NANO BINARY CONTRA CONTINUOUS FUNCTIONS IN NANO BINARY TOPOLOGICAL SPACES

J. JASMINE ELIZABETH¹, *, G. HARI SIVA ANNAM²

¹PG and Research Department of Mathematics, Kamaraj College, Thoothukudi. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India

²PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Tamil Nadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: The purpose of this paper, we introduce and study the nano binary contra continuous function in nano binary topological spaces. Also we introduce some nano binary contra continuous functions and their characterizations are also studied. We introduce and discuss the nano binary D-continuous function in nano binary topological spaces.

Keywords: \(N_B\) -contra continuous; \(N_B\) contra \(\alpha\) -continuous; \(N_B\) contra semi-continuous; \(N_B\) contra pre-continuous; \(N_B\) contra \(\beta\) -continuous; \(N_B\) perfectly continuous; \(N_B\) strongly continuous; \(N_B\) D- continuous.

2010 AMS Subject Classification: 03E72.

1. INTRODUCTION

M. Lellis Thivagar [1] introduced the concept of nano topological space with respect to a subset
X of a universe U. S. Nithyanantha Jothi and P. Thangavelu [2] introduced the concept of binary topological spaces. By combining these two concepts G. Hari Siva Annam and J. Jasmine Elizabeth [3] introduced nano binary topological spaces. J. Jasmine Elizabeth and G. Hari Siva Annam [4] introduced nano binary continuous function in nano binary topological spaces. In this paper we have introduced a new class of functions on nano binary topological spaces called nano binary contra continuous functions and derived their characterizations in terms of nano binary strongly continuous and nano binary perfectly continuous. Also the relationships between some nano binary contra continuous functions are studied. Also we have introduced the nano binary D-continuous function.

2. PRELIMINARIES
The concepts given here help us to recall our memories regarding the basic concepts of nano binary topological spaces.

Definition 2.1: [3] Let \((U_1, U_2)\) be a non-empty finite set of objects called the universe and \(R\) be an equivalence relation on \((U_1, U_2)\) named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair \((U_1, U_2, R)\) is said to be the approximation space. Let \((X_1, X_2) \subseteq (U_1, U_2)\)

1. The lower approximation of \((X_1, X_2)\) with respect to \(R\) is the set of all objects, which can be for certain classified as \((X_1, X_2)\) with respect to \(R\) and it is denoted by \(L_R(X_1, X_2)\).

 That is, \(L_R(X_1, X_2) = \bigcup_{(x_1, x_2) \in (U_1, U_2)} \{R(x_1, x_2) : R(x_1, x_2) \subseteq (X_1, X_2)\}\)

 Where \(R(x_1, x_2)\) denotes the equivalence class determined by \((x_1, x_2)\)

2. The upper approximation of \((X_1, X_2)\) with respect to \(R\) is the set of all objects, which can be possibly classified as \((X_1, X_2)\) with respect to \(R\) and it is denoted by \(U_R(X_1, X_2)\).

 That is, \(U_R(X_1, X_2) = \bigcup_{(x_1, x_2) \in (U_1, U_2)} \{R(x_1, x_2) : R(x_1, x_2) \cap (X_1, X_2) \neq \emptyset\}\)

3. The boundary region of \((X_1, X_2)\) with respect to \(R\) is the set of all objects, which can be classified neither as \((X_1, X_2)\) nor as not \(-(X_1, X_2)\) with respect to \(R\) and it is denoted by \(B_R(X_1, X_2)\).
That is, \(B_R(X_1, X_2) = U_R(X_1, X_2) - L_R(X_1, X_2) \)

Proposition 2.2: [3] If \((U_1, U_2, R)\) is an approximation space and \((X_1, X_2)\), \((Y_1, Y_2) \subseteq (U_1, U_2)\), then

