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Abstract. In this article, we have attained some interesting results on existence of fixed points for a newly devel-

oped larger class of self mappings called zG -Kannan defined on a metric space equipped with a special type of

graph called f-orbitally connected graph. This extended class is a merger of the most recently developed Kannan

type mapping called z-Kannan contractions defined in a metric space and G-Kannan mapping defined in a metric

space with an underlying graph. It is highlighted through example that such a graph condition is sufficient to study

fixed points of zG -Kannan mappings. Several interesting examples are illustrated which justify that our obtained

results are more general and further, many previously developed fixed point results related to Kannan mappings

are encompassed in our main result. The article closes by raising some open problems of this work.
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1. INTRODUCTION AND PRELIMINARIES

Jachymski in 2008 [7] initiated the idea of a contraction mapping called G-contraction map-

ping in metric spaces which are somehow equipped with a directed graph G. He proved a few

fixed point results for such contraction mappings. Later in 2012, Wardowski [3] considered a
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special type of real-valued function z defined on R+. This function satisfied some additional

properties and was used to define z-contractions on a metric space. He proved that such map-

pings do possess a fixed point under the completeness of the space. Since then many authors

have worked on fixed point results of such mappings and their possible extensions([1], [4], [6],

[8], [9]).

Extending the work in this direction, Batra and Vashistha [11] in 2014 generalized the above

two contractions to produce a new type of contraction mapping defined as z-G-contraction

which carried features of both. He proved some fixed point results which extended Jachymski’s

and Wardowski’s work.

In 2012, Bojor [5] also introduced a new class of mappings called G-Kannan mapping and

gave some results on existence of fixed points of such mappings on a metric space endowed

with a graph G. Very recently in 2020, Batra et. al. [10] introduced z-Kannan mappings and

established some fixed point existence theorems for such mappings. The present article is a

merger of the concepts of G-Kannan and z-Kannan mappings to form an extended class of zG

-Kannan mappings on a metric spaced with a graph G. Throughout the paper (W,ζ ) denotes a

metric space.

Definition 1.1. ([10]) Consider a function z : R+→ R with the following properties

(F̄1) z(ω1)<z(ω2) for every ω1 < ω2 ∈ R+.

(F̄2) limn→∞βn = 0⇔ limn→∞z(βn) =−∞, βn > 0.

(F̄3) For some positive number r < 1, following holds

limβ→0+β
rz(β ) = 0.

A mapping S : W→W is defined to be an z-Kannan mapping if:

(1) Sξ̄ 6= Sρ̄ ⇒ Sξ̄ 6= ξ̄ or Sρ̄ 6= ρ̄.

(2) ∃ ϒ > 0 such that

ϒ+z[ζ (Sξ̄ ,Sρ̄)]≤z

[
ζ (ξ̄ ,Sξ̄ )+ζ (ρ̄,Sρ̄)

2

]
for all ξ̄ , ρ̄ ∈W and Sξ̄ 6= Sρ̄ .
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Definition 1.2. ([5]) Let (W,ζ ) be equipped with graph G. The mapping S : W→W is defined

to be G-Kannan mapping if :

(a) S is edge preserving, that is:

(ξ̄ , ρ̄) ∈ EG⇒ (Sξ̄ ,Sρ̄) ∈ EG.

(b) ∃ k ∈ [0, 1
2) such that :

(1) ζ (Sξ̄ ,Sρ̄)≤ kζ (ξ̄ ,Sξ̄ )+ kζ (ρ̄,Sρ̄)

for all (ξ̄ , ρ̄) ∈ EG.

An equivalent form of (1) is

(2) ζ (Sξ̄ ,Sρ̄)≤ k
2
[ζ (ξ̄ ,Sξ̄ )+ζ (ρ̄,Sρ̄)]

for some k ∈ [0,1) and all (ξ̄ , ρ̄) ∈ EG.

2. MAIN RESULTS

We now introduce zG -Kannan mapping by composing above definitions. Consider the space

(W,ζ ) endowed with a graph G.

