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Abstract. In this paper, we introduce D̂-closed map from a topological space X to a topological space Y as the

image of every closed set is D̂-closed and also we prove that the composition of two D̂-closed maps need not be

D̂-closed map. We also obtain some properties of D̂-closed maps.
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1. INTRODUCTION

T. Noiri., H. Maki and J. Umehara [6] introduced the concept of gp-closed and pre-gp-closed

map using gp-closed sets. G. B. Navalagi [10] introduced the concepts of strongly α-closed

maps and quasi α-closed maps in topological space by using α-closed set in topological spaces.

In this paper, a new class of maps called D̂-closed maps have been introduced and studied their

relations with various generalized closed maps. We prove that the composition of two D̂-closed

maps need not be D̂-closed map. We also obtain some properties of D̂-closed maps and quasi
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D̂-closed, strongly D̂-closed and the relationships between these maps. K. Dass and G. Suresh

[11] introduced new class of sets called D̂-closed sets in topological spaces.

2. PRELIMINARIES

Throughout this paper, spaces means topological spaces on which no separation axioms are

assumed unless otherwise mentioned and f : (X ,τ)→ (Y,σ) (or simply f : X → Y ) denotes a

function f of a space (X ,τ) into a space (Y,σ). Let A be a subset of a space X . The closure, the

interior and complement of A are denoted by cl(A), int(A) and Ac respectively.

Definition 2.1. A subset A of a topological space (X ,τ) is called

i) a pre-open set [5] if A⊂ int(cl(A)) and a pre-closed set if cl(int(A))⊂ A,

ii) a semi-open set [2] if A⊂ cl(int(A)) and a semi-closed set if int(cl(A))⊂ A,

iii) a semi-pre-open set [7] (β -open [1]) if A⊂ cl(int(cl(A))) and a semi-preclosed set ( = β -

closed) if int(cl(int(A)))⊂ A.

Definition 2.2. Let (X ,τ) be a topological space and A⊂ X

i) an ω-closed set [8] (= ĝ-closed [9]) if cl(A) ⊂U whenever A ⊂U and U is semi-open in

(X ,τ),

ii) a D-closed set [4] if pcl(A)⊂ int(U) whenever A⊂U and U is ω-open in (X ,τ).

Complements of the above mentioned sets are called their respectively open sets

Definition 2.3. A subset A of (X ,τ) is called an D̂-closed [11] set if spcl(A) ⊂ U whenever

A⊂U and U is D-open in (X ,τ). The class of all D̂-closed sets in (X ,τ) is denoted by D̂c(τ).

That is, D̂c(τ) = {A⊂ X : A is D̂− closed in (X ,τ)}.

Definition 2.4. Let (X ,τ) be a topological space and A⊂ X

(1) semi-pre interior of A denoted by spint(A) is the union of all semi-pre open subsets of A

(2) semi-pre closure of A denoted by spcl(A) is the intersection of all semi-pre closed sub-

sets of A

Definition 2.5. A space X is called a TD̂-space if every D̂-closed set is closed.
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Theorem 2.6. [11] A subset A of a topological space (X ,τ) is said to be D̂-open if and only if

F ⊂ spint(A) whenever A⊃ F and F is D-closed in (X ,τ).

Proposition 2.7. [11] In a topological space X, assume that D̂o(τ) is closed under any union.

Then D̂cl(A) is an D̂-closed set for every subset A of X.

3. D̂-CLOSED MAPS

Definition 3.1. A map f : X → Y is said to be D̂-closed if the image of every closed set of X is

D̂-closed in Y .

Theorem 3.2. A surjective map f : X → Y is D̂-closed if and only if for each subset S of Y

and each open set U containing f−1(S), there exists an D̂-open set V of Y such that S ⊂V and

f−1(V )⊂U.

Proof. Necessity Suppose that f is D̂-closed. Let S be any subset of Y and U an open set of X

containing f−1(S). Put V = ( f (Uc))c. Then V is D̂-open in Y containing S and f−1(V )⊂U .

