(a, d)-TOTAL EDGE IRREGULARITY STRENGTH OF GRAPHS

K. MUTHUGURUPACKIAM* , R. PADMAPRIYA
Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur, Tamil Nadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A new graph characteristic, (a, d)-total edge irregularity strength of graphs is introduced. (a, d)-edge irregular evaluations of some families of graphs has been made, upper and lower bounds of the above parameter are determined.

Keywords: irregular labeling; (a, d)-irregular labeling; irregularity strength.
2010 AMS Subject Classification: 05C78.

1. Introduction

A graph labeling is a mapping $\sigma: \mathscr{D} \rightarrow\{1,2, \ldots, h\}$ subject to certain conditions, if the domain \mathscr{D} is the set of vertices (or edges), then σ is called a vertex labeling (or an edge labeling). If \mathscr{D} is the set of vertices and edges, then σ is called a total labeling. For an edge h-labeling $\phi: E(G) \rightarrow\{1,2, \ldots, h\}$, the associated weight of a vertex $x \in V(G)$ is $w_{\phi}(x)=\sum \phi(x y)$, where the sum is taken over all vertices y adjacent to x.

In 1988, Chartrand et al. [6] introduced edge h-labeling ϕ of a graph G such that $w_{\phi}(x) \neq$ $w_{\phi}(y)$ for all vertices $x, y \in V(G)$ with $x \neq y$. Such labelings were called irregular assignments and the irregularity strength $s(G)$ of a graph G is known as the minimum h for which G has an

[^0]irregular assignment using labels atmost h. Many authors were much attracted by this parameter and investigated the bounds of $s(G)[1,2,3,5,7,8]$. Baca et al. [4] modified this irregularity strength and introduced the concept of total edge irregularity strength for a graph G. A total h labeling $\psi: V \cup E \rightarrow\{1,2, \ldots, h\}$ of a graph G is said to be an edge irregular total h-labeling if for each two distinct edges $x y$ and $x^{\prime} y^{\prime}$ their weights $\psi(x)+\psi(x y)+\psi(y)$ and $\psi\left(x^{\prime}\right)+\psi\left(x^{\prime} y^{\prime}\right)+$ $\psi\left(y^{\prime}\right)$ are distinct. The minimum h for which the graph G has an edge irregular total h-labeling is called the total edge irregularity strength of G, denoted by $\operatorname{tes}(G)$.

In [4], they have given the bounds of the total edge irregularity strength for all graphs and the result is as follows:

$$
\left\lceil\frac{|E|+2}{3}\right\rceil \geq t e s(G) \geq|E|,
$$

where $|E|$ is the cardinality of the edgeset of a graph G. Ivanco and Jendrol [10] proved that

$$
\operatorname{tes}(T)=\max \left\{\left\lceil\frac{|E(T)|+2}{3}\right\rceil, \frac{\Delta(T)+1}{2}\right\}, \text { where } T \text { is a tree. }
$$

Motivated by this parameter,Indra Rajasingh and Teresa Arockiamary Santiago were investigated and determined the exact value of this parameter for uniform theta graph in [9] and F.Salama determined the same for polar grid graph in [13]. Recently, Lucia Ratnasari et al.[11] found that the exact value of tes of an odd arithmetic book graph $B_{n}\left(C_{3,5,7, \ldots, 2 n+1}\right)$ of n sheets is equal to $\left\lceil\frac{n^{2}+n+3}{3}\right\rceil$ and tes of an even arithmetic book graph $B_{n}\left(C_{4,6,8, \ldots, 2 n+2}\right)$ is equal to $\left\lceil\frac{n^{2}+2 n+3}{3}\right\rceil$. Also, Yeni Susanti et al. [14] determined the exact values of tes of staircase graphs and its related graphs.

Due to the involvement on the total irregularity strength of graphs, we introduce a new parameter, namely (a, d)-total edge irregularity strength of graphs.

Let $G=(V, E)$ be a graph of order n and size m. A total h-labeling $\psi: V(G) \cup E(G) \rightarrow$ $\{1,2, \ldots, h\}$ is called (a, d)-edge irregular labeling if there exists a bijective function σ : $E(G) \rightarrow\{a, a+d, a+2 d, \ldots, a+(m-1) d\}$ defined by $\sigma(x y)=\psi(x)+\psi(y)+\psi(x y)$ called arithmetic progression edge weight of the edge $x y$, where $a \geq 3, d>1$.

We define the (a, d)-total edge irregularity strength of a graph G, denoted by $(a, d)-\operatorname{tes}(G)$, as the minimum h for which G has a (a, d)-edge irregular h-labeling.Also, we define another parameter called (a, d)-total vertex irregularity strength of a graph G, denoted by $(a, d)-t v s(G)$ in [12]

The main aim of this paper is to show the bounds of the (a, d)-total edge irregularity strength and to determine the precise value of this parameter for some families of graphs.

2. (a, d)-Edge Irregular Labeling of Graphs

The following theorem provides the upper and lower bounds of $(a, d)-t e s(G)$.

Lemma 2.1. Let $G=(V, E)$ be a graph of order n and size q. For integers $a \geq 3$ and $d \geq 2$, $\left\lceil\frac{a+(m-1) d}{3}\right\rceil \leq(a, d)-t e s(G) \leq a-2+(m-1) d$.

Proof. The upper bound of $(a, d)-t e s(G)$ can be obtained by assigning label 1 to all the vertices of G, further assign labels $a-2, a-2+d, a-2+2 d, \ldots, a-2+(m-1) d$ to the edges of G at random.

Assume that the graph G has $(a, d)-$ edge irregular labeling τ. Thus the edge weights are $a, a+d, a+2 d, \ldots, a+(m-1) d$. Since the heaviest weight $a+(m-1) d$ is the sum of three labels, $(a, d)-\operatorname{tes}(G) \geq\left\lceil\frac{a+(m-1) d}{3}\right\rceil$.