1. \(L_R(X_1, X_2) \subseteq (X_1, X_2) \subseteq U_R(X_1, X_2) \)
2. \(L_R(\phi, \phi) = U_R(\phi, \phi) = (\phi, \phi) \) and \(L_R(U_1, U_2) = U_R(U_1, U_2) = (U_1, U_2) \)
3. \(U_R((X_1, X_2) \cup (Y_1, Y_2)) = U_R(X_1, X_2) \cup U_R(Y_1, Y_2) \)
4. \(U_R((X_1, X_2) \cap (Y_1, Y_2)) \subseteq U_R(X_1, X_2) \cap U_R(Y_1, Y_2) \)
5. \(L_R((X_1, X_2) \cup (Y_1, Y_2)) \supseteq L_R(X_1, X_2) \cup L_R(Y_1, Y_2) \)
6. \(L_R((X_1, X_2) \cap (Y_1, Y_2)) \subseteq L_R(X_1, X_2) \cap L_R(Y_1, Y_2) \)
7. \(L_R(X_1, X_2) \subseteq L_R(Y_1, Y_2) \) and \(U_R(X_1, X_2) \subseteq U_R(Y_1, Y_2) \) whenever \((X_1, X_2) \subseteq (Y_1, Y_2)\)
8. \(U_R(X_1, X_2)^c = [L_R(X_1, X_2)]^c \) and \(L_R(X_1, X_2)^c = [U_R(X_1, X_2)]^c \)
9. \(U_R U_R(X_1, X_2) = L_R U_R(X_1, X_2) = U_R(X_1, X_2) \)
10. \(L_R L_R(X_1, X_2) = U_R L_R(X_1, X_2) = L_R(X_1, X_2) \)

Definition 2.3: [3] Let \((U_1, U_2)\) be the universe, \(R \) be an equivalence on \((U_1, U_2)\) and \(\tau_R(X_1, X_2) = \{(U_1, U_2), (\phi, \phi), L_R(X_1, X_2), U_R(X_1, X_2), B_R(X_1, X_2)\} \) where \((X_1, X_2) \subseteq (U_1, U_2)\).

Then by the property \(R(X_1, X_2) \) satisfies the following axioms

1. \((U_1, U_2)\) and \((\phi, \phi) \in (X_1, X_2)\)
2. The union of the elements of any sub collection of \(\tau_R(X_1, X_2) \) is in \(\tau_R(X_1, X_2) \)
3. The intersection of the elements of any finite sub collection of \(\tau_R(X_1, X_2) \) is in \(\tau_R(X_1, X_2) \).

That is, \(\tau_R(X_1, X_2) \) is a topology on \((U_1, U_2)\) called the nano binary topology on \((U_1, U_2)\) with respect to \((X_1, X_2)\).

We call \((U_1, U_2, \tau_R(X_1, X_2))\) as the nano binary topological spaces. The elements of \(\tau_R(X_1, X_2) \) are called as nano binary open sets and it is denoted by \(N_B \) open sets. Their complement is called \(N_B \) closed sets.

Definition 2.4: [3] If \((U_1, U_2, \tau_R(X_1, X_2))\) is a nano binary topological spaces with respect to \((X_1, X_2)\) and if \((H_1, H_2) \subseteq (U_1, U_2)\), then the nano binary interior of \((H_1, H_2)\) is defined as the
union of all N_B open subsets of (A_1, A_2) and it is defined by $N^*_B(H_1, H_2)$
That is, $N^*_B(H_1, H_2)$ is the largest N_B open subset of (H_1, H_2). The nano binary closure of
(H_1, H_2) is defined as the intersection of all N_B closed sets containing (H_1, H_2) and it is
denoted by $\overline{N_B}(H_1, H_2)$.

That is, $\overline{N_B}(H_1, H_2)$ is the smallest N_B closed set containing (H_1, H_2).