Sufficiency. Let F be any closed set of X . Put B = ( f (F))c, then we have f−1(B) ⊂ Fc and

Fc is open in X . Be hypothesis there exists an D̂-open set in V of Y such that B ⊂ V and

f−1(V )⊂ Fc and so F ⊂ ( f−1(V ))c = f−1(V c). Therefore, we obtain f (F) =V c. Since V c is

D̂-closed, f (F) is D̂-closed in Y . This gives f is D̂-closed. �

Remark 3.3. Necessity of above theorem is proved without assuming that f is surjective. There-

fore we can obtain the following corollary.

Corollary 3.4. If f : X→Y is D̂-closed, then for any closed set F of Y and for any open set U of

X containing f−1(F) there exists a semi-preopen set V of Y such that F ⊂V and f−1(V )⊂U.

Proof. By Theorem 3.2, there exists an D̂-open W of Y such that F ⊂W and f−1(W )⊂W . Since

F is closed, F is D-closed. By theorem 2.6 F ⊂ spint(w). Put V = spint(W ) then V is semi-

preopen in Y such that F ⊂V and f−1(spint(W ))⊂ f−1(W )⊂U and hence f−1(V )⊂U . �

Remark 3.5. The following example shows that composition of two D̂-closed maps is not D̂-

closed.



4176 K. DASS, G. SURESH

Example 3.6. Let X = Y = Z = {p,q,r}, τ = {φ ,{p},{q},{p,q},X}, σ = {φ ,{p,q},Y} and

η = {φ ,{p},Z}. Let f : (X ,τ)→ (Y,σ) and g : (Y,σ)→ (Z,η) are identity maps. Then clearly

f and g are D̂-closed maps but g ◦ f : X → Z is not D̂-closed, since {p,r} is closed in X and

(g◦ f ){p,r}= g( f ({p,r})) = g({p,r}) = {p,r} is not D̂-closed in Z.

Proposition 3.7. If f : X → Y and g : Y → Z are D̂-closed maps with Y is a TD̂–space, then

g◦ f : X → Z is also an D̂-closed map.

Proof. Clearly follows from Definitions. �

Proposition 3.8. If f : X → Y from a space X to a TD̂-space Y . Then the following are equiva-

lent:

(1) f is D̂-closed

(2) f is closed

Proof. Follows by Definition 2.5 �

Proposition 3.9. Let f : X →Y and g : Y → Z be two maps such that g◦ f : X → Z is D̂-closed.

i) If f is continuous surjection, then g is D̂-closed;

ii) If g is D̂-irresolute and injective, then f is D̂-closed;

iii) If f is D̂-continuous surjection and X is a TD̂-space then g is D̂-closed

Proof. i) Let A be a closed set of Y . Since f is continuous, f−1(A) is closed in X . Also since

g ◦ f is D̂-closed and f is surjective, (g ◦ f ) f−1(A) = g(A) is D̂-closed in Z. Hence g is

D̂-closed.

ii) Let B be a closed set of X . Since g◦ f is D̂-closed, (g◦ f )(B) is D̂-closed in Z. Also since

g is D̂-irresolute, g−1(g ◦ f )(A) is D̂-closed in Y . Since g is injective, f (B) is D̂-closed in

Y . Hence, f is D̂-closed.

iii) Let A be a closed set of Y . Since f is D̂-continuous, f−1(A) is D̂-closed in X . Also since

X is a TD̂-space, we have f−1(A) is closed in X . Since (g◦ f ) is closed and f is surjective,

then (g◦ f ) f−1(A) = g(A) is D̂-closed in Z. Hence, g is D̂-closed.

�
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Definition 3.10. A space X is said to be ultra D̂-regular if for each closed set F of X and each

point x /∈ F there exists disjoint D̂-open sets U and V such that F ⊂U and x ∈V .

Theorem 3.11. In a topological space X, assume that D̂o(τ) is closed under any union. Then

the following statements are equivalent:

a) X is ultra D̂-regular,

b) for every point x of X every open set V containing x, there exists an D̂-open set A such that

x ∈ A⊂ D̂cl(A)⊂V .

Proof. a =⇒ b Let x ∈ X and V be an open set containing x.Then V c is closed and x /∈ V c.

