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Abstract. This paper establishes a study on some important latest innovations in the existence of mild solution of

semilinear for differential and fractional differential equations subject to nonlocal initial conditions. To apply this,

the study uses Hausdorff measure of non-compactness and fixed point theorems. A wider applicability of these

techniques are based on their reliability and reduction in the size of the mathematical work.
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1. INTRODUCTION

In recent years there has been a growing interest in the differential equation. The differential

equations be an important branch of modern mathematics. It arises frequently in many applied

areas which include engineering, electrostatics, mechanics, the theory of elasticity, potential,

and mathematical physics [11, 12, 14, 15, 16, 33].

During the last decades, mathematical modeling has been supported by the field of fractional

calculus, with several successful results and fractional operators showing to be an excellent
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tool to describe the hereditary properties of various materials and processes. Recently, this

combination has gained a lot of importance, mainly because fractional differential equations

have become powerful tools in modeling several complex phenomena in numerous seemingly

diverse and widespread fields of science and engineering [4, 5, 6, 9, 20, 27].

The concept of nonlocal initial condition has been introduced to extend the study of classical

initial value problems. The earliest works related with problems submitted to nonlocal initial

conditions were made by Byszewski [1, 2, 3].

Recently, in so many published works focus on the development of techniques for discussing

the solutions of nonlocal differential equations. For instance, we can remember the following

works: The exsistence and uniqueness of solution to fractional ADEs were studied e.g. in

[11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24]. Regularity properties of nonlocal ADEs were

investigated e.g. in [3, 7, 8, 10, 30, 31, 32, 34, 35].

Motivated by above works, in this paper, we discuss new existence results for nonlocal dif-

ferential equations of the form:
y′(t) = Ay(t)+ f (t,y(t)), t ∈ J := [0,1],

y(0) = g(y),
(1)

and 
Dqy(t) = Ay(t)+ f (t,y(t)), t ∈ J,

y(0) = g(y),
(2)

where Dq is the standard Riemann-Liouville fractional derivative of order q, 0 < q ≤ 1 and

f : J×X −→X , g :C[0,1]−→X are functions and A is a semi-group of bounded linear operators

strongly continuous that generated by A in the Banach space X , with norm ‖.‖.

The main objective of the present paper is to study the new existence results of the solution

for nonlocal differential equations and nonlocal fractional differential equations.

The rest of the paper is organized as follows: In Section 2, some preliminaries, basic defi-

nitions and Lemma related to fractional calculus are recalled. In Section 3, the new existence

results of the solution for nonlocal differential equations and nonlocal fractional differential
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equations have been proved. Finally, we will give a report on our work and a brief conclusion

is given in Section 4.

2. PRELIMINARIES

Let (X ,‖.‖) be a real Banach space. We denote by C(J,X) the space of X-valued continuous

functions on J with the norm ‖y‖= sup{‖y(t)‖, t ∈ J}, and by L1(J,X) the space of X-valued

Bochner functions on J with the norm ‖y‖ =
∫ 1

0 ‖y(s)‖ds. A C0-semigroup T (t) is said to be

compact if T (t) is compact for any t > 0. If the semigroup T (t) is compact then t −→ T (t)y are

equicontinuous at all t > 0 with respect to y in all bounded subsets of X , i.e. the semigroup T (t)

is equicontinuous. In this paper, we suppose that A generates a C0 semigroup T (t) on X . Since

no confusion may occur, we denote by α the Hausdorff measure of noncompactness on both X

and C(J,X).

By a mild solution of the nonlocal initial value problems (1) and (2), we mean the function

y ∈C(J,X) which satisfies

y(t) = T (t)g(y)+
∫ t

0
T (t− s) f (s,y(s))ds, t ∈ J(3)

y(t) = T (t)g(y)+
1

Γ(q)

∫ t

0
(t− s)q−1T (t− s) f (s,y(s))ds, t ∈ J,(4)

Lemma 1. [8] If W ⊆C(J,X) is bounded, then α(W (t)) ≤ α(W ) for all t ∈ J, where W (t) =

{y(t),y ∈W} ⊆ X. Furthermore if W is equicontinuous on [0,1], then α(W (t)) is continuous

on J, and α(W ) = sup{α(W (t)), t ∈ J}.

