

Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 4, 853-865

ISSN: 1927-5307

COMMUTATIVITY RESULTS WITH DERIVATIONS ON SEMIPRIME RINGS

MEHSIN JABEL ATTEYA*
Department of Mathematics ,College of Education, Al-Mustansiriyah University ,Baghdad, Box:
46219,Iraq

Abstract

In this paper, let R be a 2-torsion free semiprime ring and U a non-zero ideal of R, d a derivation mapping. If R admitting A derivation d satisfies one of the following . (i) $\left[d_{(X)}, d_{(y)}\right]=[x, y]$ for all $x, y \in U$. (ii) $\left[\mathrm{d}_{(\mathrm{x}}{ }^{2}, \mathrm{~d}_{(\mathrm{y})}{ }^{2}\right]=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$. (iii) $\left[d_{\left(x_{2}\right)}, d_{(y)}\right]=\left[x^{2}, y^{2}\right]$ for all $x, y \in U$. (iv) $\left[\mathrm{d}_{(\mathrm{x})}{ }^{2}, \mathrm{~d}_{(\mathrm{y})}{ }^{2}\right]=\left[\mathrm{x}^{2}, \mathrm{y}^{2}\right]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.

A non - zero derivation d satisfies one of the following: (i) $\left.\mathrm{d}\left(\left[\mathrm{d}_{(\mathrm{X}}\right), \mathrm{d}_{(\mathrm{y})}\right]\right)=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$. (ii) $)\left(\left[d_{(X)}, d_{\left(y_{)}\right)}\right]=\left[d_{(x)}, d_{(y)}\right]\right.$ for all $x, y \in$ U.Then R contains a non-zero central ideal .

Keywords: derivation, prime ring, semiprime ring, central ideal.
2000 AMS Subject Classification: 16W25; 16N60; 16U80.

1.Introduction

Several authors have investigated about semiprime rings under derivations and give some results. In [5] M.N.Daif, proved that, let R be a semiprime ring and d a derivation of R with $d^{3} \neq 0$. If $\left[d_{(x)}, d_{(y)}\right]=0$ for all $x, y \in R$, then R contains a non-zero central ideal. M.N. Daif and H.E. Bell [4] proved that, let R be a semiprime ring admitting a derivation d for which either $x y+d(x y)=y x+d(y x)$ for all $x, y \in R$ or $x y-d(x y)=y x-d(y x)$ for all x, y

[^0]Received December 11, 2011
$\in R$, then R is commutative. V. DeFilippis [6] proved that, when R be a prime ring let da non-zero derivation of $R, U \neq(0)$ a two-sided ideal of R, such that $d([x, y])=[x, y]$ for all x, y $\in \mathrm{U}$, then R is commutative. A.H. Majeed and Mehsin Jabel [11], then gave some results as, let R be a 2 -torsion free semiprime ring and U a non-zero ideal of R.R admitting a non-zero derivation d satisfying $d\left(\left[d_{(x)}, d_{(y)}\right]\right)=[x, y]$ for all $x, y \in U$. If d acts as a homomorphism, then R contains a non-zero central ideal. Recently, Mehsin Jabel [12] proved, let R be a semiprime ring and U be a non-zero ideal of R . If R admits a generalized derivation D associated with a non-zero derivation d such that $\mathrm{D}(\mathrm{xy})$ $x y \in Z(R)$ for all $x, y \in U$, then R contains a non-zero central ideal. Where according to[3], Bresar defined the following notation, an additive mapping $D: R \rightarrow R$ is said to be a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that $D(x y)=D(x) y+x d(y)$ for all $x, y \in R$. Hence the concept of a generalized derivation covers both the concepts of a derivation and of a left multiplier (i.e.an additive map d satisfying $d(x y)=d(x) y$ for all x, y $\in R,[13])$. In this paper we shall study and investigate some results concerning a derivation d on semiprime ring R, we give some results about that.

2. Preliminaries

Throughout R will represent an associative ring and has a cancellation property with center $Z(R), R$ is said to be n-torsion free, where $n \neq 0$ is an integer, if whenever $n x=0$, with $x \in R$ then $x=0$. We recall that R is semiprime if $x R x=(0)$ implies $x=0$ and it is prime if $x R y=(0)$ implies $x=0$ or $y=0$. A prime ring is semiprime but the converse is not true in general. An additive mapping $d: R \rightarrow R$ is called a derivation if $d_{(x y)}=d_{(x)} y+x_{(y)}$ holds for all $x, y \in R$,and is said to be n-centralizing on U (resp. $n-$ commuting on U), if $\left[x^{n}, d_{(X)}\right] \in Z(R)$ holds for all $x \in U$ (resp. $\left[x^{n}, d_{(X)}\right]=0$ holds for all $x \in U$), where n be a positive integer. We write $[x, y]$ for $x y-y x$ and make extensive use of basic commutator identities $[x y, z]=x[y, z]+[x, z] y$ and $[x, y z]=y[x, z]+[x, y] z$.
To achieve our purposes, we mention the following results .

Lemma 2.1 ([8],Sublemma P. 5). Let R be a 2-torsion free semiprime ring. Suppose that $a \in R$, such that a commutes with every [a,x], $x \in R$, then $a \in Z(R)$.

Lemma 2.2 ([6]).Let R be a prime ring and U is a non-zero left ideal.If R admits a derivation d with $d(U) \neq 0$, satisfies d is centralizing on U. Then R is commutative .