By (a) there exists disjoint D̂-open sets A and B such that x ∈ A and V c ⊂ B. That is Bc ⊂ V .

Since every open set is D̂-open, V is D̂-open. Since B is D̂-open, Bc is D̂-closed. Therefore,

D̂cl(Bc) ⊂ V . Since A∩B = φ , A ⊂ Bc. Therefore, x ∈ A ⊂ D̂cl(A) ⊂ D̂cl(Bc) ⊂ V . Hence,

x ∈ A⊂ D̂cl(A)⊂V .

b =⇒ a. Let F be a closed set and x /∈ F . This implies that Fc is an open set containing x.

By (b) there exists an D̂-open set A such that x ∈ A⊂ D̂cl(A)⊂ Fc. That is, F ⊂ (D̂cl(A))c. By

Proposition 2.7 D̂cl(A) is D̂-closed. Hence, (D̂cl(A))c is D̂-open. Therefore, A and (D̂cl(A))c

are the required D̂-open sets. �

Theorem 3.12. Assume that D̂o(τ) is closed under any union. If f : X → Y is a continuous

D̂-closed surjective map and X is a regular space, then Y is ultra D̂-regular.

Proof. Let y∈Y and V be an open set containing y of Y . Let x be a point of X such that y= f (x).

Since f is continuous, f−1(V ) is open in X . Since X is regular there exists an open set U such

that x∈U ⊂ cl(U)⊂ f−1(V ). Hence, y = f (x)∈ f (U)⊂ f (cl(U))⊂V . Since f is an D̂-closed

map, f (cl(U)) is an D̂-closed set contained in the open set V . Since every open set is D-open, V

is D-open. Hence, spcl( f (cl(U)))⊂V . Therefore y ∈ f (U)⊂ D̂cl( f (U))⊂ D̂cl( f (cl(U)))⊂

spcl( f (cl(U)))⊂V . This implies that y ∈ f (U)⊂ D̂cl( f (U)⊂V . Since f is an open map and

U is open in X , f (U) is open in Y . Since every open set is D̂-open, f (U) is D̂-open in Y . Thus

for every point y of Y and every open set V containing y there exists an D̂-open set f (U) such

that y ∈ f (U)⊂ D̂cl( f (U))⊂V . Hence by theorem 7, Y is ultra D̂-regular. �
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Definition 3.13. A space X is said to be ultra D̂-normal if for disjoint closed sets A and B of X

there exist disjoint D̂-open sets U and V such that A⊂U and B⊂V .

Theorem 3.14. Assume that D̂o(τ) is closed under any union. If f : X → Y is a continuous

D̂-closed surjective map and X is a normal space, then Y is ultra D̂-normal.

Proof. Let A and B be disjoint closed sets of Y . Since X is normal there exist disjoint open

sets U and V of X such that f−1(A) ⊂ U and f−1(B) ⊂ V . By theorem 3.2, there exist D̂-

open sets G and H such that A ⊂ G, B ⊂ H and f−1(G) ⊂ U , f−1(H) ⊂ V . Then we have

f−1(G)∩ f−1(H) = φ and hence G∩H = φ . Since G is D̂-open and A is closed, A⊂G implies

A⊂ spint(G)⊂ D̂int(G). Similarly B⊂ D̂int(H). Therefore, D̂int(G)∩ D̂int(H) = φ . Thus Y

is ultra D̂-normal. �

Theorem 3.15. If f : X → Y is a bijective D̂-closed map of a space X onto an D̂-connected

space Y , then X is connected.

Proof. Let us assume that X is not connected. Then there exist nonempty open sets U and V

such that U ∩V = φ and X =U ∪V . Therefore U and V are clopen in X and f (U) and f (V ) are

D̂-closed. Moreover, we have f (U)∩ f (V ) = φ and f (U)∪ f (V ) =Y . Since f is bijective, f (U)

and f (V ) are nonempty. This indicates that Y is not D̂-connected. This is a contradiction. �

4. STRONGLY D̂-CLOSED AND QUASI D̂-CLOSED MAPS

Definition 4.1. A map f : X → Y is said to be strongly D̂-closed if for each D̂-closed set F of

X, f (F) is D̂-closed in Y .