Lemma 2. [30] If {un}∞
n=1 ⊂ L1(J,X) is uniformly integrable, then α({un(t)}∞

n=1) is measur-

able and

α

({∫ t

0
un(s)ds

}∞

n=1

)
≤ 2

∫ t

0
α

(
{un(s)}∞

n=1

)
ds.(5)

Lemma 3. [30] If the semigroup T (t) is equicontinuous and η ∈ L1(J,R+), then the set {t −→∫ t
0 T (t− s)y(s)ds, y ∈ L1(J,R+), ‖y(s)‖ ≤ η(s), for a.e. s ∈ J} is equicontinuous on J.

Lemma 4. [7] If W is bounded, then for each ε > 0, there is a sequence {un}∞
n=1 ⊆W, such

that α(W )≤ 2α({un}∞
n=1)+ ε.
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Lemma 5. [36] Suppose that 0 < ε < 1, h > 0 and let

S = ε
n +C1

nε
n−1h+C2

nε
n−2 (h)

2

2!
+ · · ·+ (h)n

n!
, n ∈ N+.

Then S = o( 1
ns )(n−→+∞), where s > 1 is an arbitrary real number.

Lemma 6. ([26] Fixed Point Theorem). Let F be a closed and convex subset of a real Banach

space X, let A : F −→ F be a continuous operator and A(F) be bounded. For each bounded

subset B⊂ F, set

A1(B) = A(B), An(B) = A(c̄o(An−1(B))), n = 2,3, ...

If there exist a constant 0 ≤ k < 1 and a positive integer n0 such that for each bounded subset

B⊂ F,

α(An0(B))≤ kα(B),

then A has a fixed point in F.

Definition 1. [25] (Riemann-Liouville fractional integral). The Riemann-Liouville fractional

integral of order α > 0 of a function h is defined as

Jαh(x) =
1

Γ(α)

∫ x

0
(x− t)α−1h(t)dt, x > 0, α ∈ R+,

J0h(x) = h(x),

where R+ is the set of positive real numbers.

Definition 2. [25, 28] (Caputo fractional derivative). The fractional derivative of h(x) in the

Caputo sense is defined by

cDα
x h(x) = Jm−αDmh(x)

=


1

Γ(m−α)

∫ x
0 (x− t)m−α−1 dmh(t)

dtm dt, m−1 < α < m,

dmh(x)
dxm , α = m, m ∈ N,

(6)

where the parameter α is the order of the derivative and is allowed to be real or even complex.

In this paper, only real and positive α will be considered.

Hence, we have the following properties:



4934 AHMED SHIHAB HAMAD, HUSAM SALIH HADEED

(1) JαJvh = Jα+vh, α,v > 0.

(2) Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α ,

(3) Dαxβ = Γ(β+1)
Γ(β−α+1)x

β−α , α > 0, β >−1, x > 0.

(4) JαDαh(x) = h(x)−∑
m−1
k=0 h(k)(0+)xk

k! , x > 0, m−1 < α ≤ m.

Definition 3. [25, 29] (Riemann-Liouville fractional derivative). The Riemann Liouville frac-

tional derivative of order α > 0 is normally defined as

(7) Dαh(x) = DmJm−αh(x), m−1 < α ≤ m, m ∈ N.

Proposition 1. [10] Let G be the Cauchy operators, { fn}∞
n=1 a sequence of functions in

L1([0,T ],X). Assume that there is µ,η ∈ L1([0,T ],R+) satisfying supn≥1 ‖ fn(t)‖ ≤ µ(t) and

χ({ fn}∞
n=1)≤ η(t), a.e t ∈ [0,T ]. Then for all t ∈ [0,T ], we have

χ({(G fn)(t)}∞
n=1)≤ 2µ

∫ t

0
η(s)ds,

where µ equals to sup0≤t≤T ‖T (t)‖ and is the Hausdorff MNC.

Theorem 1. [32] Suppose the continuous map F : U −→ E verifiers the condition (if D⊆ Ū is

countable and D ⊆ ¯(co)({O}∪F(D)) then D̄ is compact), where E is a Banach space, U an

open subset of E and O ∈U, and assumes that y 6= λF(y) for all y ∈ δU and λ ∈ (0,1) holds.