Theorem 2.2. Let P_{n} be a path of order $n \geq 3$. Then $(3,2)-\operatorname{tes}\left(P_{n}\right)=\left\lceil\frac{2 n-1}{3}\right\rceil$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the consecutive vertices of P_{n}. Define total labeling $\tau_{1}: V\left(P_{n}\right) \cup E\left(P_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{2 n-1}{3}\right\rceil\right\}$ as follows:

$$
\begin{gathered}
\tau_{1}\left(v_{3 i+1}\right)=2 i+1, \quad \text { if } 0 \leq i \leq\left\lfloor\frac{n-1}{3}\right\rfloor, \\
\tau_{1}\left(v_{3 i+2}\right)=2 i+1, \quad \text { if } 0 \leq i \leq\left\lfloor\frac{n-2}{3}\right\rfloor, \\
\tau_{1}\left(v_{3 i}\right)=2 i, \quad \text { if } 1 \leq i \leq\left\lfloor\frac{n}{3}\right\rfloor, \\
\tau_{1}\left(v_{3 i+1} v_{3 i+2}\right)=2 i+1, \quad \text { if } 0 \leq i \leq\left\lfloor\frac{n-2}{3}\right\rfloor, \\
\tau_{1}\left(v_{3 i+2} v_{3 i+3}\right)=2 i+2, \quad \text { if } 0 \leq i \leq\left\lfloor\frac{n-3}{3}\right\rfloor, \\
\tau_{1}\left(v_{3 i+3} v_{3 i+4}\right)=2 i+2, \quad \text { if } 0 \leq i \leq\left\lfloor\frac{n-4}{3}\right\rfloor
\end{gathered}
$$

Under the labeling τ_{1} the edge weights are as follows:

$$
w_{\tau_{1}}\left(v_{i} v_{i+1}\right)=2 i+1, \quad \text { if } 1 \leq i \leq n-1 .
$$

The weights of the edges of P_{n} forms an arithmetic progression with common difference 2 and hence $(3,2)-\operatorname{tes}\left(P_{n}\right) \leq\left\lceil\frac{2 n-1}{3}\right\rceil$. Lemma 2.1 shows that $(3,2)-\operatorname{tes}\left(P_{n}\right) \geq\left\lceil\frac{2 n-1}{3}\right\rceil$, this concludes the proof.

Definition 2.3. The corona product $G_{1} \odot G_{2}$ of two graphs G_{1} and G_{2} is a graph G obtained by taking one copy G_{1} which has n vertices and n copies of G_{2} and then joining $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 2.4. A special type of graph $C(n, t)$ is defined by the corona product of the path P_{n} by $t K_{1}$ i.e., $C(n, t)=P_{n} \odot t K_{1}$.

Theorem 2.5. Let P_{n} be the path on n vertices, then $(3,2)-\operatorname{tes}(C(n, t))=\left\lceil\frac{n(2 t+2)-1}{3}\right\rceil, n \geq 2$.
Proof. Let $C(n, t)=P_{n} \odot t K_{1}$ be the corona product of path P_{n} by $t K_{1}$. Let $V(C(n, t))=\left\{v_{i}: 1 \leq\right.$ $i \leq n\} \cup\left\{u_{i, j}: 1 \leq i \leq n, 1 \leq j \leq t\right\}$ and $E(C(n, t))=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} u_{i, j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq t\}$ be the vertex set and edge set of $C(n, t)$. Define total labeling $\tau_{2}: V(G) \cup E(G) \rightarrow$ $\left\{1,2, \ldots,\left\lceil\frac{n(2 t+2)-1}{3}\right\rceil\right\}$ as follows:

$$
\begin{gathered}
\tau_{2}\left(v_{i}\right)=1+(i-1) t, \quad \text { if } 1 \leq i \leq n \\
\tau_{2}\left(v_{i} v_{i+1}\right)=t+2 i-1, \quad \text { if } 1 \leq i \leq n-1
\end{gathered}
$$

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, 1 \leq j \leq t$,

$$
\tau_{2}\left(v_{2 i} u_{2 i, j}\right)= \begin{cases}\frac{t+3}{2}+(i-1)(t+2)+(j-1), & \text { if } \mathrm{t} \text { is odd } \\ \frac{t+4}{2}+(i-1)(t+2)+(j-1), & \text { if } \mathrm{t} \text { is even }\end{cases}
$$

For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, 1 \leq j \leq t$,

$$
\tau_{2}\left(v_{2 i-1} u_{2 i-1, j}\right)=1+(i-1)(t+2)+(j-1)
$$

For $1 \leq i \leq n, 1 \leq j \leq t$,

$$
\tau_{2}\left(u_{i, j}\right)= \begin{cases}\tau_{2}\left(v_{i} u_{i, j}\right), & \text { if } \mathrm{i} \text { is odd } \\ \tau_{2}\left(v_{i} u_{i, j}\right)+1, & \text { if } \mathrm{i} \text { is even }\end{cases}
$$

The labeling τ_{2} induces edge weight function $\sigma: E(G) \rightarrow\{3,5, \ldots, n(2 t+2)-1\}$ is as follows:

$$
\begin{gathered}
\sigma\left(v_{i} v_{i+1}\right)=(2 t+2) i+1, \quad \text { if } 1 \leq i \leq n-1 \\
\sigma\left(v_{i} u_{i, j}\right)=(i-1)(2 t+2)+2 j+1, \quad \text { if } 1 \leq i \leq n, \quad 1 \leq j \leq t
\end{gathered}
$$

Thus weights of the edges of $C(n, t)$ forms an arithmetic progression sequence and hence $(3,2)-\operatorname{tes}(C(n, t)) \leq\left\lceil\frac{n(2 t+2)-1}{3}\right\rceil$. Lemma 2.1 shows that $(3,2)-t e s(C(n, t)) \geq\left\lceil\frac{n(2 t+2)-1}{3}\right\rceil$. Hence the proof.

Definition 2.6. A friendship graph F_{n} is a graph which consists of n triangles sharing a common vertex.

Theorem 2.7. If F_{n} is a friendship graph of order $2 n+1$, then $(3,2)-\operatorname{tes}\left(F_{n}\right)=\left\lceil\frac{6 n+1}{3}\right\rceil, n \geq 3$.
Proof. Let F_{n} be a friendship graph of $2 n+1$ vertices and $3 n$ edges. Let $V\left(F_{n}\right)=\left\{u, v_{i}: 1 \leq\right.$ $i \leq 2 n\}$ and $E\left(F_{n}\right)=\left\{v_{2 i-1} v_{2 i}: 1 \leq i \leq n\right\} \cup\left\{u v_{i}: 1 \leq i \leq 2 n\right\}$ be the vertex set and edge set of F_{n}. Define total labeling $\tau_{3}: V\left(F_{n}\right) \cup E\left(F_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{6 n+1}{3}\right\rceil\right\}$ as follows:

$$
\begin{aligned}
\tau_{3}\left(v_{2 i-1} v_{2 i}\right)= & \begin{cases}1, & \text { if } \mathrm{i}=1 \\
\left\lceil\frac{6 n+1}{3}\right\rceil, & \text { if } 2 \leq i \leq n\end{cases} \\
& \tau_{3}(u)=3
\end{aligned}
$$

For $1 \leq i \leq 2 n$,

$$
\tau_{3}\left(v_{i}\right)= \begin{cases}i, & \text { if } \mathrm{i} \text { is odd } \\ 1, & \text { if } \mathrm{i}=2 \\ \left\lceil\frac{6 n+1}{3}\right\rceil, & \text { if } \mathrm{i} \text { is even and } i \neq 2\end{cases}
$$

For $1 \leq i \leq 2 n$,

$$
\tau_{3}\left(u v_{i}\right)= \begin{cases}1, & \text { if } \mathrm{i} \text { is odd } \\ \left\lceil\frac{6 n+1}{3}\right\rceil, & \text { if } \mathrm{i}=2 \\ i-1, & \text { if } \mathrm{i} \text { is even and } i \neq 2\end{cases}
$$