Proposition 2.5: [3] Let $(U_1, U_2, \tau_R(X_1, X_2))$ be a nano binary topological space and
$(A_1, A_2), (B_1, B_2) \in P(X_1) \times P(X_2)$ then

i) $N^*_B(\varphi, \varphi) = (\varphi, \varphi)$

$\overline{N_B}((\varphi, \varphi)) = ((\varphi, \varphi))$

ii) $N^*_B(U_1, U_2) = (U_1, U_2)$

$\overline{N_B}(U_1, U_2) = (U_1, U_2)$

iii) $N^*_B(A_1, A_2) \subseteq (A_1, A_2) \subseteq \overline{N_B}(A_1, A_2)$

iv) $(A_1, A_2) \subseteq (B_1, B_2)$ implies $N^*_B(A_1, A_2) \subseteq N^*_B(B_1, B_2)$ and

$\overline{N_B}(A_1, A_2) \subseteq \overline{N_B}(B_1, B_2)$

v) $N^*_B((A_1, A_2) \cap (B_1, B_2)) \subseteq N^*_B(A_1, A_2) \cap N^*_B(B_1, B_2)$

vi) $\overline{N_B}((A_1, A_2) \cap (B_1, B_2)) \subseteq \overline{N_B}(A_1, A_2) \cap \overline{N_B}(B_1, B_2)$

vii) $N^*_B((A_1, A_2) \cup (B_1, B_2)) \supseteq N^*_B(A_1, A_2) \cup N^*_B(B_1, B_2)$

viii) $\overline{N_B}((A_1, A_2) \cup (B_1, B_2)) \supseteq \overline{N_B}(A_1, A_2) \cup \overline{N_B}(B_1, B_2)$

ix) $N_B(|N_B(A_1, A_2)) \subseteq N^*_B(A_1, A_2)$

x) $\overline{N_B}(|N_B(A_1, A_2)) \supseteq \overline{N_B}(A_1, A_2)$

xi) $N^*_B(\overline{N_B}(A_1, A_2)) \supseteq N^*_B(A_1, A_2)$
\[N_B \left(N_B^\circ (A_1, A_2) \right) \subseteq N_B (A_1, A_2) \]

Definition 2.6: [4] A subset \((H_1, H_2)\) of a nano binary topological spaces \((U_1, U_2, \tau_R(X_1, X_2))\) is called

1. \(N_B\ \alpha\)-open if \((H_1, H_2) \subseteq N_B^\circ (N_B^\circ (H_1, H_2))\).

2. \(N_B\) semi-open set if \((H_1, H_2) \subseteq N_B (N_B^\circ (H_1, H_2))\)

3. \(N_B\) pre-open set if \((H_1, H_2) \subseteq N_B^\circ (N_B^\circ (H_1, H_2))\)

4. \(N_B\) \(\beta\)-open if \((H_1, H_2) \subseteq N_B (N_B^\circ (N_B^\circ (H_1, H_2)))\).

The complements of the above mentioned sets are called their respective \(N_B\) closed sets.

Results 2.7: [4]

1. Every \(N_B\) open sets is \(N_B\ \alpha\)-open.
2. Every \(N_B\) \(\alpha\)-open is \(N_B\) semi-open.
3. Every \(N_B\) \(\alpha\)-open is \(N_B\) pre-open.
4. Every \(N_B\) pre-open is \(N_B\) \(\beta\)-open.
5. Every \(N_B\) semi-open is \(N_B\) \(\beta\)-open.
6. Every \(N_B\) open is \(N_B\) semi-open.
7. Every \(N_B\) open is \(N_B\) pre-open.
8. Every \(N_B\) \(\alpha\)-open is \(N_B\) \(\beta\)-open.
9. Every \(N_B\) open is \(N_B\) \(\beta\)-open.

Note 2.8: The above result is also true for every \(N_B\) closed sets.

Note 2.9: The converse of the above result is not true.

Definition 2.10: [4] Let \((U_1, U_2, \tau_R(X_1, X_2))\) and \((V_1, V_2, \tau_{R'}(Y_1, Y_2))\) be nano binary topological spaces. Then a mapping \(f: (U_1, U_2, \tau_R(X_1, X_2)) \rightarrow (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) is nano binary continuous on \((U_1, U_2)\) if the inverse image of every \(N_B\) open in \((V_1, V_2)\) is \(N_B\) open in \((U_1, U_2)\) and it is denoted by \(N_B\)-continuous.