Then F has a fixed point in Ū.

3. MAIN RESULTS

In this section, we shall give an existence results of Eq.(1), with the initial condition (2) and

prove it.

Before starting and proving the main results, we introduce the following hypotheses:

(H1): The C0 semigroup T (t) generated by A is equicontinuous. We denote N =

sup{‖T (t)‖, t ∈ J}.

(H2): The function g : C(J,X)→ X is continuous and compact, there exists positive con-

stants c and d such that ‖g(y)‖ ≤ c‖y‖+d, for all y ∈C(J,X).

(H3): The function f (.,y) is measurable for all y ∈ X , and f (t,) is continuous for a.e.

t ∈ J.
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(H4): There exists a function m ∈ L1(J,R+) and a nondecreasing continuous function

Ω : R+ −→ R+ such that ‖ f (t,y)‖ ≤ m(t)Ω(‖y‖), for all y ∈ X , and a.e. t ∈ J.

(H5): There exists L ∈ L1(J,R+) such that for any bounded D ⊂ X , α( f (t,D)) ≤

L(t)α(D), for a.e. t ∈ J.

If ‖ f (t,y)− f (t,z)‖ ≤ L(t)‖y− z‖, L(t) ∈ L1(J,R+), y,z ∈ X , then we can get

α( f (t,D))≤ L(t)α(D), for any bounded D⊂ X , and a.e. t ∈ J.

Theorem 2. Assume that (H1)–(H5) hold. If there exist a constant R with

(8) N(cR+d)+NΩ(R)
∫ 1

0
m(s)ds≤ R.

Then there is at least one mild solution of the problem (1).

Proof. Firstly, we transform (3) into fixed point problem as y = Ty, where the operator

T : C(J,X)−→C(J,X),

is defined by

(Ty)(t) = T (t)g(y)+
∫ t

0
T (t− s) f (s,y(s))ds, t ∈ J,(9)

for all y ∈C(J,X). We can show that F is continuous by the usual techniques (see, e.g. [6,7]).

We denote W = {y ∈ C(J,X),‖y(t)‖ ≤ R, for all t ∈ J}, then W ⊆ C(J,X) is bounded and

convex. For any y ∈W , we have

‖(Ty)(t)‖ ≤ ‖T (t)g(y)‖+‖
∫ t

0
T (t− s) f (s,y(s))ds‖

≤ N(cR+d)+NΩ(R)
∫ 1

0
m(s)ds

≤ R,

which implies T : W −→W is a bounded operator.
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Let B0 = c̄o(TW ). For any B⊂B0, we know from Lemma 4, for any ε > 0, there is a sequence

{yn}∞
n=1 ⊂ B, such that

α(T 1B(t)) = α(T B(t))

≤ 2α

(∫ t

0
T (t− s) f (s,{yn(s)}∞

n=1)
)

ds+ ε

≤ 4
∫ t

0
α

(
T (t− s) f (s,{yn(s)}∞

n=1)
)

ds+ ε

≤ 4N
∫ t

0
L(s)α({yn(s)}∞

n=1)ds+ ε

≤ 4Nα({yn}∞
n=1)

∫ t

0
L(s)ds+ ε

≤ 4Nα(B)
∫ t

0
L(s)ds+ ε.

We know there is a continuous function Φ : J −→ R+(M = max |Φ(t)| : t ∈ J) such that for any

γ > 0, (γ < 1
N ), ∫ t

0
|L(s)−Φ(s)|ds < γ.

So,

α(T 1B(t)) ≤ 4Nα(B)[
∫ t

0
|L(s)−Φ(s)|ds+

∫ t

0
|Φ(s)|ds]+ ε

≤ 4N[γ +Mt]α(B)+ ε.

Since ε > 0 is arbitrary, it follows from the above inequality that

α(T 1B(t))≤ (a+bt)α(B), a = 4N, b = 4NM.