Then the edge weight function $\sigma: E\left(F_{n}\right) \rightarrow\{3,5, \ldots, 6 n+1\}$ is as follows:

$$
\sigma\left(v_{2 i-1} v_{2 i}\right)= \begin{cases}3, & \text { if } \mathrm{i}=1 \\ 2\left\lceil\frac{6 n+1}{3}\right\rceil+2 i-1, & \text { if } 2 \leq i \leq n\end{cases}
$$

For $1 \leq i \leq 2 n$

$$
\sigma\left(u v_{i}\right)= \begin{cases}i+4, & \text { if } \mathrm{i} \text { is odd } \\ \left\lceil\frac{6 n+1}{3}\right\rceil+i+2, & \text { if } \mathrm{i} \text { is even. }\end{cases}
$$

Thus weights of the edges of F_{n} forms an arithmetic progression with common difference 2 and hence $(3,2)-\operatorname{tes}\left(F_{n}\right) \leq\left\lceil\frac{6 n+1}{3}\right\rceil$. Lemma 2.1 shows that $(3,2)-\operatorname{tes}\left(F_{n}\right) \geq\left\lceil\frac{6 n+1}{3}\right\rceil$. Hence the theorem.

Theorem 2.8. If $K_{1, n}$ is a star graph of order $n+1$, then $(3,2)-\operatorname{tes}\left(K_{1, n}\right)=n, n \geq 2$.

Proof. Let $V\left(K_{1, n}\right)=\left\{u, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u v_{i}: 1 \leq i \leq n\right\}$ be the vertex set and edge set of $K_{1, n}$ respectively. Define total labeling $\tau_{4}: V\left(K_{1, n}\right) \cup E\left(K_{1, n}\right) \rightarrow\{1,2, \ldots, n\}$ as follows:

$$
\begin{gathered}
\tau_{4}(u)=1 \\
\tau_{4}\left(v_{i}\right)=i, 1 \leq i \leq n \\
\tau_{4}\left(u v_{i}\right)=i, 1 \leq i \leq n .
\end{gathered}
$$

Then the edge weight function $\sigma: E\left(K_{1, n}\right) \rightarrow\{3,5, \ldots, 2 n+1\}$ is as follows:

$$
\sigma\left(u v_{i}\right)=2 i+1, \quad 1 \leq i \leq n
$$

Since $\tau_{4}(u)=1$, the remaining labels of edges and vertices are from $\frac{3-1}{2}, \frac{5-1}{2}, \ldots, \frac{2 n}{2}$ and forms an arithmetic progression.
$\therefore(3,2)-\operatorname{tes}\left(K_{1, n}\right) \leq n$. On the otherhand, to obtain the weight 3 it is essential to label the vertex u to 1 . Thus, $(3,2)-\operatorname{tes}\left(K_{1, n}\right) \leq n$. This concludes the theorem.

Theorem 2.9. If L_{n} is a ladder graph of order $2 n$, then $(3,2)-\operatorname{tes}\left(L_{n}\right)=\left\lceil\frac{6 n-3}{3}\right\rceil, n \geq 2$.
Proof. Let $V\left(L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$ be the vertex set and edge set of L_{n} respectively. Define total labeling $\tau_{5}: V\left(L_{n}\right) \cup E\left(L_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{6 n-3}{3}\right\rceil\right\}$ as follows:

$$
\begin{gathered}
\tau_{5}\left(u_{i}\right)=\tau_{5}\left(v_{i}\right)=\tau_{5}\left(u_{i} v_{i}\right)=2 i-1, \quad 1 \leq i \leq n \\
\tau_{5}\left(u_{i} u_{i+1}\right)=2 i-1, \quad 1 \leq i \leq n-1 \\
\tau_{5}\left(v_{i} v_{i+1}\right)=2 i+1, \quad 1 \leq i \leq n-1
\end{gathered}
$$

Thus the edge weight function $\sigma: E\left(L_{n}\right) \rightarrow\{3,5, \ldots, 6 n-3\}$ is as follows:

$$
\begin{gathered}
\sigma\left(u_{i} v_{i}\right)=6 i-3, \quad 1 \leq i \leq n . \\
\sigma\left(u_{i} u_{i+1}\right)=6 i-1, \quad 1 \leq i \leq n-1 . \\
\sigma\left(v_{i} v_{i+1}\right)=6 i+1, \quad 1 \leq i \leq n-1 .
\end{gathered}
$$

Thus weights of the edges of L_{n} forms an arithmetic progression and hence $(3,2)-t e s\left(L_{n}\right) \leq$ $\left\lceil\frac{6 n-3}{3}\right\rceil$. Lemma 2.1 shows that $(3,2)-\operatorname{tes}\left(L_{n}\right) \geq\left\lceil\frac{6 n-3}{3}\right\rceil$.

Theorem 2.10. If f_{n} is a fan graph of order $n+1$, then $(3,2)-\operatorname{tes}\left(f_{n}\right)=\left\lceil\frac{4 n-1}{3}\right\rceil, n \geq 3$.
Proof. Fan graph f_{n} is defined as $P_{n}+K_{1}$. Let $V\left(f_{n}\right)=\left\{u, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(f_{n}\right)=\left\{v_{i} v_{i+1}\right.$: $1 \leq i \leq n-1\} \cup\left\{u v_{i}: 1 \leq i \leq n\right\}$ be the vertex set and edge set of f_{n} respectively. Define total labeling $\tau_{6}: V\left(f_{n}\right) \cup E\left(f_{n}\right) \rightarrow\left\{1,2, \ldots,\left\lceil\frac{4 n-1}{3}\right\rceil\right\}$ as follows:

$$
\begin{gathered}
\tau_{6}(u)=\left\lfloor\frac{4 n-1}{3}\right\rfloor \\
\tau_{6}\left(v_{i}\right)=\left\{\begin{array}{ll}
i, & \text { if } \mathrm{i} \text { is odd, } \\
i-1, & \text { if i is even, }
\end{array}, 1 \leq i \leq\left\lceil\frac{4 n-1}{6}\right\rceil\right.
\end{gathered}
$$