Lemma 2.3 (10 ,Main Theorem) . Let R be a semiprime ring, d a non-zero derivation of R, and U a non-zero left ideal of R. If for some positive integers $t_{0}, t_{1}, \ldots, t_{n}$ and all $x \in U$, the identity $\left[\left[\ldots\left[\left[d\left(x^{t 0}\right), x^{t 1}, x^{t 2}\right], \ldots\right], x^{t n}\right]=o\right.$ holds, then either $d(U)=o$ or else $d(U)$ and $d(R) U$ are contained in non-zero central ideal of R. In particular when R is a prime ring, R is commutative.

Lemma 2.4(9,Lemma1.8).Let R be a semiprime ring, and suppose that $a \in R$ centralizes all commutators $\quad[x, y], x, y \in R$. Then $a \in Z(R)$.
Lemma 2.5 ([7]).Let n be a fixed integer, let R be n!- torsion free semiprime ring and U be a non-zero left ideal of R. If R admits a derivation d which is non-zero on U and n-centralizing on U, then R contains a non-zero central ideal .

Lemma 2.6 ([2]). Let R be a prime ring with center $Z(R)$, and let U be a non-zero ideal of R.If U is a commutative ideal, then R is commutative.

Lemma 2.7([3],Theorem2.2). Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R. If R admits a derivation d which is non-zero on U and $[d(x), d(y)]=0$ for all $x, y \in U$, then R contains a non-zero central ideal.

Lemma 2.8. Let n be a fixed positive integer, R semiprime ring and some a \in R.If $a^{n} \in Z(R)$ then $a \in Z(R)$.
Proof. The result holds for $n=1$. If $n \geq 2$, we have $a^{n} \in Z(R)$, then $a^{n-1} \in Z(R)$, inductively, we obtain $a \in Z(R)$.

Theorem 2.9. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of \quad R.If R admitting to satisfying $\left[x^{2}, y^{2}\right]=0$ for all U. Then R contains a non-zero central ideal .

Proof. We have $\left[x^{2}, y^{2}\right]=0$ for all $x, y \in$ U.The linearization (i.e. putting $x+y$ for x) in above relation gives
$\left[x y+y x, y^{2}\right]=0$ for all $x, y \in U$.
$\left[x, y^{2}\right] y+y\left[x, y^{2}\right]=0$ for all $x, y \in U$.
Also from (1), we obtain
$\left[x y+y x-y x+y x, y^{2}\right]=0$ for all $x, y \in U$. Then
$\left[[x, y]+2 y x, y^{2}\right]=0$ for all $x, y \in U$.
$\left[[x, y] y^{2}\right]+2\left[y x, y^{2}\right]=0$ for all $x, y \in U$. Replacing x by x^{2}, we obtain $\left[\left[x^{2}, y\right], y^{2}\right]+2 y\left[x^{2}, y^{2}\right]=0$ for all $x, y \in U$.According to the relation $\left[x^{2}, y^{2}\right]=0$, then we obtain $\left[\left[x^{2}, y\right], y^{2}\right]=0$ for all $x, y \in U$. Then
$\left[x^{2}, y\right] y^{2}=y^{2}\left[x^{2}, y\right]$ for all $x, y \in U$.
From (2), we have
$y[x, y] y+[x, y] y^{2}+y^{2}[x, y]+y[x, y] y=0$ for all $x, y \in U$.Replacing x by x^{2}, we obtain
$y\left[x^{2}, y\right] y+\left[x^{2}, y\right] y^{2}+y^{2}\left[x^{2}, y\right]+\left[x^{2}, y\right] y=0$ for all $x, y \in U$.
Substituting (3) in (4), we obtain
$2\left(y\left[x^{2}, y\right] y+\left[x^{2}, y\right] y^{2}\right)=0$ for all $x, y \in U$.Since R is 2-torsion free, then $y\left[x^{2}, y\right] y+\left[x^{2}, y\right] y^{2}=0 \quad$ for all $x, y \in U$.
Left - multiplying (5) by y, we get
$y^{2}\left[x^{2}, y\right] y+y\left[x^{2}, y\right] y^{2}=0$ for all $x, y \in U$.Then we set
$a=y\left[x^{2}, y\right] y, a \in R$,thus
ya $+\mathrm{ay}=0$ for all $\mathrm{y} \in \mathrm{U}$.Then
$[y a, r]+[a y, r]=0$ for all $y \in U, r \in R$. Then
$y[a, r]+[y, r] a+a[y, r]+[a, r] y=0$ for all $y \in U, r \in R$.Replacing r by a, we obtain
$[y, a] a+a[y, a]=0$ for all $y \in U . T h e n$
$\left[y, a^{2}\right]=0$ for all $y \in U$. Then
$\left[\left[y, a^{2}\right], r\right]=0$ for all $y \in U$.Replacing r by a^{2} and by using Lemma2.1, we obtain a^{2} $\in \mathrm{Z}(\mathrm{R})$, by Lemma 2.8 , we get $\mathrm{a} \in \mathrm{Z}(\mathrm{R})$,i.e., $\mathrm{y}\left[\mathrm{x}^{2}, \mathrm{y}\right] \mathrm{y} \in \mathrm{Z}(\mathrm{R})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.Then $\left[y\left[x^{2}, y\right] y, r\right]=0$ for all $x, y \in U, r \in R$.

