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Abstract. In this paper we introduce and investigate new class of maps called D̂-homeomorphism, D̂-quotient map

and several characterization and some of their properties. Also we investigate its relationship with other types of

functions.
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1. INTRODUCTION

The notion homeomorphism plays a very important role in topology. By definition a home-

omorphism between two topological spaces X and Y is a bijective map f : (X ,τ)→ (Y,σ)

when both f and f−1 are continuous map. K. Dass and G. Suresh [10] introduced D̂-closed set

in topological spaces. K. Dass and G. Suresh [3] introduced D̂-continuous map, in topological

spaces. In this paper we introduce the concept of D̂-open maps, quasi D̂-open maps and strongly

D̂-open maps in topological spaces and also D̂-homeomorphism, strongly D̂-homeomorphism

and D̂-quotient map are obtained.
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2. PRELIMINARIES

Throughout this paper, spaces means topological spaces on which no separation axioms are

assumed unless otherwise mentioned and f : (X ,τ)→ (Y,σ) (or simply f : X → Y ) denotes a

function f of a space (X ,τ) into a space (Y,σ). Let A be a subset of a space X . The closure, the

interior and complement of A are denoted by cl(A), int(A) and Ac respectively.

Definition 2.1. A subset A of a topological space (X ,τ) is called

i) a pre-open set [5] if A⊂ int(cl(A)) and a pre-closed set if cl(int(A))⊂ A,

ii) a semi-open set [2] if A⊂ cl(int(A)) and a semi-closed set if int(cl(A))⊂ A,

iii) a semi-pre-open set [7] (β -open [1]) if A⊂ cl(int(cl(A))) and a semi-preclosed set ( = β -

closed) if int(cl(int(A)))⊂ A.

Definition 2.2. Let (X ,τ) be a topological space and A⊂ X

i) an ω-closed set [8] (= ĝ-closed [9]) if cl(A) ⊂U whenever A ⊂U and U is semi-open in

(X ,τ),

ii) a D-closed set [4] if pcl(A)⊂ int(U) whenever A⊂U and U is ω-open in (X ,τ).

Complements of the above mentioned sets are called their respectively open sets

Definition 2.3. A subset A of (X ,τ) is called an D̂-closed [10] set if spcl(A) ⊂ U whenever

A⊂U and U is D-open in (X ,τ). The class of all D̂-closed sets in (X ,τ) is denoted by D̂c(τ).

That is, D̂c(τ) = {A⊂ X : A is D̂− closed in (X ,τ)}.

Definition 2.4. Let (X ,τ) be a topological space and A⊂ X

(1) semi-pre interior of A denoted by spint(A) is the union of all semi-pre open subsets of A

(2) semi-pre closure of A denoted by spcl(A) is the intersection of all semi-pre closed sub-

sets of A

Definition 2.5. A function f : (X ,τ)→ (Y,σ) is said to be D̂-continuous [3] if f−1(H) is D̂-

closed in (X ,τ) for every closed set H in Y .

Definition 2.6. A map f : X →Y is called D̂-irresolute [6] if f−1(F) is D̂-closed in X for every

D̂-closed set F of Y .
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Proposition 2.7. [6] If f : X → Y is D̂-irresolute, then f is D̂-continuous but not conversely.

Proposition 2.8. Let f : X → Y and g : Y → Z be any two maps. Then

(a) g◦ f is D̂-irresolute if both f and g are D̂-irresolute.

(b) g◦ f is D̂-continuous if g is D̂-continuous and f is D̂-irresolute.

Proposition 2.9. Let X be a topological space, Y be a TD̂-space and f : X →Y be a map. Then

the following are equivalent:

(i) f is D̂-irresolute,

(ii) f is D̂-continuous.

3. D̂-HOMEOMORPHISM

Definition 3.1. A map f : X → Y is said to be an D̂-open map if the image f (A) is D̂-open in Y

for each open set A in X.