Definition 2.1. Consider a mapping z with properties (F̄1)-(F̄3). Consider an operator f :

W→W satisfying the following conditions:

(K1) f preserves the edges of G, that is

(3) (ξ̄ , ρ̄) ∈ EG⇒ (fξ̄ ,fρ̄) ∈ EG.

(K2)

(4) (ξ̄ , ρ̄) ∈ EG and fξ̄ 6= fρ̄ ⇒ fξ̄ 6= ξ̄ or fρ̄ 6= ρ̄.

(K3) ∃ ϒ > 0 such that

(5) ϒ+z[ζ (fξ̄ ,fρ̄)]≤z

[
ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄)

2

]

for all (ξ̄ , ρ̄) ∈ EG and fξ̄ 6= fρ̄ . Then f is called an zG -Kannan mapping.
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There are various types of the mapping z satisfying (F̄1)-(F̄3) and graphs G on the space W

which generate a variety of zG -Kannan mappings (for examples of mappings z, refer [7]). In

the underlying example, it is proved that a necessary and sufficient condition for a mapping to

be G-Kannan ([5]) mapping is it must be lnG-Kannan mapping. Thus, this class of mappings as

considered by Bojor [5] are a special case of our defined class.

Example 2.1. Let z1 : R+→ R be defined as z1(α) = lnα, α > 0. Then clearly (F̄1), (F̄2)

and (F̄3) are satisfied by z1. Indeed condition (F̄3) is true for every k ∈ (0,1). Also, equation

(5) becomes :

(6) ζ (fξ̄ ,fρ̄)≤ e−ϒ

[
ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄)

2

]

for all (ξ̄ , ρ̄) ∈ EG and fξ̄ 6= fρ̄ .

Let f : W→W be a G-Kannan mapping. If k = 0 in (2), then fξ̄ = fρ̄ for all (ξ̄ , ρ̄) ∈ EG

and therefore (K2) and (K3) hold vacuously i.e, f is also z1G -Kannan mapping. Further, if

k > 0 in (2), then (6) holds with ϒ = ln(1/k). Also whenever (ξ̄ , ρ̄)∈ EG and fξ̄ 6=fρ̄ then (2)

implies fξ̄ 6= ξ̄ or fρ̄ 6= ρ̄ that is, (K2) is also true. Thus, f is again z1G -Kannan mapping.

On the other hand, assume that the mapping f is z1G -Kannan. We show it is G-Kannan as

well. Indeed, if (ξ̄ , ρ̄) ∈ EG and fξ̄ = fρ̄ then we may choose any k ∈ [0,1) so that (2) holds.

If fξ̄ 6= fρ̄ then from (6), by choosing k = e−ϒ ∈ [0,1), again (2) holds.

Example 2.2. Let Gdiag be the graph such that V (Gdiag) = W and E(Gdiag) = ∆. Then every

self map on W is vacuously an zGdiag-Kannan mapping for all z satisfying (F̄1)-(F̄3).

Remark 2.1. For any z satisfying (F̄1)-(F̄3), there always exists a graph G on W and a self

mapping f on W which is zG -Kannan.

Remark 2.2. It follows from above example that in general, an zG -Kannan mapping need not

be always continuous on W.

Following two examples are an illustrative of the fact that the above defined class of zG -

Kannan mapping is universal with respect to the class of z-Kannan mapping [10] as well as the
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class of G-Kannan mapping as defined by Bojor [5]. For every fixed graph G on W, there exists

a self mapping f on W and a function z satisfying (F̄1)-(F̄3) such that f is an zG -Kannan

mapping but not G-Kannan mapping.

Example 2.3. Let W = {yn : n ∈ N} where yn = (−1)nn, n ≥ 2 and y1 = 0 with eu-

clidean distance on W. Define f : W→ W as fy1 = y1 and fyn = yn−1, n ≥ 2. Choose

z(ξ̄ ) = ln(ξ̄ )+ ξ̄ , ξ̄ > 0.

y2

y1

yny3 y4 . . . . . . . . . . . .

FIGURE 1

Also define a graph G on W as VG =W and EG = ∆∪{(y1,yn) : n ≥ 2} (refer Fig 1) . Then

clearly f preserves edges of G.