Replacing r by y, we obtain
$\left[y\left[x^{2}, y\right] y, y\right]=0$ for all $x, y \in U$. Then
$y\left[\left[x^{2}, y\right], y\right] y=0$ for all $x, y \in U$.
Right-multiplying (6) by $\left[\left[x^{2}, y\right], y\right]$, we get
$\left(y\left[\left[x^{2}, y\right], y\right]\right)^{2}=0$ for all $x, y \in U$.Left-multiplying by w with using the cancellation property of $w\left[\left[x^{2}, y\right], y\right]$, w $\in R$,we obtain
$y\left[\left[x^{2}, y\right], y\right]=0$ for all $x, y \in U$.
Left-multiplying (6) by [[$\left.\left.\mathrm{x}^{2}, \mathrm{y}\right], \mathrm{y}\right]$, we obtain
$\left(\left[\left[x^{2}, y\right], y\right] y\right)^{2}=0$ for all $x, y \in U$. Right-multiplying by w with using the cancellation property of $\left[\left[x^{2}, y\right], y\right] y w, w \in R$, we obtain
$\left[\left[x^{2}, y\right], y\right] y=0$ for all $x, y \in U$.
Subtracting (7) and (8), we obtain
$\left[\left[\left[x^{2}, y\right] y\right], y\right]=0$ for all $x, y \in U$.
We set $\left[\left[x^{2}, y\right], y\right]=b, b \in R$. Then
$[b, y]=0$ for all $y \in U$. Then
$[[b, y], r]=0$ for all $y \in U, r \in R$.
Replacing r by b and by using Lemma 2.1, we obtain
$b \in Z(R)$, i.e. $\left[\left[x^{2}, y\right] y\right] \in Z(R)$ for all $x, y \in U$,then
$\left[\left[\left[x^{2}, y\right], y\right], r\right]=0$ for all $x, y \in U, r \in R$.
Replacing r by $\left[\mathrm{x}^{2}, \mathrm{y}\right]$ and using Lemma 2.1, we obtain
$\left[x^{2}, y\right] \in Z(R)$ for all $x, y \in U$,then
$\left[\left[x^{2}, y\right], r\right]=0$ for all $x, y \in U, r \in R$.
Replacing r by $[x, z]^{2}$ and x by $[x, z]$ with using Lemma 2.1, we obtain $[x, z]^{2} \quad \in Z(R)$,by Lemma2.8, we get $[\mathrm{x}, \mathrm{z}] \in \mathrm{Z}(\mathrm{R})$ for all $\mathrm{x} \in \mathrm{U}$, then U a non-zero central ideal .

3. Main results

Theorem 3.1. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R.If R admitting a derivation d satisfying $\left[d_{(x)}, d_{(y)}\right]=[x, y]$ for all $x, y \in U$. Then R contains a non-zero central ideal .

Proof. When we have d $\neq 0$, then
$\left.\left[\mathrm{d}_{(\mathrm{x})}, \mathrm{d}_{(\mathrm{y}} \mathrm{y}\right)\right]=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$. Replacing x by xt , we obtain
$\left[\mathrm{d}_{(\mathrm{X})} \mathrm{t}, \mathrm{d}_{(\mathrm{y})}\right]+\left[\mathrm{xd}(\mathrm{t}), \mathrm{d}_{(\mathrm{y})}\right]=[\mathrm{xt}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y}, \mathrm{t} \in \mathrm{U}$.
$d_{(x)}\left[t, d_{(y)}\right]+\left[d_{(x)}, d_{(y)}\right] t+x\left[d_{(t)}, d_{(y)}\right]+[x,(y)] d_{(t)}=x[t, y]+[x, y] t \quad$ for \quad all $\quad x, y, t \in U \quad$ Since $\left[\mathrm{d}_{(\mathrm{x})}, \mathrm{d}_{(\mathrm{y})}\right]=[\mathrm{x}, \mathrm{y}]$, then we have
$\mathrm{d}_{(\mathrm{X})}\left[\mathrm{t}, \mathrm{d}_{(\mathrm{y})}\right]+\left[\mathrm{x}, \mathrm{d}_{(\mathrm{y})}\right] \mathrm{d}_{(\mathrm{t})}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{t} \in \mathrm{U}$.
Replacing t and y by x, we obtain
$\mathrm{d}_{(\mathrm{X})}\left[\mathrm{x}, \mathrm{d}_{(\mathrm{X})}\right]+\left[\mathrm{x}, \mathrm{d}_{(\mathrm{X})}\right] \mathrm{d}_{(\mathrm{X})}=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{t} \in \mathrm{U}$. Then
$\left[x, d_{(X)}{ }^{2}\right]=0$ for all $x \in U$. Replacing x by $x+y$, with replacing y by x,we obtain $8\left[d_{\left(X^{2}\right)}{ }^{2}, x\right]=0$ for all $x \in U$. Since R is 2-torsion free with using Lemma 2.4, We get U is a non-zero central ideal .
We, now suppose that $d=0$, we obtain $[x, y]=0$ for all $x, y \in U$. Replacing y by $r y$, we get $r[x, y]+[x, r] y=0$ for all $x, y \in U, r \in R$.
Since $[x, y]=0$, then we obtain
$[x, r] y=0$ for all $x, y \in U, r \in R$.
Replacing y by rx, we obtain
$[x, r] r x=0$ for all $x \in U, r \in R$.
$\operatorname{In}(12)$ replacing y by $x r$, we get
$[\mathrm{x}, \mathrm{r}] \mathrm{xr}=0$ for all $\mathrm{x} \in \mathrm{U}, \mathrm{r} \in \mathrm{R}$.
From (13) and (14), we obtain $[x, r]^{2}=0$ for all $x \in U, r \in R$.
Right-multiplying by with using the cancellation property of $[x, r] w, w \in R . w e ~ o b t a i n, ~$ R contains a non-zero central ideal .

Theorem 3.2. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R.If R admitting a derivation d satisfying $\left[d^{2}(x), d^{2}(y)\right]=[x, y]$ for all $x, y \in U$. Then R contains a non-zero central ideal.