Example 3.2. Let X = Y = {a,b,c}, τ = {φ ,{a},{b},{a,b},X} and σ = {φ ,{a,b},Y}. Let

f : (X ,τ)→ (Y,σ) be an identity map. Here D̂o(σ) = P(X)−{c}. Then f is an D̂-open map.

Theorem 3.3. A surjective map f : X → Y is D̂ - open if and only if for any subset S of Y and

for any closed F containing f−1(S), there exists an D̂ - closed set K of Y containing S such that

f−1(K)⊂ F

Theorem 3.4. For any bijection f : X → Y , the following conditions are equivalent.

i) f−1 : Y → X is D̂ - continuous.

ii) f is an D̂ - open map.

iii) f is an D̂ - closed map.

Proof. (i) =⇒ (ii) : Let U be an open set of X . By assumption ( f−1)−1(U) = f (U) is D̂ - open

in Y and so f is D̂ - open.

(ii) =⇒ (iii) : Let F be a closed set of X . Then Fc is open in X . By (ii), f (Fc) is D̂ - open

in Y and therefore f (Fc) = ( f (F))c is D̂ - open in Y . Thus f (F) is D̂ - closed in Y implies f is

D̂ - closed.
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(iii) =⇒ (i) : Let F be a closed set of X . By (iii), f (F) is D̂ - closed in Y . But f (F) =

( f−1)−1(F) and therefore f−1 is D̂ - continuous. �

Definition 3.5. A map f : X→Y is said to be strongly D̂ -open if the image of every D̂-open set

in X is D̂ - open in Y .

Definition 3.6. A map f : X → Y is said to be quasi - D̂ -open if the image every D̂-open set in

X is open in Y .

Theorem 3.7. A surjective map f : X → Y is quasi - D̂ - open if and only if for any subset B of

Y and any D̂ - closed set F of X containing f−1(B), there exists a closed set G of Y containing

B such that f−1(G)⊂ F.

Proof. Suppose f is quasi - D̂ - open. Let B ⊂ Y and F be an D̂ - closed set of X containing

f−1(B). Now, put G=( f (Fc))c. Then G is a closed set of Y containing B such that f−1(G)⊂F .

Conversely, let U be an D̂ - open set of X and put B = ( f (U))c. Then Uc is an D̂ - closed

set in X containing f−1(B). By hypothesis, there exists a closed set F of Y such that B ⊂ F

and f−1(F) ⊂ Uc. Hence, we obtain f (U) ⊂ Fc. On the otherhand it follows that B ⊂ F ,

Fc ⊂ Bc = f (U). Thus we obtain f (u) = Fc which is open in Y and hence f is quasi - D̂ - open

map. �

Remark 3.8. From the above definitions we obtain the following implications.

quasi - D̂ - open strongly - D̂ - open =⇒ D̂ - open. However the reverse implications are not

true by the following examples.

Example 3.9. Let X = {p,q,r}, Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p,q},Y}. Clearly identity map f : (X ,τ)→ (Y,σ) is strongly D̂-open map but not quasi

D̂-open map, since {q} is D̂-open in X but f ({q}) = {q} is not open in Y .

Example 3.10. Let X = {p,q,r}, Y = {p,q,r}, τ = {φ ,{p,q},X} and σ = {φ ,{r},{q,r},X}.

Clearly identity map f : (X ,τ)→ (Y,σ) is D̂-open map but not strongly D̂-open, Since {q} is

D̂-open in X but f ({q}) = {q} is not D̂-open in Y .

Theorem 3.11. For any bijection f : X → Y , the following conditions are equivalent:
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i) f−1 : Y → X is D̂ - irresolute,

ii) f is a strongly D̂ - open map,

iii) f is a strongly D̂ - closed map.

Proof. Similar to that of Theorem 3.4. �

Definition 3.12. A bijection f : X→Y is called D̂ - homeomorphisms if f is both D̂ - continuous

and D̂ - open.

Proposition 3.13. Every homeomorphism is an D̂ - homeomorphism but not conversely.

Proof. Follows from Definitions. �

Example 3.14. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p},

{p,q},Y}. Clearly identity map f : (X ,τ) → (Y,σ) is D̂ - homeomorphisms but not

homeomorphisms, Since f ({q}) = {q} is open in X but f ({p}) = {q} is not open in Y , hence

f is not an open map.