Definition 4.2. A map f : X → Y is said to be quasi D̂-closed if for each D̂-closed set F of X,

f (F) is closed in Y .

Proposition 4.3. Every quasi D̂-closed map is strongly D̂-closed.

Proof. Obvious. �

Proposition 4.4. Every quasi D̂-closed map is closed.

Proof. Since every closed set is D̂-closed, we get the proof. �
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Proposition 4.5. Every strongly D̂-closed map is D̂-closed.

Proof. Clearly follows from Definitions. �

Example 4.6. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p,q},Y}. Clearly identity map f : (X ,τ)→ (Y,σ) is strongly D̂-closed map but not quasi

D̂-closed, Since {r} is D̂-closed in X but f ({r}) = {r} is not closed in Y .

Example 4.7. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p,q},X} and σ =

{φ ,{p},{p,q},Y}. Clearly identity map f : (X ,τ)→ (Y,σ) is closed map but not quasi D̂-

closed, Since {q} is D̂-closed in X but f ({q}) = {q} is not closed in Y and not strongly D̂-

closed, Since {p} is D̂-closed in X but f ({p}) = {p} is not D̂-closed in Y .

Theorem 4.8. A surjective mapping f : X →Y is quasi-D̂-closed if and only if for any subset B

of Y and for each D̂-open set U of X containing f−1(B), there is an open set V of Y containing

B such that B⊂V and f−1(V )⊂U.

Proof. Necessity Suppose that f is quasi D̂-closed. Let S be any subset of Y and U an

D̂-open set of X containing f−1(S). Put V = ( f (Uc))c. Then V is open in Y containing S and

f−1(V )⊂U .

Sufficiency. Let F be any D̂-closed set of X . Put B = ( f (F))c, then we have f−1(B) ⊂ Fc

and Fc is D̂-open in X . By hypothesis there exists an open in V of Y such that B ⊂ V and

f−1(V )⊂ Fc and so F ⊂ ( f−1(V ))c = f−1(V c) . Therefore, we obtain f (F) =V c. Since V c is

closed, f (F) is closed in Y . This gives f is quasi D̂-closed. �

Theorem 4.9. In a topological space X, assume that D̂o(τ) is closed under any union. A map

f : X → Y is quasi D̂-closed if and only if for every subset U of X, cl( f (U))⊂ f (D̂cl(U)).

Proof. Let f be quasi D̂-closed. We have U ⊂ D̂cl(U) and also D̂cl(U) is an D̂-closed set.

Hence we obtain f (U)⊂ f (D̂cl(U)) and f (D̂cl(U)) is closed. Hence cl( f (U))⊂ f (D̂cl(U)).

Conversely, assume that the given condition holds. If U is an D̂-closed in X , then cl( f (U))⊂

f (D̂cl(U)) = f (U). Consequently, f (U) = cl( f (U)) and hence f is quasi D̂-closed. �
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Theorem 4.10. In a topological space X, assume that D̂o(τ) is closed under any union. A map

f : X → Y is strongly D̂-closed if and only if for every subset U of X, D̂cl( f (U))⊂ f (D̂cl(U)).

Proof. Let f be strongly D̂-closed. We have U ⊂ D̂cl(U) and also D̂cl(U) is an D̂-closed set.

Hence we obtain f (U)⊂ f (D̂cl(U)) and f (D̂cl(U)) is closed. Hence cl( f (U))⊂ f (D̂cl(U)).

Conversely, assume that the given condition holds. If U is an D̂-closed in X , then cl( f (U))⊂

f (D̂cl(U)) = f (U). Consequently, f (U) = cl( f (U)) and hence f is strongly D̂-closed. �

Proposition 4.11. Let f : X → Y and g : Y → Z be two strongly D̂-closed mapping. Then

g◦ f : X → Z is a strongly D̂-closed mapping.

Proof. Obvious �

Theorem 4.12. If f : X → Y and g : Y → Z be two mapping such that g◦ f : X → Z is strongly

D̂-closed.

i) If f is D̂-irresolute and surjective, then g is strong D̂-closed.

ii) If g is D̂-irresolute injection, then f is strongly D̂-closed.