Proof.Suppose that $\mathrm{d} \neq 0$, then we have
$\left[d^{2}{ }_{(x)}, d^{2}{ }_{(y)}\right]=[x, y]$ for all $x, y \in U$. Then
$\left[d^{2}{ }_{(X)} \mathrm{d}^{2}{ }_{(\mathrm{y}), \mathrm{r}}\right]-\left[\mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{x}), \mathrm{r}}\right]=[[\mathrm{x}, \mathrm{y}], \mathrm{r}]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}, \mathrm{r} \in \mathrm{R}$.
Replacing r by d ${ }^{2}{ }_{(y)} \mathrm{d}^{2}{ }_{(x)}$, we obtain
$\left[\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{y})}, \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{X})}\right]=\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{X})}\right]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$. Then
$\mathrm{d}^{2}{ }_{(\mathrm{x})}\left[\mathrm{d}^{2}{ }_{(\mathrm{y})}, \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]+\left[\mathrm{d}^{2}{ }_{(\mathrm{x})}, \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{x})}\right] \mathrm{d}^{2}{ }_{(\mathrm{y})}=\mathrm{d}^{2}{ }_{(\mathrm{y})}\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]+$
$\left[[x, y], d^{2}(y)\right] d^{2}(x)$ for all $x, y \in U$.
$\mathrm{d}^{2}{ }_{(\mathrm{x})} \mathrm{d}^{2}{ }_{(\mathrm{y})}\left[\mathrm{d}^{2}{ }_{(\mathrm{y})}, \mathrm{d}^{2}{ }_{(\mathrm{X})}\right]+\left[\mathrm{d}^{2}{ }_{(\mathrm{x})}, \mathrm{d}^{2}{ }_{(\mathrm{y})}\right] \mathrm{d}^{2}{ }_{(\mathrm{x})} \mathrm{d}^{2}{ }_{(\mathrm{y})}=\mathrm{d}^{2}{ }_{(\mathrm{y})}\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]+\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})}\right] \mathrm{d}^{2}{ }_{(\mathrm{x})}$
for all $x, y \in U$.
According to the relation $\left[\mathrm{d}^{2}{ }_{(\mathrm{x})}, \mathrm{d}^{2}{ }_{(\mathrm{y})}\right]=[\mathrm{x}, \mathrm{y}]$, we have
$d^{2}{ }_{(X)} \mathrm{d}^{2}(\mathrm{y})[\mathrm{y}, \mathrm{x}]+[\mathrm{x}, \mathrm{y}] \mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}^{2}(\mathrm{y})=\mathrm{d}^{2}{ }_{(\mathrm{y})}\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]+\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}(\mathrm{y})\right] \mathrm{d}^{2}{ }_{(\mathrm{X})}$
for all $x, y \in U$.Then
$[\mathrm{x}, \mathrm{y}] \mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{y})}-\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{y})}[\mathrm{x}, \mathrm{y}]=\mathrm{d}^{2}{ }_{(\mathrm{y})}\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{X})}\right]+\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})}\right] \mathrm{d}^{2}{ }_{(\mathrm{X})}$
for all $x, y \in U$.
In (15),replacing r by $[x, y]$, we obtain
$\left[\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{y}),},[\mathrm{x}, \mathrm{y}]\right]-\left[\mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{X}),},[\mathrm{x}, \mathrm{y}]\right]=\mathrm{o}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.
Also from relation $\left[\mathrm{d}^{2}{ }_{(x)}, \mathrm{d}^{2}{ }_{(y)}\right]=[\mathrm{x}, \mathrm{y}]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$, we have $d^{2}{ }_{(X)} d^{2}{ }_{(y)}=[x, y]+d^{2}{ }_{(y)} d^{2}{ }_{(x)}$ for all $x, y \in U$.
Now substituting (18) in (16), we get
$[\mathrm{x}, \mathrm{y}]^{2}+[\mathrm{x}, \mathrm{y}] \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{X})}-[\mathrm{x}, \mathrm{y}]^{2}-\mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{X})}[\mathrm{x}, \mathrm{y}]=\mathrm{d}^{2}{ }_{(\mathrm{y})}\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]+\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})}\right] \quad \mathrm{d}^{2}{ }_{(\mathrm{x})}$ for all $x, y \in U$. Thus
$\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{\left.(\mathrm{y}) \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]=\mathrm{d}^{2}{ }_{(\mathrm{y})}\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]+\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})}\right] \mathrm{d}^{2}{ }_{(\mathrm{x})} \text { forall } \mathrm{x}, \mathrm{y} \in \mathrm{U} .}\right.$
Now from (19) and (17), we get
$\left.\left.\left.\left[\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{y})},[\mathrm{x}, \mathrm{y}]\right]+2\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{X})}\right]=\mathrm{d}^{2}{ }_{(\mathrm{y})}\right)[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{X})}\right]+\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})}\right)\right] \mathrm{d}^{2}{ }_{(\mathrm{X})}$ for all $x, y \in U$.
By subtracting (17) from (19), we obtain
$3\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]=\mathrm{d}^{2}{ }_{(\mathrm{y})}\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]+\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(\mathrm{y})}\right] \mathrm{d}^{2}{ }_{(\mathrm{x})}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.Then $2\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}{ }_{(y)} \mathrm{d}^{2}{ }_{(x)}\right]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.Since R is 2-torsion free, we obtain $\left[[\mathrm{x}, \mathrm{y}], \mathrm{d}^{2}(\mathrm{y}) \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$. By Lemma 2.4, we obtain $d^{2}{ }_{(y)} d^{2}{ }_{(x)} \in Z(R)$ for all $x, y \in U$, then
$\left[\mathrm{t}, \mathrm{d}^{2}{ }_{(\mathrm{y})} \mathrm{d}^{2}{ }_{(\mathrm{x})}\right]=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{t} \in \mathrm{U}$. Replacing y by x , we obtain
$\left[t, \mathrm{~d}^{2}{ }_{(x)}{ }^{2}\right]=0$ for all $\mathrm{x}, \mathrm{t} \in \mathrm{U}$.Then
$\mathrm{d}^{2}{ }_{(\mathrm{X})}{ }^{2} \in \mathrm{Z}(\mathrm{R})$, by Lemma 2.8 , we obtain $\mathrm{d}^{2}{ }_{(\mathrm{X})} \in \mathrm{Z}(\mathrm{R})$ i.e.
$\left[\mathrm{d}^{2}(\mathrm{X}), \mathrm{t}\right]=0$ for all $\mathrm{x}, \mathrm{t} \in \mathrm{U}$. The Linearization (i.e., putting $\mathrm{x}+\mathrm{y}$ for x), gives
$\left[d^{2}{ }_{(x)} y, t\right]+2\left[d_{(x)} d_{(y)}, t\right]+\left[\operatorname{xd}^{2}{ }_{(y)}, t\right]=0$ for all $x, y, t \in U$.
According to the relation $\left[\mathrm{d}^{2}(\mathrm{x}), \mathrm{t}\right]=0$, the precedence equation with replacing t and y by x, become $2\left[d_{(X)}{ }^{2}, x\right]=0$ for all $x \in U$. Since R is 2-torsion free, then $\left.\left[d_{(X)}\right)^{2}, x\right]=0$ for all $x \in U$. The Linearization (i.e., putting $x+y$ for x) with replacing y by x, gives
$\left.8\left[d_{\left(x^{2}\right)}\right), x^{2}\right]=0$ for all $x \in U$. Since R is 2-torsion free with using Lemma 2.3, we obtain U is a non-zero central ideal.
We have, when $\mathrm{d}=0$, then $[\mathrm{x}, \mathrm{y}]=0$ for $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.
Replacing y by ry, we obtain
$[x, r] y=0$ for all $x, y \in U, r \in R$.Replacing y by $w[x, r]$ for all $x \in U, r, w \in R$, we obtain
$[x, r] w[x, r]=0$ for all $x \in U, r, w \in R$. Then $[x, r]=0$ for all $x \in U, r \in R$.
Since R is semiprime ring, then $[x, r]=0$ for all $x \in U, r \in R$.
Then U is a non-zero central ideal .