Theorem 3.15. Let f : X→Y be a bijective, D̂ - continuous map. Then the following conditions

are equivalent:

i) f is an D̂ - open map,

ii) f is an D̂ - homeomorphism,

iii) f is an D̂ - closed map.

Proof. (i) =⇒ (ii) : Obvious from definition.

(ii) =⇒ (iii) : Suppose f is an D̂ - open map and let F be a closed set in X . Then Fc is open

in X , hence f (Fc) = ( f (F))c is D̂ - open in Y implies f is a closed map Converse follows by

the same technique. �

Remark 3.16. The composition of two D̂ - homeomorphisms need not be an D̂ - homeomor-

phisms as seen from the following example.

Example 3.17. Let X =Y = Z = {p,q,r}, τ = {φ ,{p},X}, σ = {φ ,{p,q},Y} and η = {φ ,{p},

{q},{p,q},Z}. Let f : (X ,τ)→ (Y,σ) and g : (Y,σ)→ (Z,η) be two identity map. Then f and
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g are D̂ - homeomorphisms. Let A = {p,r} be a closed in Z. Then (g◦ f )−1(A) = f−1g−1(A) =

{p,r} which is not D̂-closed in (X ,τ). Therefore composition g ◦ f : (X ,τ)→ (Z,η) is not an

D̂ - homeomorphisms.

Definition 3.18. A bijection f : X → Y is said to be strongly - D̂ - homeomorphisms if both f

and f−1 and D̂ - irresolute.

Example 3.19. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p,q},

Y}. Let f : (X ,τ)→ (Y,φ) be an identity map. Then f is strongly D̂ - homeomorphism.

We denote the family of all D̂ - homeomorphisms (resp, strongly D̂ - homeomorphism) of a

topological space X onto itself by D̂−h(X) (resp. SD̂−h(X)).

Proposition 3.20. Every strongly D̂ - homeomorphism is an D̂ - homeomorphism but not con-

versely. In otherwards for any space X, SD̂−h(X)⊂ D̂−h(X).

Proof. Since every D̂ - irresolute map is D̂ - continuous and also from remark 3.8, we get the

proof. �

Example 3.21. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p},

{p,q},Y}. Clearly identity map f : (X ,τ) → (Y,σ) is D̂ - homeomorphisms but not

strongly D̂ - homeomorphisms, Since {r} is D̂ - open in Y but f−1({r}) = {r} is not D̂ - open

in X. Hence f is D̂ - irresolute and so f is not strongly D̂ - homeomorphisms.

Proposition 3.22. If f : X →Y and f : Y → Z are two strongly D̂ - homeomorphisms then their

composition g◦ f : X → Z is also a strongly D̂ - homeomorphism.

Proof. Let U be an D̂ - open set in Z. Now (g ◦ f )−1(U) = f−1(g−1(U)) = f−1(V ) where

V = g−1(U). By hypothesis, V is D̂ - open in Y and so again by hypothesis f−1(V ) is D̂ - open

in X . Thus g◦ f is D̂ - irresolute. Also for an D̂ - open set G in X , we have (g◦ f )(G) = g(D)

where D = f (G), by hypothesis f (G) is D̂ - open in Y and so again by hypothesis, g( f (G)) is D̂

- open in Z. Thus (g◦ f )−1 is D̂ - irresolute. Hence (g◦ f ) is strongly D̂ - homeomorphism. �
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Proposition 3.23. The set SD̂−h(X) is a group under the composition of maps.