Proof. i) Let A be a is D̂-closed set of Y . Since f is D̂-irresolute, f−1(A) is D̂-closed in X .

Also since g◦ f is strongly D̂-closed and f is surjective, (g◦ f ) f−1(A) = g(A) is D̂-closed

in Z. Hence g is strongly D̂-closed.

ii) Let B be a D̂-closed set of X . Since g◦ f is D̂-closed, (g◦ f )(B) is D̂-closed in Z. Also since

g is D̂-irresolute, g−1(g ◦ f )(B) is D̂-closed in Y . Since g is injective, f (B) is D̂-closed in

Y . Hence, f is strongly D̂-closed.

�

Theorem 4.13. Assume that D̂o(τ) is closed under any union. If f : X → Y is a continuous

strongly D̂-closed bijective map and X is a D̂-regular space, then Y is ultra D̂-regular.

Proof. Let y ∈ Y and V be an open set containing y of Y . Let x be a point of X such that

y = f (x). Since f is continuous, f−1(V ) is open in X . By theorem 3.11, there exists an D̂-open
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set U such that x ∈U ⊂ D̂cl(U)⊂ f−1(V ). Then, y ∈ f (U)⊂ f (D̂cl(U))⊂V . By proposition

2.7 D̂cl(U) is D̂-closed. Since f is an strongly D̂-closed map, f (D̂cl(U)) is an D̂-closed set.

Since every open set is D-open, V is D-open. Hence, spcl( f (cl(U))) ⊂ V . Therefore, we

have D̂cl( f (D̂cl(U))) ⊂ spcl( f (D̂cl(U))) ⊂ V . This implies that y ∈ f (U) ⊂ D̂cl( f (U)) ⊂

D̂cl( f (D̂cl(U)))⊂V . That is, y ∈ f (U)⊂ D̂cl( f (U))⊂V . Now U is D̂-open implies Uc is D̂-

closed in X . Since f is strongly D̂-closed, f (Uc) is D̂-closed in Y . That is, ( f (U))c is D̂-closed

in Y . This implies that f (U) is D̂-open in Y . Thus for every point y of Y and every open set V

containing y there exists an D̂-open set f (U) such that y ∈ f (U) ⊂ D̂cl( f (U)) ⊂ V . Hence by

theorem 3.11, Y is ultra D̂-regular. �

Theorem 4.14. If f : X → Y is a continuous quasi D̂-closed surjective map and X is an ultra

D̂-normal space, then Y is normal.

Proof. Let A and B be disjoint closed sets of Y . Since X is ultra D̂-normal there exist disjoint

D̂-open sets U and V of X such that f−1(A)⊂U and f−1(B)⊂V . By theorem 3.5, there exist

open sets G and H of Y such that A⊂ G, B⊂ H and f−1(G)⊂U , f−1(H)⊂V . Then we have

f−1(G)∩ f−1(H) = φ and hence G∩H = φ . �

Theorem 4.15. If f : X → Y be a bijective map. Then following hold:

i) If f is strongly D̂-closed map and Y is an D̂-connected space, then X is D̂-connected.

ii) If f is quasi D̂-closed map and Y is an D̂-connected space, then X is D̂-connected.

Proof. i) Let us assume that X is not D̂-connected. Then there exist nonempty D̂-open sets U

and V such that U∩V = φ and X =U∪V . Therefore U and V are D̂-clopen in X . Since f is

strongly D̂-closed map, f (U) and f (V ) are D̂-closed. Moreover, we have f (U)∩ f (V ) = φ

and f (U)∪ f (V ) = Y . Since f is bijective, f (U) and f (V ) are nonempty. This indicates

that Y is not D̂-connected. This is a contradiction.

ii) Similar to that of (i)

�

Proposition 4.16. Let f : X → Y from a space X to a TD̂Y . Then the following are equivalent:
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i) f is strongly D̂-closed.

ii) f is quasi D̂-closed.

Proof. Follows by proposition 4.3 and by Definition 2.5. �
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