Theorem 3.3. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R.If R admitting a derivation d satisfying $\quad\left[d_{(}\left(x_{)}, d_{(y)}\right]=\left[x^{2}, y^{2}\right]\right.$ for all $x, y \in U$. Then R contains a non-zero central ideal .

Proof. We suppose first that $d \neq 0$, then
$\left[d_{(X)}, d_{(y)}\right]=\left[x^{2}, y^{2}\right]$ for all $x, y \in U$. Replacing x by $x+y$, we obtain $\left[d_{(x)}, d_{(y)}\right]=\left[x^{2}, y^{2}\right]+\left[x y, y^{2}\right]+\left[y x, y^{2}\right]$ for all $x, y \in U$.
According to the relation $\left.\left[\mathrm{d}_{(\mathrm{X}}\right), \mathrm{d}_{(\mathrm{y})}\right]=\left[\mathrm{x}^{2}, \mathrm{y}^{2}\right]$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$, we obtain $\left[x y, y^{2}\right]+\left[y x, y^{2}\right]=0$ for all $x, y \in U$. Replacing x by $d_{(y) y} y$, we get $\left[d_{(y)} y^{2}, y^{2}\right]+\left[y_{(y)} y, y^{2}\right]=0$ for all $y \in U$. Then
$\left[\mathrm{d}_{\left(\mathrm{y}^{2}\right)} \mathrm{y}, \mathrm{y}^{2}\right]=0$ for all $\mathrm{y} \in \mathrm{U}$.
Right-multiplying (21) by y $\mathrm{d}_{\left(\mathrm{y}^{2}\right)}$, we get
$\left[\mathrm{d}_{\left(\mathrm{y}^{2}\right)}^{2}, \mathrm{y}^{2}\right] \mathrm{y}^{2} \mathrm{~d}_{\left(\mathrm{y}^{2}\right)=}^{2}$ for all $\mathrm{y} \in \mathrm{U}$.
Also , by left-multiplying (21) by $\mathrm{y}^{2} \mathrm{~d}_{\left(\mathrm{y}^{2}\right)}$ and right-multiplying by
[$\mathrm{d}_{\left(\mathrm{y}^{2}\right)}{ }^{2}, \mathrm{y}^{2}$], we get
 Right-multiplying by w with using the cancellation property of $y^{2} d_{\left(y^{2}\right)}^{2}\left[d_{\left.\left(y^{2}\right), y^{2}\right] w, w}\right.$ $\in \mathrm{R}$, we obtain

 $\left.\left.\left.\left(d_{(} y^{2}\right)\left[d_{(} y^{2}\right), y^{2}\right] d_{(} y^{2}\right) y^{2}\right)^{2}=0$ for all $y \in U$. Left-multiplying by w with using the