Equation (5) becomes :

(7)
ζ (fξ̄ ,fρ̄)

(ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄))/2
eζ (fξ̄ ,fρ̄)−

{
ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄)

2

}
≤ e−ϒ

for all (ξ̄ , ρ̄) ∈ EG and fξ̄ 6= fρ̄ . We now prove that equation (7) is satisfied by f but not

equation (2). Also {(ξ̄ , ρ̄) ∈ EG : fξ̄ 6= fρ̄}= {(y1,yn) : n≥ 3} and thus, correspondingly,

ζ (fξ̄ ,fρ̄)

(ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄))/2
eζ (fξ̄ ,fρ̄)−

{
ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄)

2

}

=
ζ (y1,yn−1)

ζ (yn,yn−1)/2
eζ (y1,yn−1)−

ζ (yn,yn−1)
2

=
n−1

(2n−1)/2
e(n−1)− (2n−1)

2 =
n−1

(2n−1)/2
e−

1
2 < e−

1
2 .

By making a choice of ϒ = 1/2, it is proved that equation (7) is satisfied by f. For any (ξ̄ , ρ̄) ∈

∆, (2) holds. Also for (y1,y2) ∈ EG, (2) again holds but for (y1,yn) ∈ EG,n ≥ 3, we have as
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above, ζ (fξ̄ ,fρ̄)

(ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄))/2
= n−1

(2n−1)/2 → 1 as n→∞. Hence f fails to satisfy equation (2). Thus

f is an zG -Kannan mapping but not G-Kannan.

Consider any mapping z which obeys properties (F̄1)-(F̄3). Then, there is always a self

mapping f : W→W and a graph G such that f is zG -Kannan mapping but not z-Kannan

mapping. Indeed, consider the following example.

Example 2.4. Letting G = Gdiag, then by Example 2.2, every self mapping on W becomes

zGdiag-Kannan mapping. In particular, consider f : [0,1]→ [0,1] as:

fξ̄ =


0.99 if 0≤ ξ̄ < 1

0.8 if ξ̄ = 1

Under the euclidean metric on [0,1], it can be seen that z[ζ (T 0.9,T 1)] =z[0.19]>z[0.145] =

z
[

ζ (0.9,T 0.9)+ζ (1,T 1)
2

]
. This justifies that this mapping f is not z-Kannan. It is interesting to

note here that f has exactly one fixed point.

Definition 2.2. ([11]) Sequences {an} and {bn} in (W,ζ ) are said to be equivalent, if

limn→∞ ζ (an,bn) = 0.

Proposition 2.1. Let S : W→W satisfy (K1) (respectively (K2) and (K3)) for graph G, then S

will also satisfy (K1) (respectively (K2) and (K3)) for graphs G−1 and G̃. Further, consider the

following statements

(i) S is zG -Kannan mapping.

(ii) S is zG−1 -Kannan mapping.

(iii) S is zG̃ -Kannan mapping.

Then (i) and (ii) are equivalent and (i) implies (iii).

Proof. Proof follows by symmetry of ζ . �

Definition 2.3. Let f be a self map on W. A graph G on W is said to be f-orbitally connected

if for each ξ̄ ∈W, there is at least one k ∈ N such that (fk−1ξ̄ ,fkξ̄ ) ∈ EG.

Remark 2.3. G is f-orbitally connected⇒ G̃ is f-orbitally connected.
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The following example illuminates that the condition of G being f-orbitally connected is

necessary to study the existence of fixed points of zG -Kannan mapping f.

Example 2.5. Consider the set W= N\{1} equipped with euclidean metric. Define f : W→

W as fξ̄ = 2x. Then f has no fixed point in W. Therefore condition (K2) holds trivially,

independent of graph G on W and mapping z.

2 3 4 5 6 7 8

9

10

11

12 13 14 15 16

FIGURE 2

Suppose W is equipped with a graph G where VG = W and EG = {(2kn,2k(n+ 1)) : n ∈

W,k ∈ {0,1,2...}}∪∆ (refer Fig 2). Then clearly (fξ̄ ,fρ̄) ∈ EG whenever (ξ̄ , ρ̄) ∈ EG.