From Lemma 4, for any ε > 0, there is a sequence {zn}∞
n=1 ⊂ c̄o(T 1B), such that

α(T 2B(t)) = α(T ((c̄o(T 1B(t)))))

≤ 2α

(∫ t

0
T (t− s) f (s,{yn(s)}∞

n=1)
)

ds+ ε

≤ 4
∫ t

0
α

(
T (t− s) f (s,{yn(s)}∞

n=1)
)

ds+ ε

≤ 4N
∫ t

0
L(s)α({yn(s)}∞

n=1)ds+ ε
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≤ 4N
∫ t

0
L(s)α(T 1B(s))ds+ ε

≤ 4N
∫ t

0
{|L(s)−Φ(s)|+ |Φ(s)|}(a+bs)α(B)ds+ ε

≤ 4N
∫ t

0
|L(s)−Φ(s)|ds(a+bt)α(B)+4N

∫ t

0
M(a+bs)dsα(B)+ ε

≤
(

a2 +2abt +
(bt)2

2!

)
α(B)+ ε.

Hence, by the method of mathematical induction, for any positive integer n and t ∈ J, we obtain

α(T nB(t))≤
(

an +C1
nan−1bt +C2

nan−2 (bt)2

2!
+ · · ·+ (bt)n

n!

)
α(B).

Therefore, by Lemma 3, we have

α(T nB)≤
(

an +C1
nan−1b+C2

nan−2 (b)
2

2!
+ · · ·+ (b)n

n!

)
α(B).

From Lemma 5, there exists a positive integer n0 such that

an0 +C1
n0

an0−1b+C2
n0

an0−2 (b)
2

2!
+ · · ·+ (b)n0

n0!
= r < 1.

Then

α(T n0B)≤ rα(B).

It follows from Lemma 6, that F has at least one fixed point in B0, i.e. the nonlocal initial value

problem (1) has at least one mild solution in B0. Thus, the proof is completed.

�

We shall next discuss the existence result for the nonlocal initial value problem (2). Here we

list the following hypotheses.

(A1): f (t, .) : X −→ X is continuous for a.e t ∈ I := [0,T ], and f R(.,y) : I −→ X is mea-

surable for y ∈ X , where f : I×X −→ X .

(A2): ‖ f (t,y)‖ ≤ Z(t)θ(‖y‖) for all y ∈ X and t ∈ I, where Z ∈ L1(I,R+) and θ : R+ −→

R+ is nondecreasing function.

(A3): q(R(t,D)) ≤ L(t)q(D) for all t ∈ I, where q is the Hausdorff MNC,D ⊂ X every

bounded set and the function L ∈ L1(I,R+).

(A4): T (t) is equicontinuous semigroup of bounded linear operators strongly continuous

generated by (T ) for all t ∈ I.
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(A5): ‖g(y)‖ ≤ a‖y‖+ b, ∀y ∈ C(I,X) and for some positive constants a,b where g :

C(I,X)−→ X is a continuous compact map.

(A6): Let ι > 0 is a constant, M = supy≤t≤1 ‖T (t)‖, such that

(1−Ma)`
M(b+hθ(ι)‖m‖L1

> 1, 2M‖m‖L1 < 1.

where L∗z1
,L∗z2

and L∗g are positive constants.

Theorem 3. Assume that the hypotheses (A1)–(A6) are satisfied. Then the problem (2) has at

least one mild solution on I.

Proof. Let the operator ϒ : C(I,X)→C(I,X) be defined by

(ϒy)(t) = T (t)g(y)+
1

Γ(q)

∫ t

0
(t− s)q−1T (t− s) f (s,y(s))ds, t ∈ I,(10)

To prove the operator T is continuous on C(I,X), we suppose yn −→ y in C(I,X) then by (A2),

we have that.

f (s,yn(s))−→ f (s,y(s)) as n−→ ∞, ∀s ∈ I.