Proof. Define a binary operation ◦ : SD̂−h(X)×SD̂−h(X)→ SD̂−h(X) by f ◦g= g◦ f for all

f and g in SD̂−h(X) and ◦ is the usual operation of composition of maps. Then by Proposition

3.22, g◦ f ∈ SD̂−h(X). We know that the composition of maps is associative and the identity

map i : X → X belonging to SD̂− h(X) serves as the identity element. If f ∈ SD̂− h(X) that

f−1 ∈ SD̂− h(X) such that f ◦ f−1 = f−1 ◦ f = i and so inverse exist for each element of

SD̂−h(X). Therefore, (SD̂−h(X),◦) is a group under the composition of maps. �

Theorem 3.24. Let f : X → Y be an SD̂ - homeomorphism. Then f induces an isomorphism

from the group SD̂−h(X) onto the group SD̂−h(Y ).

Proof. Using the map f , we define a map ψ f : SD̂− h(X)→ SD̂− h(Y ) by ψ f (h) = f ◦ h ◦

f−1 for each h ∈ SD̂− h(X). Then ψ f is a bijection, further for h1,h2 ∈ SD̂− h(X). ψ f (h1 ◦

h2) = f ◦ (h1 ◦h2)◦ f−1 = ( f ◦h1 ◦ f−1)◦ ( f ◦h2 ◦ f−1) = ψ f (h1)◦ψ f (h2). Therefore, ψ f is a

homomorphism and so it induces an isomorphism induced by f . �

Theorem 3.25. SD̂ - homeomorphism is an equivalence relation on the collection of all topo-

logical spaces.

Proof. Reflexivity and symmetry are immediate and transitivity follows from Proposition 3.22.

�

4. D̂ - QUOTIENT MAP

Definition 4.1. A surjective map f : X → Y is said to be an D̂ - quotient map if f is D̂ -

continuous and f−1(V ) is open in X implies V is D̂ - open in Y .

The following proposition is an easy consequence from the definitions.

Proposition 4.2. Every quotient map is D̂ - quotient but not conversely.

Proof. The proof follows from the Definitions. �

Example 4.3. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p,q},
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Y}. Clearly identity map f : (X ,τ) → (Y,σ) is an D̂ - quotient map but not a quotient

map, Since {q} is open in X but f−1({q}) = {q} is not open in Y .

Proposition 4.4. If a map f : X → Y is surjective, D̂ - continuous and D̂ - open, then f is an D̂

- quotient map.

Proof. We only need to prove that f−1(V ) is open in X implies V is an D̂ - open set in Y . Let

f−1(V ) be open in X . Then f ( f−1(V )) is an D̂ - open set, since f is D̂ - open. Hence, V is an

D̂ - open set, as f is surjective and f ( f−1(V )) =V . Thus f is an D̂ - quotient map. �

Proposition 4.5. If a map f : X → Y is a homeomorphism, then f is a quotient map but not

conversely.

Proof. Clearly follows from the definition. �

Example 4.6. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p,q},

Y}. Clearly identity map f : (X ,τ) → (Y,σ) is an D̂ - quotient map but not homeomor-

phism, Since {q} is open in X but f−1({q}) = {q} is not open in Y .

Proposition 4.7. Let f : X → Y be an open surjective, D̂ - irresolute map and g : Y → Z be an

D̂ - quotient map. Then the composition g◦ f : X → Z is an D̂ - quotient map.

Proof. Let V be any open set in Z. Then g−1(V ) is an D̂ - open set, since g is an D̂ - quotient

map. Since f is D̂ - irresolute, f−1(g−1(V )) = (g◦ f )−1(V ) is an D̂ - open in X , which implies

(g ◦ f )−1(V ) is an D̂ - open set. This shows that g ◦ f is D̂ - continuous. Also, assume that

(g ◦ f )−1(V ) is open in X for V ⊂ Z, that is, f−1(g−1(V )) is open set in X . Since f is open

f ( f−1(V )) is open in Y . It follows that g−1(V ) is open in Y , because f is surjective. Since g is

a D̂ - quotient map, V is an D̂ - open set. Thus g◦ f : X → Z is an D̂ - quotient map. �

Proposition 4.8. Let h : X → Y is an D̂ - quotient map and g : X → Z is a continuous map

where Z is a space that is constant on each set h−1({y}) for each y ∈ Y , then g induces an D̂ -

continuous an D̂ - continuous map f : Y → Z such that f ◦h = g.
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Proof. Since g is constant on h−1({y}), for each y ∈ Y , the set g(h−1({y})) is an one point set

in Z. If we let f (y) to denote this point then it is clear that f is well defined and for each x ∈ X ,

f (h(X)) = g(X). We claim that f is D̂ - continuous. For if we let V be any open set in Z, then

g−1(V ) is open set as g is continuous. But g−1(V ) = h−1( f−1(V )) is open in X . Since h is an

D̂ - quotient map, f−1(V ) is an D̂ - open in Y . �

Definition 4.9. A surjective map f : X → Y is said to be a strongly D̂ - quotient map if f is D̂ -

continuous and f−1(V ) is D̂ - open in X implies V is D̂ - open in Y .

Proposition 4.10. Every strongly D̂ - quotient map is an D̂ - quotient map.

Proof. Let f : X→Y be a strongly D̂ - quotient map. Let f−1(V ) be an open in X . Then f−1(V )

be an D̂ - open in X . Since f is a strongly D̂ - quotient map, V is D̂ - open in Y . This shows that

f is an D̂ - quotient map. �

Remark 4.11. The converse of the above proposition need not be true in general as shown in

the following example.

Example 4.12. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q,r},X} and σ =

{φ ,{p},{q},

{p,q},Y}. Clearly identity map f : (X ,τ) → (Y,σ) is an D̂ - quotient map but not

strongly D̂ - quotient map, since {q} is D̂ - open in X but f−1({r}) = {r} is not D̂ - open in Y .

Definition 4.13. Let f : X→Y be a surjective map. Then f is called a completenly D̂ - quotient

map if f is D̂ - irresolute and f−1(V ) is D̂ - open in X implies U is open in Y .

Theorem 4.14. Let f : X → Y be a surjective map. Strongly D̂ - open and D̂ - irresolute map

and g : Y → Z be a completely D̂ - quotient map. Then g◦ f is a completely D̂ - quotient map.

Proof. Since f and g are D̂ - irresolute, g ◦ f is D̂ - irresolute, by Proposition 2.8. Suppose

(g ◦ f )−1(V ) is an D̂ - open in X for V ⊂ Z, that is, f−1(g−1(V )) is an D̂ - open in X . Since

f is surjective and strongly D̂ - open, f ( f−1(g−1(V ))) = g−1(V ) is D̂ - open in Y . Also g is

completely D̂ - quotient implies V is open in Z. Thus g◦ f is a completely D̂ - quotient map. �

Proposition 4.15. Every completely D̂ - quotient map is strongly D̂ - quotient map.
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Proof. Let f : X → Y be a completely D̂ - quotient map. By Proposition 2.7, f is D̂ - irresolute

implies f is D̂ - continuous. Hence the proof follows. �

Remark 4.16. The converse of the above proposition need not be true in general as shown in

the following example.

Example 4.17. Let X = {p,q,r} and Y = {p,q,r}, τ = {φ ,{p},{q},{p,q},X} and σ =

{φ ,{p},

{q,r},Y}. Clearly identity map f : (X ,τ) → (Y,σ) is an strongly D̂ - quotient map but

not a completely D̂ - quotient map, since {r} is D̂ - open in X but f−1({r}) = {r} is not D̂ -

open in X, implies that f is not D̂ - irresolute.

Theorem 4.18. Let f : X → Y be a surjective map and both X and Y be TD̂ - spaces. Then the

following are equivalent.

(i) f is a completely D̂ - quotient map;

(ii) f is a strongly D̂ - quotient map;

(iii) f is a D̂ - quotient map;

Proof. (i) =⇒ (ii) : Follows by Proposition 4.15.

(ii) =⇒ (iii) : Follows by Proposition 4.10.

(iii) =⇒ (i) : Since Y is a TD̂ - space, f is D̂ - irresolute, by Proposition 2.9. Suppose f−1(V )

is D̂ - open in X . Since X is a TD̂, f−1(V ) is open in X . By (iii), V is D̂ - open in Y . Since Y is

a TD̂ - space, V is open in Y . Hence, we get (i). �
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