$$
\begin{aligned}
& \tau_{6}\left(v_{i}\right)=\left\lceil\frac{4 n-1}{3}\right\rceil,\left\lceil\frac{4 n-1}{6}\right\rceil+1 \leq i \leq n . \\
& \tau_{6}\left(v_{i} v_{i+1}\right)=1, \quad 1 \leq i \leq\left\lceil\frac{4 n-1}{6}\right\rceil-1 . \\
& \tau_{6}\left(v_{\left\lceil\frac{4 n-1}{6}\right\rceil} v_{\left\lceil\frac{4 n-1}{6}\right\rceil+1}\right)=\left\{\begin{array}{lll}
\left\lceil\frac{2 n}{3}\right\rceil+2, & n \equiv 0,1 \quad(\bmod 3), \\
\left\lceil\frac{2 n}{3}\right\rceil+3, & n \equiv 2 \quad(\bmod 3) .
\end{array} .\right. \\
& \tau_{6}\left(v_{n-i} v_{n+1-i}\right)=\left\{\begin{array}{lll}
\left\lfloor\frac{4 n-1}{3}\right\rfloor-2 i, & n \equiv 0,1 \quad(\bmod 3), \\
\left\lfloor\frac{4 n-1}{3}\right\rfloor-2 i-1, & n \equiv 2 \quad(\bmod 3), & 1 \leq i \leq\left\lceil\frac{n-5}{3}\right\rceil
\end{array}\right. \\
& \tau_{6}\left(u v_{n}\right)=\left\{\begin{array}{ll}
\left\lceil\frac{4 n-1}{3}\right\rceil, & n \equiv 0,1 \quad(\bmod 3), \\
\left\lfloor\frac{4 n-1}{3}\right\rfloor, & n \equiv 2 \quad(\bmod 3),
\end{array} .\right. \\
& \tau_{6}\left(u v_{\left\lceil\frac{4 n-1}{6}\right\rceil+i}\right)=\left\{\begin{array}{lll}
2 i+2, & n \equiv 0 & (\bmod 3), \\
2 i+3, & n \equiv 1 & (\bmod 3), \quad, \quad 1 \leq i \leq\left\lceil\frac{n-5}{3}\right\rceil . \\
2 i+4, & n \equiv 2 & (\bmod 3),
\end{array}\right.
\end{aligned}
$$

For $n \equiv 0,1(\bmod 3)$

$$
\tau_{6}\left(u v_{i}\right)=\left\{\begin{array}{ll}
i, & \text { if } \mathrm{i} \text { is odd, } \\
i+1, & \text { if } \mathrm{i} \text { is even, }
\end{array}, \quad 1 \leq i \leq\left\lceil\frac{4 n-1}{6}\right\rceil\right.
$$

For $n \equiv 2(\bmod 3)$

$$
\tau_{6}\left(u v_{i}\right)=\left\{\begin{array}{ll}
i+1, & \text { if } \mathrm{i} \text { is odd, } \\
i+2, & \text { if } \mathrm{i} \text { is even, }
\end{array}, \quad 1 \leq i \leq\left\lceil\frac{4 n-1}{6}\right\rceil\right.
$$

Then the edge weight function $\sigma: E\left(f_{n}\right) \rightarrow\{3,5, \ldots, 4 n-1\}$ is as follows:

$$
\sigma\left(v_{i} v_{i+1}\right)=2 i+1, \quad 1 \leq i \leq\left\lceil\frac{4 n-1}{6}\right\rceil-1
$$

$$
\begin{gathered}
\sigma\left(u v_{i}\right)=\left\{\begin{array}{ll}
\left\lfloor\frac{4 n-1}{3}\right\rfloor+2 i, & \text { if } n \equiv 0,1 \quad(\bmod 3) \\
\left\lfloor\frac{4 n-1}{3}\right\rfloor+2 i+1, & \text { if } n \equiv 2 \quad(\bmod 3),
\end{array}, 1 \leq i \leq\left\lceil\frac{4 n-1}{6}\right\rceil\right. \\
\sigma\left(v_{\left\lceil\frac{4 n-1}{6}\right\rceil} v^{\left\lceil\frac{4 n-1}{6}\right\rceil+1}\right)= \begin{cases}2\left\lceil\frac{4 n-1}{3}\right\rceil+1, & \text { if } n \equiv 0 \quad(\bmod 3) \\
2\left\lceil\frac{4 n-1}{3}\right\rceil+3, & \text { if } n \equiv 1,2 \quad(\bmod 3),\end{cases} \\
\sigma\left(u v_{\left\lceil\frac{4 n-1}{6}\right\rceil+i}\right)=\left\{\begin{array}{l}
2\left\lceil\frac{4 n-1}{3}\right\rceil+1+2 i, \quad \text { if } n \equiv 0 \quad(\bmod 3) \\
2\left\lceil\frac{4 n-1}{3}\right\rceil+3+2 i, \quad \text { if } n \equiv 1,2 \quad(\bmod 3),
\end{array}\right. \\
\sigma\left(v_{n-i} v_{n+1-i}\right)=4 n-1-2 i, 1 \leq i \leq\left\lceil\frac{n-5}{3}\right\rceil . \\
\sigma\left(u v_{n}\right)=4 n-1 .
\end{gathered}
$$

Thus weights of the edges of the fan graph f_{n} are $3,5, \ldots, 4 n-1$, which forms an arithmetic progression and hence $(3,2)-\operatorname{tes}\left(f_{n}\right) \leq\left\lceil\frac{4 n-1}{3}\right\rceil$. Lemma 2.1 shows that $(3,2)-\operatorname{tes}\left(f_{n}\right) \geq$ $\left\lceil\frac{4 n-1}{3}\right\rceil$, this concludes the proof.

Definition 2.11. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the consecutive vertices of P_{n}. Then the graph P_{n}^{2} can be obtained by adding an edge from every $i^{\text {th }}$ vertex to $(i+2)^{\text {th }}$ vertex.

Theorem 2.12. Let P_{n} be the path on n vertices, then $(3,2)$-tes $\left(P_{n}^{2}\right)=\left\lfloor\frac{4 n}{3}\right\rfloor-1, n>3$.

Proof. Let $V=\left\{v_{i} / 1 \leq i \leq n\right\}$ be the vertex set and let $E=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+2} / 1 \leq\right.$ $i \leq n-2\}$ be the edge set of $P_{n}^{2}, n>3$.
Define total labeling $\tau_{7}: V \cup E \rightarrow\left\{1,2, \ldots,\left\lfloor\frac{4 n}{3}\right\rfloor-1\right\}$ as follows:
For $1 \leq i \leq n-1$,

$$
\tau_{7}\left(v_{i}\right)=\left\{\begin{array}{lll}
\frac{4 i-3}{3}, & \text { if } i \equiv 0 & (\bmod 3) \\
\frac{4 i-1}{3}, & \text { if } i \equiv 1 & (\bmod 3) \\
\frac{4 i-5}{3}, & \text { if } i \equiv 2 & (\bmod 3)
\end{array}\right.
$$

$$
\tau_{7}\left(v_{i}\right)=\left\{\begin{array}{lll}
\frac{4 n-3}{3}, & \text { if } n \equiv 0 & (\bmod 3) \\
\frac{4 n-4}{3}, & \text { if } n \equiv 1 & (\bmod 3) \\
\frac{4 n-5}{3}, & \text { if } n \equiv 2 & (\bmod 3) \\
\tau_{7}\left(v_{2} v_{3}\right)=1
\end{array}\right.
$$