Since

‖ f (s,yn(s))−→ f (s,y(s))‖ ≤ 2θ(ι)m(s)

by (A2), (A3) and the dominated convergence theorem we have ,

‖ϒyn−ϒy‖ ≤ ‖T (t)g(yn)+
1

Γ(q)

∫ t

0
(t− s)q−1T (t− s) f (s,yn(s))ds

−T (t)g(y)+
1

Γ(q)

∫ t

0
(t− s)q−1T (t− s) f (s,y(s))ds‖

≤ ‖T (t)‖‖g(yn)−g(y)‖+ T q‖T (t− s)‖
Γ(q+1)

‖ f (s,yn(s))− f (s,y(s))‖

≤ M‖g(yn)−g(y)‖+ T qM
Γ(q+1)

‖ f (s,yn(s))− f (s,y(s))‖

−→ 0 as n−→ ∞.

Then ϒ is continuous.

Firstly, we prove that ϒ is satisfied Monch’s conditions , let Br = {y ∈C(J,X) : ‖y‖∞ ≤ r},

and suppose D ⊆ Br is a countable such that D ⊆ (C̄O)({0}∪ϒ(D)). Let Q is the Hausdorff

MNC.
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Secondly, we will show that Q(D) = 0, let us suppose D = {yn}∞
n=1 from conditions (A4) and

(A5), we have T (t) is equicontinuous g(y) is compact and f (s,y(s)) is measurable function, and

since

(ϒyn)≤ T (t)g(yn)+
1

Γ(q)

∫ t

0
(t− s)q−1T (t− s) f (s,yn(s))ds

D⊆ (C̄O)({0}∪ϒ(D)) is equicontinuous if we can verify that {ϒyn}∞
n=1 is equicontinuous .

We get from (A3), (A6), proposition 1 and properties of MNC Q, the following:

Q({ϒyn}∞
n=1) ≤ sup

y≤t≤T
Q(T (t)g(yn)

∞
n=1)+ sup

y≤t≤T
Q
( 1

Γ(q)

∫ t

0
(t− s)q−1T (t− s) f (s,yn(s))ds

)
≤ M sup

y≤t≤T
Q{yn}∞

n=1 +
T qM

Γ(q+1)
sup

y≤t≤T
Q{yn}∞

n=1

≤ 2T qM
Γ(q+1)

∫ T

0
L(s)ds sup

y≤t≤T
Q{yn(t)}∞

n=1Q(Tyn)
∞
n=1)

= 2Mh‖L‖L1{yn(t)}∞
n=1

where h = T q

Γ(q+1) , Thus we get

Q(D) ≤ Q({0}∪ϒ(D)) = Q(ϒ(D))

≤ 2M‖m‖L1Q(D),

and since 2M‖m‖L1 < 1, we get Q(D) = 0.

Let δ ∈ (0,1) and y = δϒ(y), then

y(t) = δT (t)g(y)+
δ

Γ(q)

∫ t

0
(t− s)q−1T (t− s) f (s,y(s))ds, t ∈ J,(11)

‖y(t)‖ ≤ ‖δT (t)g(y)‖+ δ

Γ(q)

∫ t

0
‖(t− s)q−1T (t− s) f (s,y(s))ds‖

≤ ‖δT (t)‖‖g(y)‖+‖ T qδM
Γ(q+1)

∫ t

0
‖ f (s,y(s))ds‖

≤ M(a‖y‖+b)+M
∫ T

0
m(s)θ‖y(s)‖ds

≤ Ma‖y‖+Mb+Mθ(‖y‖)
∫ T

0
m(s)ds

≤ Ma‖y‖+Mb+Mθ(‖y‖)‖m‖L1−Ma‖y‖

≤ Mb+Mθ(‖y‖)‖m‖L1.
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Thus
(1−Ma)‖y‖

Mb+Mθ‖y‖‖m‖L1
≤ 1.

Then by (A6) there exist ι > 0 such that ι 6= ‖y‖, let the set Λ = {y ∈C(I,X) : |y‖< ι}. So for

all y ∈ δΛ, we get y 6= δϒ(y) to some β ∈ (0,1). Thus by theorem 1, we get a fixed point of ϒ

in Λ̄ and this fixed point is a mild solution to the problem (2), and the proof is completed. �

4. CONCLUSIONS

The main purpose of this work was to present new existence of mild solution of semilinear

for differential and fractional differential equations subject to nonlocal initial conditions. To

apply this, the study uses Hausdorff measure of non-compactness and fixed point theorems.

Moreover, the results of references [34, 10] appear as a special case of our results.
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