Additionally, (ξ̄ , ρ̄) ∈ EG and fξ̄ 6=fρ̄ if and only if (ξ̄ , ρ̄) ∈ EG \∆. We prove that f is lnG

-Kannan mapping. Consider any (ξ̄ , ρ̄) ∈ EG \∆ say ξ̄ = 2kn and ρ̄ = 2k(n+1), k ∈ {0,1,2...}

and n ∈W.

Then,

ζ (ξ̄ ,fξ̄ )+ζ (ρ̄,fρ̄)

2d(fξ̄ ,fρ̄)
=

ξ̄ + ρ̄

4|ξ̄ − ρ̄|

=
2n+1

4
.

Since n≥ 2, choosing ϒ = ln(5
4), condition (K3) is also true.

Finally it remains to prove that G is not f-orbitally connected. For ξ̄ = 2 ∈ W,

(fk−1ξ̄ ,fkξ̄ ) = (2k,2k+1) /∈ E(G) for any k ∈ {0,1,2, ...}.

In the remainder of the article (W,ζ ) is a metric space equipped with a graph G which is

f-orbitally connected with f being any self mapping on W.
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Lemma 2.1. If f is an zG -Kannan mapping on W then, for any ξ̄ ∈W and ρ̄ ∈ [ξ̄ ]G̃, we have

ζ (fnξ̄ ,fnρ̄)→ 0 as n→ ∞.

Proof. By Proposition 2.1 f is also zG̃-Kannan mapping. Let ξ̄ ∈W and ρ̄ ∈ [ξ̄ ]G̃. Thus a

path exists from ξ̄ to ρ̄ in G̃ say (ξ̄ j)
N
i=0 where ξ̄0 = ξ̄ , ξ̄N = ρ̄ and (ξ̄ j, ξ̄ j+1) ∈ EG̃ for all

j = 0,1, · · · ,N−1.

Inductively applying (K1) gives, for each n ∈ N and j = 0,1, . . . ,N−1,

(8) (fn
ξ̄ j,fn

ξ̄ j+1) ∈ EG̃

Consider for any n ∈ N,

ζ (fn
ξ̄ ,fn

ρ̄) = ζ (fn
ξ̄0,fn

ξ̄N)

≤
N−1

∑
i=0

ζ (fn
ξ̄ j,fn

ξ̄ j+1)(9)

If fmξ̄ j = fmξ̄ j+1 for some j ∈ {0,1, . . . ,N− 1} and m ∈ N, the following is true for all

n≥ m

ζ (fn
ξ̄ j,fn

ξ̄ j+1) = 0

≤
ζ (fn−1ξ̄ j,fnξ̄ j)+ζ (fn−1ξ̄ j+1,fnξ̄ j+1)

2
(10)

Now consider j ∈ {0,1, . . . ,N−1} and n ∈ N for which fnξ̄ j 6= fnξ̄ j+1 .

Also by equation (8), (fn−1ξ̄ j,fn−1ξ̄ j+1) ∈ EG̃. Therefore, by (K3), there exists ϒ > 0 such

that

ϒ+z[ζ (fn
ξ̄ j,fn

ξ̄ j+1)]≤z

[
ζ (fn−1ξ̄ j,fnξ̄ j)+ζ (fn−1ξ̄ j+1,fnξ̄ j+1)

2

]
or,

z[ζ (fn
ξ̄ j,fn

ξ̄ j+1)]≤z

[
ζ (fn−1ξ̄ j,fnξ̄ j)+ζ (fn−1ξ̄ j+1,fnξ̄ j+1)

2

]
−ϒ

≤z

[
ζ (fn−1ξ̄ j,fnξ̄ j)+ζ (fn−1ξ̄ j+1,fnξ̄ j+1)

2

]
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Since z is non-decreasing, so above inequality implies

(11) ζ (fn
ξ̄ j,fn

ξ̄ j+1)≤
ζ (fn−1ξ̄ j,fnξ̄ j)+ζ (fn−1ξ̄ j+1,fnξ̄ j+1)

2

From equations (9), (10) and (11), we obtain

(12) ζ (fn
ξ̄ ,fn

ρ̄)≤
N−1

∑
j=0

ζ (fn−1ξ̄ j,fnξ̄ j)+ζ (fn−1ξ̄ j+1,fnξ̄ j+1)]

2

for all n ∈ N.