For $1 \leq i \leq n-2, i \neq 2$

$$
\begin{gathered}
\tau_{7}\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{4 i-3}{3}, & \text { if } i \equiv 0 \quad(\bmod 3) \\
\frac{4 i-1}{3}, & \text { if } i \equiv 1 \quad(\bmod 3) \\
\frac{4 i+1}{3}, & \text { if } i \equiv 2 \quad(\bmod 3)\end{cases} \\
\tau_{7}\left(v_{n-1} v_{n}\right)=\left\lfloor\frac{4 n}{3}\right\rfloor-1 \text { and } \tau_{7}\left(v_{1} v_{3}\right)=3
\end{gathered}
$$

For $2 \leq i \leq n-3$,

$$
\begin{gathered}
\tau_{7}\left(v_{i} v_{i+2}\right)=\left\{\begin{array}{lll}
\frac{4 i+3}{3}, & \text { if } i \equiv 0 & (\bmod 3), \\
\frac{4 i-1}{3}, & \text { if } i \equiv 1 \quad(\bmod 3), \\
\frac{4 i+1}{3}, & \text { if } i \equiv 2 & (\bmod 3)
\end{array}\right. \\
\tau_{7}\left(v_{n-2} v_{n}\right)=\left\{\begin{array}{lll}
\frac{4 n-9}{3}, & \text { if } n \equiv 0 & (\bmod 3), \\
\frac{4 n-4}{3}, & \text { if } n \equiv 1 & (\bmod 3), \\
\frac{4 n-5}{3}, & \text { if } n \equiv 2 & (\bmod 3)
\end{array}\right.
\end{gathered}
$$

Under the labeling τ_{7}, edge weights of P_{n}^{2} are $3,5, \ldots, 2 m+1$ where $m=2 n-3$, which are in arithmetic progression with $a=3$ and $d=2$. Thus, τ_{7} is a (3,2)-labeling of P_{n}^{2} and hence $(3,2)$-tes $\left(P_{n}^{2}\right) \leq\left\lfloor\frac{4 n}{3}\right\rfloor-1$. The lower bound of (3,2)-tes $\left(P_{n}^{2}\right)$ can be obtained by the lemma 2.1 (ie) $(3,2)$-tes $\left(P_{n}^{2}\right) \geq\left\lceil\frac{4 n-5}{3}\right\rceil=\left\lfloor\frac{4 n}{3}\right\rfloor-1$ and hence $(3,2)$-tes $\left(P_{n}^{2}\right)=\left\lfloor\frac{4 n}{3}\right\rfloor-1$.

Theorem 2.13. If $C_{n} \times K_{2}$ is the Cartesian product of the cycle C_{n} and K_{2}, then (3,2)-tes $\left(C_{n} \times K_{2}\right)=\left\lceil\frac{6 n+1}{3}\right\rceil, n \geq 3$.

Proof. Let $V=\left\{u_{i} v_{i} / 1 \leq i \leq n\right\}$ be the vertex set and let $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i} / 1 \leq i \leq n\right\}$ be the edge set of $C_{n} \times K_{2}$, where $n \geq 3$.
Define total labeling $\tau_{8}: V \cup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{6 n+1}{3}\right\rceil\right\}$ as follows:
For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil+1$,

$$
\tau_{8}\left(u_{i}\right)= \begin{cases}4\left\lfloor\frac{i-1}{3}\right\rfloor+1, & \text { if } i \equiv 1,2 \quad(\bmod 3) \\ \frac{4 i-3}{3}, & \text { if } i \equiv 0 \quad(\bmod 3)\end{cases}
$$

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$,

$$
\tau_{8}\left(u_{n-i+1}\right)= \begin{cases}4\left\lfloor\frac{i-1}{3}\right\rfloor+3, & \text { if } i \equiv 1,2 \quad(\bmod 3) \\ \frac{4 i+3}{3}, & \text { if } i \equiv 0 \quad(\bmod 3)\end{cases}
$$

For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$,

$$
\tau_{8}\left(v_{i}\right)=n+2 i
$$

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
\tau_{8}\left(v_{n-i+1}\right)=n+2(i+1)
$$

For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil+1$,

$$
\tau_{8}\left(u_{i} u_{i+1}\right)= \begin{cases}\left\lfloor\frac{4 i-1}{3}\right\rfloor, & \text { if } i \equiv 0,1 \quad(\bmod 3) \\ \left\lceil\frac{4 i-1}{3}\right\rceil & \text { if } i \equiv 2 \quad(\bmod 3)\end{cases}
$$

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2$,

$$
\tau_{8}\left(u_{n-i+1} u_{n-i}\right)= \begin{cases}\left\lfloor\frac{4 i-1}{3}\right\rfloor+2, & \text { if } i \equiv 0,1 \quad(\bmod 3) \\ \left\lceil\frac{4 i-1}{3}\right\rceil+2, & \text { if } i \equiv 2 \quad(\bmod 3)\end{cases}
$$

and $\tau_{8}\left(u_{n} u_{1}\right)=1$.
For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
\tau_{8}\left(v_{i} v_{i+1}\right)=2 n-3
$$

For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-1$,

$$
\begin{gathered}
\tau_{8}\left(v_{n+1-i} v_{n-i}\right)=2 n-1 \text { and } \tau_{8}\left(v_{n} v_{1}\right)=2 n-1 \\
\tau_{8}\left(u_{1} v_{1}\right)=\tau_{8}\left(u_{n} v_{n}\right)=n
\end{gathered}
$$

For $2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$,

$$
\tau_{8}\left(u_{i} v_{i}\right)=2\left\lceil\frac{i-1}{3}\right\rceil+n+2 .
$$

For $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil-2$,

$$
\tau_{8}\left(u_{n-i} v_{n-i}\right)=2\left\lceil\frac{i}{3}\right\rceil+n
$$

Then the edge weight function $\sigma: E\left(C_{n} \times K_{2}\right) \rightarrow\{3,5, \ldots, 6 n+1\}$ is as follows.

$$
\begin{aligned}
& \sigma\left(u_{i} u_{i+1}\right)=4 i-1,1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& \sigma\left(u_{n+1-i} u_{n-i}\right)=4 i+5,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\
& \sigma\left(u_{1} u_{n}\right)=5, \text { for } n \geq 3 \\
& \sigma\left(u_{1} v_{1}\right)=2 n+3, \\
& \sigma\left(u_{i} v_{i}\right)=2 n+(4 i-3), 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& \sigma\left(u_{n-i+1} v_{n-i+1}\right)=2 n+(4 i+3), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
& \sigma\left(v_{i} v_{i+1}\right)=4 n+(4 i-1), 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
& \sigma\left(v_{n} v_{n-i}\right)=4 n+(8 i+1), 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1 \\
& \sigma\left(v_{1} v_{n}\right)=4 n+5, \text { for } n \geq 3 .
\end{aligned}
$$

Thus, the weights of the edges of $C_{n} \times K_{2}$ forms an arithmetic progression and hence (3,2)-tes $\left(C_{n} \times K_{2}\right) \leq\left\lfloor\frac{6 n+1}{3}\right\rfloor$. Lemma 2.1 shows that $(3,2)-\operatorname{tes}\left(C_{n} \times K_{2}\right) \geq\left\lceil\frac{6 n+1}{3}\right\rceil$, this concludes the proof.