Left-multiplying (24) by $\left[\mathrm{d}_{\left(\mathrm{y}^{2}\right)}^{2}, \mathrm{y}^{2}\right] \mathrm{d}_{\left(\mathrm{y}^{2}\right)}^{2} \mathrm{y}^{2}$ and right-multiplying by $\mathrm{d}_{\left(\mathrm{y}^{2}\right)}{ }^{2}$, we obtain
 $\left(\left[d_{\left(y^{2}\right)}^{2}, y^{2}\right] d_{\left(y^{2}\right)}^{2} y^{2} d_{\left(y^{2}\right)}\right)^{2}=0$ for all $y \in U$. Right-multiplying by w with using the cancellation property of $\left(\left[\mathrm{d}_{\left(\mathrm{y}^{2}\right)}{ }^{2}, \mathrm{y}^{2}\right] \mathrm{d}_{\left(\mathrm{y}^{2}\right)}\right) \mathrm{y}^{2} \mathrm{~d}_{\left(\mathrm{y}^{2}\right) \mathrm{w}} \mathrm{w}, \mathrm{w} \in \mathrm{R}$ we obtain $\left[d_{\left(y^{2}\right),}, y^{2}\right] d_{\left(y^{2}\right)} y^{2} d_{\left(y^{2}\right)}=0$ for all $y \in U$.
Left-multiplying (25) by $d\left(y^{2}\right) y^{2}$ with using from right the cancellation property on $\mathrm{d}_{(} \mathrm{y}^{2}$), we obtain

From left on (26) by using the cancellation property on $\left.d_{\left(y^{2}\right)}\right) y^{2}$, we obtain
$\left[d_{\left(y^{2}\right)}{ }^{2}, y^{2}\right] d_{\left(y^{2}\right)} y^{2}=0$ for all $y \in U$.
Again from right on (27) by using the cancellation property on $\left.d_{\left(y^{2}\right)}\right)^{2}$, we obtain $\left.\left[\mathrm{d}_{(} \mathrm{y}^{2}\right), \mathrm{y}^{2}\right]=0$ for all $\mathrm{y} \in \mathrm{U}$. Then by Lemma 2.3,we obtain
R contains a non-zero central ideal .
When $\mathrm{d}=0$, we obtain $\left[\mathrm{x}^{2}, \mathrm{y}^{2}\right]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$. By Theorem 2.9 , we complete the proof of theorem .
The following results can be proven in a similar way .

Theorem 3.4. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R.If R admitting a derivation d satisfying $\left[d^{2}(x), d^{2}(y)\right]=\left[x^{2}, y^{2}\right]$ for all $x, y \in U$.Then R contains
a non-zero central ideal .

Theorem 3.5. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R.If R admitting a non-zero derivation d to satisfying $\left.d\left(\left[d_{(} x, d_{(} y\right)\right]\right)=[x, y]$ for all $x, y \in U$.Then R contains a non-zero central ideal .