Consider any fixed but arbitrary j ∈ {0,1, · · · ,N}.

If there exists some k ∈ N such that fk−1ξ̄ j = fkξ̄ j, then the sequence ζ (fn−1ξ̄ j,fnξ̄ j)

is eventually zero sequence. Hence, ζ (fn−1ξ̄ j,fnξ̄ j)→ 0. On the other hand assume that

fn−1ξ̄ j 6= fnξ̄ j for all n ∈ N. Also, since the graph G is f-orbitally connected, there exists

some k j ∈ N such that (fk j−1ξ̄ j,fk
jξ̄ j) ∈ EG̃. Moreover, (fn−1ξ̄ j,fnξ̄ j) ∈ EG̃ for every n≥ k j,

equivalently, (fn−2ξ̄ j,fn−1ξ̄ j) ∈ EG̃ for every n≥ k j +1. Using (K3) and property (F̄1) of z,

we have for each n≥ k j +1,

z[ζ (fn−1
ξ̄ j,fn

ξ̄ j)]≤z[
ζ (fn−2ξ̄ j,fn−1ξ̄ j)+ζ (fn−1ξ̄ j,fnξ̄ j)

2
]−ϒ

≤z[ζ (fn−2
ξ̄ j,fn−1

ξ̄ j)]−ϒ

Recursively using the above inequality, we get

z[ζ (fn−1
ξ̄ j,fn

ξ̄ j)]≤z[ζ (fk j−1
ξ̄ j,fk j ξ̄ j)]− (n− k j)ϒ

Letting n→ ∞ and using property (F̄2) of z, we again have ζ (fn−1ξ̄ j,fnξ̄ j)→ 0. The proof

now follows by letting n→ ∞ in inequality (12).

�

Theorem 2.1. The statements below are equivalent:

(i) G is a weakly connected graph.
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(ii) Sequences {fnξ̄} and {fnρ̄} are equivalent and Cauchy for any ξ̄ , ρ̄ ∈W and self

mapping f on W which is zG -Kannan mapping.

(iii) Card(Fixf) ≤ 1 for any zG -Kannan mapping f on W, where Fixf represents the

collection of all fixed points of f.

Proof. (i)⇒ (ii)

The graph G being weakly connected, we have W= [ξ̄ ]G̃. Consider a mapping f on W which

is zG -Kannan and ξ̄ , ρ̄ ∈W. If there exists k ∈ N such that fk−1ξ̄ = fkξ̄ , then the sequence

{fnξ̄} is eventually a constant sequence and therefore Cauchy. Now assume fk−1ξ̄ 6= fkξ̄

for all k ∈ N. Hence, pk = ζ (fk−1ξ̄ ,fkξ̄ ) > 0 for all k ∈ N. Also, since fξ̄ ∈ [ξ̄ ]G̃, we

can find a path (ξ̄i)
N
i=0 such that ξ̄0 = ξ̄ , ξ̄N = fξ̄ and (ξ̄i−1, ξ̄i) ∈ EG̃ for every i = 1,2, ...,N.

Let pk,i = ζ (fk−1ξ̄i−1,fk−1ξ̄i) and qk,i = ζ (fk−1ξ̄i,fkξ̄i). Then for any k ∈ N, by triangle

inequality, we have

(13) pk ≤
N

∑
i=1

pk,i

We will prove that series ∑
∞
k=1 pk,i converges for every i = 1,2, ...,N. Consider any fixed

i ∈ {1,2, ...,N}. If for some k, fk−1ξ̄i−1 = fk−1ξ̄i then {pk,i}k is eventually zero sequence.