Theorem 2.14. (3,2)-tes $\left[C P_{n}(m)\right]=\left\lceil\frac{2 n m+2 n-1}{3}\right\rceil$.

Proof. A Caterpillar graph $C P_{n}(m)$ is a tree in which the removal of all pendant vertices results in a chordless path P_{n}. The m edges from each vertex of P_{n} to the pendant vertices are called leaves. Let $V\left[C P_{n}(m)\right]=\left\{u_{i}, v_{i, j} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$ be the vertex set and let $E\left[C P_{n}(m)\right]=$ $\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i, j} / 1 \leq i \leq n, 1 \leq j \leq m\right\}$ be the edge set of the caterpillar $C P_{n}(m)$ respectively.
Define total labeling $\tau_{9}: V \cup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{2 n m+2 n-1}{3}\right\rceil\right\}$ as follows:

Case 1: For any $n \geq 2$ and $m=1,1 \leq i \leq n$

$$
\begin{gathered}
\tau_{9}\left(u_{i}\right)=\left\{\begin{array}{lll}
i+\left\lceil\frac{i-3}{3}\right\rceil, & i \equiv 0 & (\bmod 3), \\
i+\left\lceil\frac{i-1}{3}\right\rceil, & i \equiv 1 & (\bmod 3) \\
i+\left\lceil\frac{i}{3}\right\rceil, & i \equiv 2 & (\bmod 3)
\end{array}\right. \\
\tau_{9}\left(v_{1,1}\right)=1 \text { and } \tau_{9}\left(v_{i, 1}\right)=i+\left\lceil\frac{i-2}{3}\right\rceil, 2 \leq i \leq n .
\end{gathered}
$$

For $1 \leq i \leq n-1$,

$$
\begin{gathered}
\tau_{9}\left(u_{i} u_{i+1}\right)= \begin{cases}i+\left\lceil\frac{i+1}{3}\right\rceil, & i \equiv 0 \\
i+\left\lceil\frac{i-1}{3}\right\rceil, & i \equiv 1 \quad(\bmod 3), \\
i+\left\lceil\frac{i}{3}\right\rceil, & i \equiv 2 \quad(\bmod 3),\end{cases} \\
\tau_{9}\left(u_{1} v_{1,1}\right)=1 \text { and } \tau_{9}\left(u_{i} v_{i, 1}\right)=i+\left\lceil\frac{i-2}{3}\right\rceil, 2 \leq i \leq n .
\end{gathered}
$$

Case 2: Suppose $m \equiv 0(\bmod 3)$ and $n \geq 2$. Let $m=3 k$ for some integer $k>0$, then define τ_{9} as follows:

$$
\tau_{9}\left(u_{1}\right)=1 .
$$

For $2 \leq i \leq n$,

$$
\tau_{9}\left(u_{i}\right)=\left\{\begin{array}{lll}
(6 k+2)\left\lceil\frac{i}{3}\right\rceil-1, & i \equiv 0 & (\bmod 3) \\
(6 k+2)\left\lceil\frac{i-1}{3}\right\rceil+(2 k-1), & i \equiv 1 & (\bmod 3) \\
(6 k+2)\left\lceil\frac{i}{3}\right\rceil-(2 k+1), & i \equiv 2 & (\bmod 3) \\
\tau_{9}\left(u_{1} u_{2}\right)=2 k+1 . &
\end{array}\right.
$$

For $2 \leq i \leq n-1$,

$$
\begin{gathered}
\tau_{9}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{lll}
(6 k+2)\left\lceil\frac{i}{3}\right\rceil-(2 k-3), & i \equiv 0 & (\bmod 3) \\
(6 k+2)\left\lceil\frac{i-1}{3}\right\rceil+3, & i \equiv 1 & (\bmod 3), \\
(6 k+2)\left\lceil\frac{i-2}{3}\right\rceil+(2 k+3), & i \equiv 2 & (\bmod 3)
\end{array}\right. \\
\tau_{9}\left(v_{1, j}\right)=\tau_{9}\left(u_{1} v_{1, j}\right)=j, 1 \leq j \leq m
\end{gathered}
$$

For $2 \leq i \leq n$ and $1 \leq j \leq m$,

$$
\tau_{9}\left(v_{i, j}\right)=\tau_{9}\left(u_{i} v_{i, j}\right)=\left\{\begin{array}{lll}
(6 k+2)\left\lceil\frac{i}{3}\right\rceil-(3 k+j), & i \equiv 0 & (\bmod 3) \forall j \\
(6 k+2)\left\lceil\frac{i-1}{3}\right\rceil+j, & i \equiv 1 & (\bmod 3) \forall j \\
(6 k+2)\left\lceil\frac{i}{3}\right\rceil-(5 k+1)+j, & i \equiv 2 & (\bmod 3) \forall j
\end{array}\right.
$$

Case 3: Suppose $m \equiv 1(\bmod 3), m>1$ and for any $n \geq 2$. Let $m=3 k+1$ for some integer $k>0$, then define τ_{9} as follows:

$$
\tau_{9}\left(u_{1}\right)=1 .
$$

For $2 \leq i \leq n$,

$$
\tau_{9}\left(u_{i}\right)=\left\{\begin{array}{lll}
(6 k+4)\left\lceil\frac{i-1}{3}\right\rceil+(2 k+1), & i \equiv 1 & (\bmod 3) \\
(6 k+4)\left\lceil\frac{i}{3}\right\rceil-(2 k+3), & i \equiv 2 & (\bmod 3) \\
(6 k+4)\left\lceil\frac{i}{3}\right\rceil-1, & i \equiv 0 & (\bmod 3) \\
\tau_{9}\left(u_{1} u_{2}\right)=2 k+3 . &
\end{array}\right.
$$

For $2 \leq i \leq n-1$,

$$
\begin{gathered}
\tau_{9}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{lll}
(6 k+4)\left\lceil\frac{i}{3}\right\rceil-(2 k-1), & i \equiv 0 & (\bmod 3) \\
(6 k+4)\left\lceil\frac{i-1}{3}\right\rceil+3, & i \equiv 1 & (\bmod 3) \\
(6 k+4)\left\lceil\frac{i}{3}\right\rceil-(4 k-1), & i \equiv 2 & (\bmod 3)
\end{array}\right. \\
\tau_{9}\left(v_{1, j}\right)=\tau_{9}\left(u_{1} v_{1, j}\right)=j, 1 \leq j \leq m
\end{gathered}
$$

