀x,y ∈ F(S).

F(S) is quasiconvex because S has the property I. It follows from Theorem 2.2 that F(T,S) is

nonempty.

Theorem 2.7. Let E be a nonempty closed quasiconvex subset of a quasiconvex complete

metric space (X ,d,γ), T,S : E → E maps for which there exists the real numbers a,b,c,k ∈ R

satisfying a+b+ c = 1, k ≥ 2, c+1 < k and

ad(Sx,ST x)+bd(Sy,STy)+ cd(ST x,STy)≤ kd(Sx,Sy),

for all x,y∈E with a Banach operator pair, (T,S), property I on S and a nonempty closed subset,

F(S), of E, then F(T,S) is nonempty.

Proof: Since (S,T ) is Banach operator pair,

ad(Sx,ST x)+bd(Sy,STy)+ cd(ST x,STy)≤ kd(Sx,Sy),

implies

ad(x,T x)+bd(y,Ty)+ cd(T x,Ty)≤ kd(x,y)∀x,y ∈ F(S).

It follows from Theorem 2.2 that F(T,S) is nonempty (Since S has the property I and F(S) is

closed).

Remark 2.8.

(i) Theorem 2,2, Theorem 2.6 and Theorem 2.7 extend and improve Theorem 3.2, Theorem

3.4 and Theorem 3.5 in [11] respectively.

(ii) The results in [11] are corollaries to our result. Theorem 2,2, Theorem 2.6 and Theorem

2.7 are extensions and generalizations of some related work in literature.
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