Therefore this implies that ∑
∞
k=1 pk,i converges, being a sum of finitely many terms. So now

assume that fk−1ξ̄i−1 6= fk−1ξ̄i for any k. Also since (ξ̄i−1, ξ̄i) ∈ EG̃, using (K1) inductively,

we have (fk−2ξ̄i−1,fk−2ξ̄i) ∈ EG̃ for all k ≥ 2. By (K3) we get

z[ζ (fk−1
ξ̄i−1,fk−1

ξ̄i)]≤z

[
ζ (fk−2ξ̄i−1,fk−1ξ̄i−1)+ζ (fk−2ξ̄i,fk−1ξ̄i)

2

]
−ϒ

or

z[pk,i]≤z
[

qk−1,i−1 +qk−1,i

2

]
−ϒ

Since z is non decreasing, we obtain

(14) pk,i ≤
qk−1,i−1 +qk−1,i

2

By similar arguments as in Lemma 2.1, we have for each i = 0,1, ...,N, qk,i→ 0 as k→ ∞ and
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(15) z[qk,i]≤z[ζ (fki−1
ξ̄i,fki ξ̄i)]− (k− ki)ϒ

Since qk,i→ 0 as k→ ∞, by property (F̄3), there exists ri ∈ (0,1) such that

(16) lim
k→∞

qri
k,iz(qk,i) = 0.

(15), (16) gives limk→∞(k− ki)q
ri
k,i = 0 and hence limk→∞ kqri

k,i = 0. So, there exists mi ∈

N such that kqri
k,i < 1 for all k ≥ mi or, qk,i <

1
k1/ri

for all k ≥ mi. This implies that series

∑
∞
k=1 qk,i converges and therefore inequality (14) implies that ∑

∞
k=1 pk,i converges in this case

also. Hence, inequality (13) clearly implies ∑
∞
k=1 pk also converges. Now for any n > m, we

have ζ (fmx,fnξ̄ ) ≤ ζ (fmx,fm+1ξ̄ ) + ζ (fm+1ξ̄ ,fm+2ξ̄ ) + · · ·+ ζ (fn−1ξ̄ ,fnξ̄ ) = pm+1 +

pm+2 + · · ·+ pn → 0 as m,n→ ∞. Thus, {fnξ̄} is a Cauchy sequence. Similarly {fnρ̄} is

also a Cauchy sequence. From lemma 2.1, since ρ̄ ∈W = [ξ̄ ]G̃, we have ζ (fnξ̄ ,fnρ̄)→ 0 as

n→ ∞.

(ii)⇒ (iii) Let f : W→W be any zG -Kannan mapping and if ξ̄ , ρ̄ are any two fixed points

of f, then by (ii) sequence {fnξ̄}= {ξ̄} and {fnρ̄}= {ρ̄} are equivalent and thus ζ (ξ̄ , ρ̄) = 0,

i.e ξ̄ = ρ̄ .

(iii)⇒ (i) Let if possible G is not weakly connected. So there must exist some ξ̄0 ∈W such

that [ξ̄0]G̃ ⊂W. This implies the existence of some element ρ̄0 ∈W but ρ̄0 /∈ [ξ̄0]G̃. Define

f : W→W as

f(ξ̄ ) =


ξ̄0 if ξ̄ ∈ [ξ̄0]G̃

ρ̄0 if ξ̄ /∈ [ξ̄0]G̃

Then by definition of f, we observe that Fix(f) = {ξ̄0, ρ̄0}. Also we prove f is zG -Kannan

mapping. In fact, if (a,b)∈EG then [a]G̃= [b]G̃. Thus, either both a,b∈ [ξ̄0]G̃ or both a,b /∈ [ξ̄0]G̃.

In either case, we have fa = fb thereby (fa,fb) ∈ EG since EG contains all loops. Thus G is

edge preserving. Also it can be noted that whenever (a,b)∈ EG, then fa=fb. Thus conditions

(K2) and (K3) hold vacuously for f as defined. Simultaneously condition (iii) is violated since

f has two fixed points. Hence, graph G must be weakly connected. �
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Corollary 2.1. If (W,ζ ) is complete, then

G is a weakly connected graph ⇐⇒ For every zG -Kannan mapping f on W, there exists a

unique ξ̄∗ ∈W such that limn→∞fnξ̄ = ξ̄∗ for every ξ̄ ∈W.