For $2 \leq i \leq n$ and $1 \leq j \leq m$,

$$
\tau_{9}\left(v_{i, j}\right)=\tau_{9}\left(u_{i} v_{i, j}\right)=\left\{\begin{array}{lll}
(6 k+4)\left\lceil\frac{i}{3}\right\rceil-(3 k+1)+j, & i \equiv 0 & (\bmod 3) \forall j \\
(6 k+4)\left\lceil\frac{i-1}{3}\right\rceil-k+j, & i \equiv 1 & (\bmod 3) \forall j \\
(6 k+4)\left\lceil\frac{i}{3}\right\rceil-(5 k+2)+j, & i \equiv 2 & (\bmod 3) \forall j
\end{array}\right.
$$

Case 4: Let $n \geq 2$ and $m \equiv 2(\bmod 3)$. Take $m=3 k+2$, for some integer $k \geq 0$. Define $\tau_{9}: V \cup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{2 n m+2 n-1}{3}\right\rceil\right\}$ as follows:
$\tau_{9}\left(u_{1}\right)=1$ and $\tau_{9}\left(u_{i}\right)=(2 k+2) i-1,2 \leq i \leq n$.
$\tau_{9}\left(u_{1} u_{2}\right)=(2 k+3)$ and $\tau_{9}\left(u_{i} u_{i+1}\right)=(2 k+2) i-(2 k-1), 2 \leq i \leq n-1$.
$\tau_{9}\left(v_{1, j}\right)=\tau_{9}\left(u_{1} v_{1, j}\right)=j, 1 \leq j \leq m$.
For $2 \leq i \leq n$ and $1 \leq j \leq m$,
$\tau_{9}\left(v_{i, j}\right)=\tau_{9}\left(u_{i} v_{i, j}\right)=(2 k+2) i-(3 k+2)+j$.
Then the edge weight function $\sigma: E\left[C P_{n}(m)\right] \rightarrow\{3,5, \ldots, 2 n m+2 n+1\}$ is as follows.

$$
\begin{gathered}
\sigma\left(u_{i} u_{i+1}\right)=2(m+1) i+1,1 \leq i \leq n-1 \\
\sigma\left(u_{i} v_{i, j}\right)=2(m+1) i-2 m+2 j-1,1 \leq i \leq n, 1 \leq j \leq m .
\end{gathered}
$$

The weights of the edges of $C P_{n}(m)$ forms an arithmetic progression and hence $(3,2)-$ tes $C P_{n}(m) \leq\left\lceil\frac{2 n m+2 n-1}{3}\right\rceil$. Lemma 2.1 shows that $(3,2)-\operatorname{tes} C P_{n}(m) \geq\left\lceil\frac{2 n m+2 n-1}{3}\right\rceil$, this concludes the proof.

Theorem 2.15. (3,2)-tes $\left[C P_{n}\left(m_{1}, m_{2}, \ldots m_{n}\right)\right]=\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{n}\right)+2 n-1}{3}\right\rceil, n \geq 2, m_{i} \neq 0,1 \leq$ $i \leq n$.

Proof. The Caterpillar graph $C P_{n}\left(m_{1}, m_{2}, \ldots m_{n}\right)$ is a tree in which m_{i} are the leaves on the $i^{\text {th }}$ vertex of $P_{n}, 1 \leq i \leq n$. Let $V=\left\{u_{i}, v_{i, j} / 1 \leq i \leq n, 1 \leq j \leq m_{n}\right\}$ be the vertex set and $E=\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i, j} / 1 \leq i \leq n, 1 \leq j \leq m_{n}\right\}$ be the edge set of the caterpillar $C P_{n}\left(m_{1}, m_{2}, \ldots m_{n}\right)$ respectively.
Define total labeling $\tau_{10}: V \cup E \rightarrow\left\{1,2, \ldots,\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{n}\right)+2 n-1}{3}\right\rceil\right\}$ is as follows:
$\tau_{10}\left(u_{1}\right)=1$
$\tau_{10}\left(u_{i}\right)=\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2 i-1}{3}\right\rceil, 2 \leq i \leq n$.
$\tau_{10}\left(v_{i, j}\right)=\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2 i-1}{3}\right\rceil-m_{i}+j, 1 \leq i \leq n, 1 \leq j \leq m_{i} \& m_{i} \neq 0$.
$\tau_{10}\left(u_{1} u_{2}\right)=2 m_{1}+2-\left\lceil\frac{2\left(m_{1}+m_{2}\right)+3}{3}\right\rceil$.
For $2 \leq i \leq n-1$,
$\tau_{10}\left(u_{i} u_{i+1}\right)=2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2 i+1-\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2 i-1}{3}\right\rceil-$ $\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{i+1}\right)+2 i+1}{3}\right\rceil$.
For $1 \leq i \leq n, 1 \leq j \leq m_{i}$ and $m_{i} \neq 0$,

$$
\tau_{10}\left(u_{i} v_{i, j}\right)= \begin{cases}\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2 i-1}{3}\right\rceil-m_{i}+j, & \text { if } 2\left(m_{1}+\ldots+m_{i}\right)+2 i-1 \equiv 0 \quad(\bmod 3) \\ \left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2 i-1}{3}\right\rceil-m_{i}+j-1, & \text { if } 2\left(m_{1}+\ldots+m_{i}\right)+2 i-1 \equiv 1,2 \quad(\bmod 3)\end{cases}
$$

Then the edge weight function $\sigma: E\left[C P_{n}\left(m_{1}, m_{2}, \ldots m_{n}\right)\right] \rightarrow\left\{3,5, \ldots 2\left(m_{1}+m_{2}+\ldots+m_{n}\right)+\right.$ $2 n-1\}$ is as follows:
$\sigma\left(u_{i} u_{i+1}\right)=2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2 i+1,1 \leq i \leq n-1$
$\sigma\left(u_{i} v_{i, j}\right)=2\left(m_{1}+m_{2}+\ldots+m_{i}\right)+2(i+j)-2 m_{i}-1,1 \leq i \leq n, 1 \leq j \leq m_{i}$ and $m_{i} \neq 0$.
The weights of the edges of $C P_{n}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ forms an arithmetic progression and hence $(3,2)-\operatorname{tes}\left[C P_{n}\left(m_{1}, m_{2}, \ldots, m_{n}\right)\right] \leq\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{n}\right)+2 n-1}{3}\right\rceil$. Lemma 2.1 shows that $(3,2)-$ $\operatorname{tes}\left[C P_{n}\left(m_{1}+m_{2}+\ldots+m_{n}\right)\right] \geq\left\lceil\frac{2\left(m_{1}+m_{2}+\ldots+m_{n}\right)+2 n-1}{3}\right\rceil$, this concludes the proof.

Theorem 2.16. (3,2)-tes $\{G(n, 2)\}=2 n+1$, for $n \geq 5$.