Proof. We have $d\left(\left[d_{(x)}, d_{(y)}\right]\right)=[x, y]$ for all $x, y \in U$.
Then by replacing x by x^{2}, we obtain $d\left(\left[d_{\left(x^{2}\right)}{ }^{2}, d_{(y)}\right]\right)-\left[x^{2}, y\right]=0$ for all $x, y \in U$.
$\operatorname{Thend}\left(\left[d_{(X)} x, d_{(y)}\right]\right)+d\left(\left[x_{(X)}, d_{(y)}\right]\right)-\left[x^{2}, y\right]=0$ for all $x, y \in U$.
$d\left(d_{(x)}\left[x, d_{(y)}\right]\right)+d\left(\left[d_{(x)}, d_{(y)}\right] x\right)+d\left(x\left[d_{(x)}, d_{(y)}\right]\right)+d\left(\left[x, d_{(y)}\right] d_{(x)}\right)-\left[x^{2}, y\right]=0$ for all $x, y \in U$. Then $\mathrm{d}^{2}{ }_{(\mathrm{x})}\left[\mathrm{x}, \mathrm{d}_{(\mathrm{y})}\right]+\mathrm{d}_{(\mathrm{x})} \mathrm{d}\left(\left[\mathrm{x}, \mathrm{d}_{(\mathrm{y})}\right]\right)+\mathrm{d}\left(\left[\mathrm{d}_{(\mathrm{X})}, \mathrm{d}_{(\mathrm{y})}\right]\right) \mathrm{x}+\left[\mathrm{d}_{(\mathrm{X})}, \mathrm{d}_{(\mathrm{y})}\right] \mathrm{d}_{(\mathrm{X})}+\mathrm{d}_{(\mathrm{x})}\left[\mathrm{d}_{(\mathrm{x})}, \mathrm{d}_{(\mathrm{y})}\right]+\mathrm{xd}\left(\left[\mathrm{d}_{(\mathrm{x})}, \mathrm{d}_{(\mathrm{y})}\right]\right)+\mathrm{d}$ $\left(\left[x, d_{(y)}\right]\right) d_{(X)}+\left[x, d_{(y)}\right] d^{2} \quad(x)-\left[x^{2}, y\right]=0$ for all $x, y \in$ U.According to the relation $d\left(\left[d_{(x)}, d_{(y)}\right]\right)=[x, y]$, then we obtain
 ,$\left.d_{(y)}\right] d^{2}{ }_{(x)}-\left[x^{2}, y\right]=0$ for all $x, y \in U$. Replacing y by x, we obtain
$d^{2}{ }_{(x)}\left[x, d_{(x)}\right]+d_{(x)} d\left(\left[x, d_{(x)}\right]\right)+d\left(\left[x, d_{(x)}\right]\right) d_{(x)}+\left[x, d_{(x)}\right] d^{2}{ }_{(X)}=0$ for all $x \in U$. Then $\mathrm{d}^{2}{ }_{(\mathrm{X})}\left[\mathrm{x}, \mathrm{d}_{(\mathrm{X})}\right]+\left[\mathrm{x}, \mathrm{d}_{(\mathrm{X})}\right] \mathrm{d}^{2}{ }_{(\mathrm{X})}+\mathrm{d}_{(\mathrm{X})}\left(\mathrm{d}\left(\mathrm{xd}_{(\mathrm{X})}\right)-\mathrm{d}\left(\mathrm{d}_{(\mathrm{X})} \mathrm{x}\right)\right)+\left(\mathrm{d}\left(\mathrm{xd}_{(\mathrm{X})}\right)-\mathrm{d}\left(\mathrm{d}_{(\mathrm{X})} \mathrm{x}\right)\right) \mathrm{d}_{(\mathrm{X})}=0 \quad$ for all ${ }_{x} \in U$. Then
$\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{Xd}_{(\mathrm{X})}-\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}_{(\mathrm{X})} \mathrm{X}+\mathrm{xd}_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{X})}-\mathrm{d}_{(\mathrm{X})} \mathrm{Xd}^{2}{ }_{(\mathrm{X})}+\mathrm{d}_{(\mathrm{X})}{ }^{3}+\mathrm{d}_{(\mathrm{X})} \mathrm{Xd}^{2}{ }_{(\mathrm{X})}-\mathrm{d}_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{X}-\mathrm{d}_{(\mathrm{X})}{ }^{3}+\mathrm{d}_{(\mathrm{X})}{ }^{3}+\mathrm{xd}^{2}{ }_{(\mathrm{X})}$ $\mathrm{d}_{(\mathrm{X})}-\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{Xd}_{(\mathrm{X})}-\mathrm{d}_{(\mathrm{X})}{ }^{3}=0$ for all $\mathrm{x} \in \mathrm{U}$. Then
$\left[\mathrm{x}, \mathrm{d}_{(\mathrm{X})} \mathrm{d}^{2}{ }_{(\mathrm{X})}\right]+\left[\mathrm{x}, \mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{d}_{(\mathrm{X})}\right]=0$ for all $\mathrm{x} \in \mathrm{U}$.Thus
$\left[\mathrm{x}, \mathrm{d}\left(\mathrm{d}_{(} \mathrm{x}_{)}{ }^{2}\right)\right]=\mathrm{o}$ for all $\mathrm{x} \in \mathrm{U}$. We set $\mathrm{a}=\mathrm{d}_{(\mathrm{X})}{ }^{2}$, then
$\left[\mathrm{x}, \mathrm{d}_{(\mathrm{a})}\right]=\mathrm{o}$ for all $\mathrm{x} \in \mathrm{U}$.
$\left[\left[x, d_{(a)}\right], r\right]=0$ for all $x \in U, r \in$ R.Replacing r by $d_{(a)}$, and using Lemma 2.1, we obtain $d_{(a)}$ $\in_{Z(R)}$ (i.e. $d^{2}{ }_{(X)}{ }^{2} \in \mathcal{Z}_{(R)}$ for all $x \in U$), then by Lemma 2.8, we get $d^{2}{ }_{(X)} \in Z_{Z(R)}$ for all x $\in U$,then $\left[\mathrm{d}^{2}(\mathrm{x}), \mathrm{r}\right]=0$ for all $\mathrm{x} \in \mathrm{U}, \mathrm{r} \in$ R.Replacing x by xr and r by x , we obtain $\left[d^{2}(\mathrm{xy}), \mathrm{x}\right]=\left[\mathrm{d}^{2}{ }_{(\mathrm{X})} \mathrm{y}+2 \mathrm{~d}_{(\mathrm{X})} \mathrm{d}_{(\mathrm{y})}+\mathrm{xd}^{2}{ }_{(\mathrm{y})}, \mathrm{x}\right]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.In the relation $\left[\mathrm{d}^{2}{ }_{(\mathrm{X})}, \mathrm{r}\right]=$ 0 ,replacing r by x , we obtain $\left[\mathrm{d}^{2}(\mathrm{X}), \mathrm{x}\right]=0$ for all $\mathrm{x} \in \mathrm{U}$.Then according to this relation the
equation $\left[d^{2}{ }_{(\mathrm{X})} \mathrm{y}+2 \mathrm{~d}_{(\mathrm{X})} \mathrm{d}_{(\mathrm{y})}+\mathrm{x} \mathrm{d}^{2}(\mathrm{y}), \mathrm{x}\right]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$, with replacing y by x , become $2\left[d_{(X)}{ }^{2}, x\right]=0$ for all $x \in U$. Since R is 2-torsion free semiprime, then $\left[\mathrm{d}_{\left(\mathrm{X}^{\prime}\right.}{ }^{2}, \mathrm{x}\right]=0 \quad$ for all $\mathrm{x} \in \mathrm{U}$. Thus
$\left[\left[\mathrm{d}_{(\mathrm{X})}{ }^{2}, \mathrm{x}\right], \mathrm{d}_{(\mathrm{X})}{ }^{2}\right]=0$ for all $\mathrm{x} \in \mathrm{U}$. By Lemma 2.1, we obtain $\mathrm{d}_{(\mathrm{X})}{ }^{2} \in \mathrm{Z}(\mathrm{R})$ for all $\mathrm{x} \in \mathrm{U}$, then by Lemma 2.8, we get $d_{(X)} \in Z(R)$ for all $x \in U$, then [$\left.d_{(x)}, r\right]=0$ for all $x \in U, r \in R$. Replacing r by x, we obtain $\left[d_{(X)}, \mathrm{x}\right]=0$ for all $\mathrm{x} \in \mathrm{U}$. By Lemma 2.3, R contains a non-zero central ideal .

Theorem 3.6. Let R be a 2-torsion free semiprime ring. If R admitting a derivation d to satisfying $\left.d\left(\left[d_{(}(x), d_{(} y\right)\right]\right)=[x, y]$ for all $x, y \in R$. Then R is commutative .