Lemma 2.2. Suppose condition (K1) holds for a mapping f : W→W with respect to graph G.

Then fξ̄ ∈ [fρ̄]G for every ξ̄ ∈ [ρ̄]G.

Proof. The proof follows by edge preserving property (K1) and definition of equivalence class

on W. �

Theorem 2.2. If f : W→ W be an zG -Kannan mapping such that fξ̄0 ∈ [ξ̄0]G̃ for some

ξ̄0 ∈W. Then

(i) The set [ξ̄0]G̃ is invariant under f.

(ii) f|[ξ̄0]G̃
is an zG̃

ξ̄0
-Kannan mapping.

(iii) G̃
ξ̄0

is f|[ξ̄0]G̃
-orbitally connected.

(iv) For any ξ̄ , ρ̄ ∈ [ξ̄0]G̃ the sequnces {fnξ̄}n∈N and {fnρ̄}n∈N are Cauchy and equivalent

sequences .

Proof. By proposition 2.1, f is also zG̃-Kannan mapping.

(i) Since fξ̄0 ∈ [ξ̄0]G̃, we have [ξ̄0]G̃ = [fξ̄0]G̃. Consider any ξ̄ ∈ [ξ̄0]G̃. Then by previous

lemma, fξ̄ ∈ [fξ̄0]G̃ or, fξ̄ ∈ [ξ̄0]G̃.

(ii) Let (a,b) ∈ E(G̃
ξ̄0
) ⊆ EG̃ and since f is zG̃-Kannan mapping, we have (fa,fb) ∈ EG̃.

Also a,b ∈ [ξ̄0]G̃, so by part (i), fa,fb ∈ [ξ̄0]G̃ = V (G̃
ξ̄0
). Since E(G̃

ξ̄0
) ⊆ EG̃ and f is zG̃-

Kannan mapping so conditions (K2) and (K3) are true for graph G̃
ξ̄0

also.

(iii) If a ∈ [ξ̄0]G̃ ⊆W, so there exists some k ∈ N such that (fk−1a,fka) ∈ EG. It remains to

justify that fk−1a and fka ∈ [ξ̄0]G̃ =V (G̃
ξ̄0
). This holds by (i) applied recursively.

(iv) Since G̃
ξ̄0

is f-orbitally connected on [ξ̄0]G̃ and is also connected, so the proof follows

from above Theorem.

�

Theorem 2.3. Let (W,ζ ) be complete. Assume the following property (A) for the triplet

(W,ζ ,G)
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If a sequence ξ̄k converges to ξ̄ in W, such that (ξ̄k, ξ̄k+1) ∈ EG for each k ∈ N, then there

exists some sub sequence {ξ̄nk}k such that (ξ̄nk , ξ̄ ) ∈ EG for all k ∈ N.

Let f : W → W is zG -Kannan mapping and Wf = {ξ̄ ∈ W : (ξ̄ ,fξ̄ ) ∈ EG}. Then

following statements hold:

(i) Card(Fixf) =Card{[ξ̄ ]G̃ : ξ̄ ∈Wf}.

(ii) Fixf 6= /0⇔Wf 6= /0.

(iii) There exists a unique fixed point of f⇔ there exists some ξ̄0 ∈Wf satisfying Wf ⊆

[ξ̄0]G̃.

(iv) f|[ξ̄ ]G̃ is a PO for any ξ̄ ∈Wf.

(v) If W
′
= ∪{[ξ̄ ]G̃ : ξ̄ ∈Wf} then f|

W
′ is a WPO.

(vi) If Wf 6= /0 and G is weakly connected then f is a PO.

(vii) If f⊆ EG then f is a WPO on W.