Proof. The generalized Petersen graph on n vertices with skip 2, denoted by $G(n, 2)$ is defined to be a graph with $V=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ as the vertex set and $E=\left\{u_{i} v_{i}, v_{i} v_{i+1}, u_{i} u_{i+2} / 1 \leq i \leq n\right\}$ as the edge set respectively.It has 2 n vertices and 3 n edges.

Define total labeling $\tau_{11}: V \cup E \rightarrow\{1,2, \ldots, 2 n+1\}$ as follows:
Case 1: When n is odd,

$$
\tau_{11}\left(u_{1}\right)=\tau_{11}\left(u_{3}\right)=1
$$

For $1 \leq i \leq n$,

$$
\tau_{11}\left(u_{i}\right)= \begin{cases}3, & i \text { is even } \\ 5, & i \text { is odd, } i \neq 1,3\end{cases}
$$

$\tau_{11}\left(v_{i}\right)=2 n+1,1 \leq i \leq n$.
$\tau_{11}\left(v_{i} v_{i+1}\right)=2 i-1,1 \leq i \leq n$.
$\tau_{11}\left(u_{1} v_{1}\right)=\tau_{11}\left(u_{2} v_{2}\right)=1$ and $\tau_{11}\left(u_{3} v_{3}\right)=5$.
$\tau_{11}\left(u_{i} v_{i}\right)=4\left\lceil\frac{i-3}{2}\right\rceil+1,4 \leq i \leq n$.
$\tau_{11}\left(u_{2 i-1} u_{2 i+1}\right)=1$ if $i=1,2$ and $\tau_{11}\left(u_{n-1} u_{1}\right)=1$.
$\tau_{11}\left(u_{2\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)} u_{2}\right)=4\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)-1$
$\tau_{11}\left(u_{2} u_{4}\right)=4\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)-1$
$\tau_{11}\left(u_{2 i+3} u_{2 i+5}\right)=4 i-3,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2$.
$\tau_{11}\left(u_{n+1-2 i} u_{n-1-2 i}\right)=4 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-2$.
Case 2: When n is even,

$$
\tau_{11}\left(u_{1}\right)=\tau_{11}\left(u_{3}\right)=1
$$

For $1 \leq i \leq n$,

$$
\tau_{11}\left(u_{i}\right)= \begin{cases}5, & i \text { is even } \\ 3, & i \text { is odd, } i \neq 1,3\end{cases}
$$

$\tau_{11}\left(v_{i}\right)=2 n+1,1 \leq i \leq n$.
$\tau_{11}\left(v_{i} v_{i+1}\right)=2 i-1,1 \leq i \leq n$.
$\tau_{11}\left(u_{1} v_{1}\right)=\tau_{11}\left(u_{2} v_{2}\right)=1$ and

$$
\tau_{11}\left(u_{3} v_{3}\right)= \begin{cases}5, & \text { when } n=6 \\ 3, & \text { when } n \neq 6\end{cases}
$$

$\tau_{11}\left(u_{i} v_{i}\right)=4\left\lceil\frac{i-2}{2}\right\rceil-1,4 \leq i \leq n$.
$\tau_{11}\left(u_{1} u_{3}\right)=\tau_{11}\left(u_{n-1} u_{1}\right)=1$ and $\tau_{11}\left(u_{3} u_{5}\right)=\tau_{11}\left(u_{n-3} u_{n-1}\right)=3$.
$\tau_{11}\left(u_{2 i+3} u_{2 i+5}\right)=4 i+1,1 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-2$.
$\tau_{11}\left(u_{n+1-2 i} u_{n-1-2 i}\right)=4 i-1,2 \leq i \leq\left\lceil\frac{n}{4}\right\rceil-1$.
$\tau_{11}\left(u_{2 i} u_{2 i+2}\right)=n+4 i-11,2 \leq i \leq\left\lceil\frac{n}{4}\right\rceil$.

$$
\begin{gathered}
\tau_{11}\left(u_{2} u_{4}\right)= \begin{cases}1, & n=6, \\
n-7, & n \neq 6 .\end{cases} \\
\tau_{11}\left(u_{n+2-2 i} u_{n+4-2 i}\right)=n+4 i-9,2 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor . \\
\tau_{11}\left(u_{n} u_{2}\right)= \begin{cases}3, & n=6, \\
n-5, & n \neq 6 .\end{cases}
\end{gathered}
$$

From the above labeling, the upper bound of $G(n, 2)$ is obtained.
(ie) (3,2)-tes $\{G(n, 2)\} \leq 2 n+1$.
The lower bound of $G(n, 2)$ is obtained by using the lemma 2.1
(ie) (3,2)-tes $\{G(n, 2)\} \geq 2 n+1$. Hence the proof.

Open Problem 1. Determine the precise value for $(3,2)-\operatorname{tes}\left(P_{n}^{n}\right)$.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] M. Aigner, E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990), 439-449.
[2] D. Amar, O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998), 15-38.
[3] M. Anholcer, C. Palmer, Irregular labelings of circulant graphs, Discrete Math. 312 (2012), 3461-3466.
[4] M. Baca, S. Jendrol, M. Miller and J.Ryan, On irregular total labelings, Discrete Math. 307 (2007), 13781388.
[5] T. Bohman, D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004), 241-254.
[6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187-192.
[7] R.J. Faudree, J. Lehel, Bound on the irregularity strength of regular graphs. In Combinatorics. Colloq. Math. Soc. János Bolyai (Vol. 52, pp. 247-256). Amsterdam: North Holland, (1987).
[8] A. Frieze, R.J. Gould, M. Karonski, F. Pfender, On graph irregularity strength, J. Graph Theory, 41 (2002), 120-137.
[9] I. Rajasingh, T.A. Santiago, Total edge irregularity strength of generalized uniform theta graph, Int. J. Sci. Res. 7 (2018), 41-43.
[10] J. Ivanco, S. Jendrol, Total edge irregularity strength of trees, Discuss. Math. Graph Theory 26, (2006), 449-456.
[11] L. Ratnasari, S. Wahyuni, Y. Susanti, D. Junia Eksi Palupi, B. Surodjo, Total edge irregularity strength of arithmetic book graphs, J. Phys.: Conf. Ser. 1306 (2019) 012032.
[12] K. Muthugurupackiam, R. Padmapriya, (a, d-Total Vertex Irregularity Strength of Graphs, (Communicated).
[13] F. Salama, On total edge irregularity strength of polar grid graph, J. Taibah Univ. Sci. 13 (2019), 912-916.
[14] Y. Susanthi, Y.I. Puspitasari, H. Khotimah, On total edge irregularity strength of Staircase graphs and related graphs, Iran. J. Math. Sci. Inform. 15 (2020), 1-13.

[^0]: *Corresponding author
 E-mail address: gurupackiam@yahoo.com.
 Received April 18, 2021