Proof. At first, when $\mathrm{d} \neq 0$, by same method in Theorem 3.5, we obtain $\quad d(x) \in Z(R)$ for all $x \in U$, then
$\left[d_{(X)}, r\right]=0$ for all $x, r \in R$. Replacing r by $d_{(y), \text { we get }}$
$\left[\mathrm{d}_{(\mathrm{X})}, \mathrm{d}_{(\mathrm{y})}\right]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$. By substituting this relation in $\mathrm{d}\left(\left[\mathrm{d}_{(\mathrm{X})}+\mathrm{d}_{(\mathrm{x})}\right]\right)=[\mathrm{x}, \mathrm{y}]$ for all $x, y \in R$, gives $\quad[x, y]=0$ for all $x, y \in R$. Then R is commutative . When $d=0$, it is clearly we obtain R is commutative.

Corollary 3.7. Let R be a 2-torsion free prime ring and U a non-zero ideal of R. If R admitting a derivation d to satisfying $d\left(\left[d_{(}\left(x_{)}, d_{(} y_{j}\right]\right)=[x, y]\right.$ for all $x, y \in U$. Then R is commutative .

Proof. When $d \neq 0$, by using same method in Theorem 3.5, with Lemma 2.3, we get R is commutative.

When $\mathrm{d}=0$, then $[\mathrm{x}, \mathrm{y}]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$.By Lemma 2.6, we obtain R is commutative.

Theorem 3.8. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R.If R admitting a non-zero derivation d to satisfying $d\left(\left[d_{(x)}, d_{(y)}\right]\right)=\left[d_{(} x_{1}, d_{(y)}\right]$ for al x, y \in U.Then R contains a non-zero central ideal .

Proof. We suppose first that $\mathrm{a}=[\mathrm{d}(\mathrm{x}), \mathrm{d}(\mathrm{y})], \mathrm{a} \in \mathrm{R}$. Then $d(a)=a$.

We set $a=a z, z \in R$, where $z=[d(y), d(x)]$, then $\mathrm{d}(\mathrm{az})=\mathrm{az} \quad$.Thus
$d(a) z+a d(z)=a z$. According to (28),we obtain
$\operatorname{ad}(\mathrm{z})=0$. This implies
$[\mathrm{d}(\mathrm{x}), \mathrm{d}(\mathrm{y})] \mathrm{d}([\mathrm{d}(\mathrm{y}), \mathrm{d}(\mathrm{x})])=0 \quad$ for all $\in \mathrm{U}$. Since R has a cancellation property from right, we obtain $[\mathrm{d}(\mathrm{x}), \mathrm{d}(\mathrm{y})]=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{U}$. By Lemma 2.7, we get
R contains a non-zero central ideal.

Corollary 3.9. Let R be a 2-torsion free prime ring and U a non-zero ideal of R.If R admitting a non-zero derivation d to satisfying $d\left(\left[d_{(x)}, d_{(y)}\right]\right)=\left[d_{(x)}, d_{(y)}\right]$ for all $x, y \in U$. Then R is commutative .

We now have enough information to prove the following result .

Theorem 3.10. Let R be a 2-torsion free semiprime ring and U a non-zero ideal of R. If R admitting a non-zero derivation d to satisfying one of the following conditions .
(i) $\left.\left[d_{(} x, d_{(} y\right)\right]=[x, y]$ for all $x, y \in U$.
(ii) $\left[d^{2}(x), d^{2}(y)\right]=[x, y]$ for all $x, y \in U$.
${ }_{\text {(iii) }}\left[d_{(} x, d_{(y)}\right]=\left[x^{2}, y^{2}\right]$ for all $x, y \in U$.
(iv) $\left[d^{2}(x), d^{2}(y)\right]=\left[x^{2}, y^{2}\right]$ for all $x, y \in U$.
${ }_{(v)} d\left(\left[d_{(} x_{)}, d_{(y)}\right]\right)=[x, y]$ for all $x, y \in U$.
${ }_{(v i)} d\left(\left[d_{(} x_{)}, d_{(} y_{y}\right]\right)=\left[d_{(} x_{)}, d_{(} y_{)}\right]$for all $x, y \in U$. Then $d_{(} U$, centralizes U.

Acknowledgments. The author would like to thank the referee for her/his useful comments.

REFERENCES

[1] H.E. Bell and W.S .Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30(1)(1987), 92-101 .
[2]M. Breser, Centralizing mappings and derivations in prime rings, J.Algebra, 156 (1993), 385-394 .
[3] M. Bresar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math.J.,33 (1991),80-93.
[4] M.N. Daif and H.E.Bell, Remarks on derivations on semiprime rings, Internat. J. Math. and Math. Sci., 15 (1992), 205-206 .
[5] M.N. Daif Commutativity results for semiprime rings with derivations, Internat. J. Math. and Math. Sci., Vol.21(3)(1998), 471-474 .
[6]V. DeFilippis, Automorphisms and derivations in prime rings, Rendiconti di Mathematica, Serie VII, Vol.19, Roma (1999), 393-404 .
[7]Q. Deng and H.E. Bell, On derivations and commutativity on semiprime rings, Comm. Algebra, 32 (1995), 3703-3713.
[8]I.N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
[9]I.N. Herstein, Rings with Involution, University of Chicago Press, Chicago, Illinois, 1976.
[10]C. Lanski, An engel condition with derivation for left ideals, Proc. Amer. Math Soc., 125(2)(1997), 339-345.
[11]A.H. Majeed and M. Jabel, Some results of prime and semiprime rings with derivations, Um-Salama ScienceJ., Vol.2(3)(2005), 508-516.
[12]M. Jabel, On generalized derivations of semiprime rings, International Journal of Algebra,no. 12 (4)(2010), 591-598.
[13] A. Nakajima, On categorical properties of generalized derivations, Scientiae Mathematicae 2(1999), 345-352.

[^0]: *Corresponding author
 E-mail address: mehsinatteya@yahoo.com(M. Atteya)