Proof. We first prove (iv). For this, consider any ξ̄ ∈Wf. Then, (ξ̄ ,fξ̄ ) ∈ EG. Therefore

fξ̄ ∈ [ξ̄ ]G̃. Hence, for any ρ̄ ∈ [ξ̄ ]G̃, we have by Theorem 2.2, sequences {fnξ̄} and {fnρ̄}

are both Cauchy and are equivalent. Sine the metric space W is complete, there exists ξ̄∗ ∈W

such that fnξ̄ → ξ̄∗ and fnρ̄ → ξ̄∗ as n→ ∞. Also by (K1) applied inductively to (ξ̄ ,fξ̄ ),

we have (fnξ̄ ,fn+1ξ̄ ) ∈ EG for all n ∈ N. By property (A), there exists a sub sequence

{fkn ξ̄} such that (fkn ξ̄ , ξ̄∗) ∈ EG for every n ∈ N. Also by condition (K3), we must have

ζ (fkn+1ξ̄ ,fξ̄∗) ≤ ζ (fkn ξ̄ ,fkn+1ξ̄ )+ζ (ξ̄∗,fξ̄∗)
2 for all n ∈ N. Letting n→ ∞ gives ζ (ξ̄∗,fξ̄∗) = 0.

Hence ξ̄∗ is a fixed point of f. Moreover, ξ̄∗ ∈ [ξ̄ ]G̃ since there is a path from ξ̄ to ξ̄∗ namely

ξ̄ ,fξ̄ ,f2ξ̄ , ...,fk1 ξ̄ , ξ̄∗ in G (and hence in G̃). Thus, f|[ξ̄ ]G̃ is a PO.

Clearly (v) follows from (iv).

Next we prove (vi). If G is weakly connected, then [ξ̄ ]G̃ =W. So the proof follows from (iv).

To prove (vii), it is noted that if f⊆ EG, then Wf =W and thus W
′
=W which implies by

(v) f is a WPO.

Now we prove (i). Let C = {[ξ̄ ]G̃ : ξ̄ ∈Wf}. Define a mapping π : Fixf→C as π(ξ̄ ) = [ξ̄ ]G̃.

Then since Fixf⊆Wf, so π is well defined. It is required to show that π is bijective. Consider

any arbitrary ξ̄ ∈Wf. By (iv), f|[ξ̄ ]G̃ is a PO. Hence, there exists a unique fixed point of f,
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ξ̄∗ ∈ [ξ̄ ]G̃ and fnξ̄ → ξ̄∗ as n→ ∞. So, [ξ̄ ]G̃ = [ξ̄∗]G̃ = πξ̄∗. Thus π is surjective. Now, assume

ξ̄1 and ξ̄2 ∈ Fixf ⊆Wf such that [ξ̄1]G̃ = [ξ̄2]G̃. By part(iv), f|[ξ̄1]G̃
is a PO. Then there must

exist a unique fixed point of f say a∗ ∈ [ξ̄1]G̃. But since ξ̄1 is also a fixed point of f in [ξ̄1]G̃,

so a∗ = ξ̄1. Now, since ξ̄2 ∈ [ξ̄1]G̃ we have fnξ̄2→ a∗ = ξ̄1. But fnξ̄2→ ξ̄2. So we must have

ξ̄2 = ξ̄1. Thus π is injective also.

Proofs of (ii) and (iii) are followed from (i). �

Corollary 2.2. The following statements are equivalent in a complete metric space (W,ζ )

satisfying property (A) :

(i) For any zG -Kannan mapping f : W→W, Card(Fixf)≤ 1.

(ii) G is weakly connected.

(iii) Every zG -Kannan mapping f : W→W such that (ξ̄0,fξ̄0) ∈ EG for some ξ̄0 ∈W is a

PO.

Proof. (i)⇒(ii) Follows from Theorem 2.1.

(ii)⇒(iii) This is followed from above Theorem 2.3(vi).

(iii)⇒(i) Let f : W→W be an zG -Kannan mapping. By Theorem 2.3 (ii), if Wf = /0 then

so is Fixf and thus Card(Fixf) = 0. If Wf 6= /0, then by hypothesis, Card(Fixf) = 1. In both

cases Card(Fixf)≤ 1.

�

Open Problems:

(1) Can the underlying graph property of being f-orbitally connected be weakened?

(2) In Theorem 2.3, can property (A) be replaced by some other property?

(3) Prove the analogue of chatterjea contraction.
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