Definition 2.11: [4] Let \((U_1, U_2, \tau_R(X_1, X_2))\) and \((V_1, V_2, \tau_{R'}(Y_1, Y_2))\) be nano binary
topological spaces. A mapping f: \((U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) is said to be

1. \(N_B\) \(\alpha\)-continuous if \((f^{-1}(B_1, B_2))\) is \(N_B\) \(\alpha\)-open in \((U_1, U_2)\) for every \(N_B\) open \((B_1, B_2)\) in \((V_1, V_2)\).

2. \(N_B\) semi -continuous if \((f^{-1}(B_1, B_2))\) is \(N_B\) semi-open in \((U_1, U_2)\) for every \(N_B\) open \((B_1, B_2)\) in \((V_1, V_2)\).

3. \(N_B\) pre -continuous if \((f^{-1}(B_1, B_2))\) is \(N_B\) pre-open in \((U_1, U_2)\) for every \(N_B\) open \((B_1, B_2)\) in \((V_1, V_2)\).

4. \(N_B\) \(\beta\) -continuous if \((f^{-1}(B_1, B_2))\) is \(N_B\) \(\beta\)-open in \((U_1, U_2)\) for every \(N_B\) open \((B_1, B_2)\) in \((V_1, V_2)\).

Results 2.12: [4]

1. Every \(N_B\)- continuous is \(N_B\) \(\alpha\)-continuous.

2. Every \(N_B\) \(\alpha\)- continuous is \(N_B\) semi - continuous.

3. Every \(N_B\) \(\alpha\)- continuous is \(N_B\) pre - continuous.

4. Every \(N_B\) pre – continuous is \(N_B\) \(\beta\)- continuous.

5. Every \(N_B\) semi – continuous is \(N_B\) \(\beta\)- continuous.

3. NANO BINARY CONTRA CONTINUITY

Definition 3.1: Let \((U_1, U_2, \tau_R(X_1, X_2))\) and \((V_1, V_2, \tau_{R'}(Y_1, Y_2))\) be nano binary topological spaces. Then a mapping f: \((U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) is nano binary contra continuous function if the inverse image of every \(N_B\) open in \((V_1, V_2)\) is \(N_B\) closed in \((U_1, U_2)\) and it is denoted by \(N_B\)- contra continuous.

Example 3.2: Let \(U_1 = \{a, b, c\}, U_2 = \{1, 2\}\) with \(\frac{(U_1, U_2)}{R} = \{(a, b), \{2\}, \{c\}, \{1\}\}\) and \((X_1, X_2) = \{(a, c), \{1\}\}\). Then \(\tau_R(X_1, X_2) = \{\{\Phi, \Phi\}, \{U_1, U_2\}, \{\{c\}, \{1\}\}, \{a, b, \{2\}\}\}\). The \(N_B\) closed sets are \((U_1, U_2), \{\Phi, \Phi\}, \{\{a, b, \{2\}\}\}\). Let \(V_1 = \{x, y, z\}, V_2 = \{e, f\}\) with \(\frac{(V_1, V_2)}{R'} = \{(\{x, z\}, \{e\}), \{(y), \{f\}\}\}\) and \(Y_1, Y_2 = \{\{x, y, \{f\}\}\}. Then \(\tau_{R'}(Y_1, Y_2) = \{(\Phi, \Phi), \{V_1, V_2\}, \{(x, z), \{e\}\}, \{(y), \{f\}\}\}\). Define f: \((U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) as f \((\{a\}, \{1\}) = \{(x), \{f\}\}, f(\{a\}, \{2\}) = \{(\Phi, \Phi), \{V_1, V_2\}, \{(x), \{f\}\}, \{(y), \{f\}\}\}.
Theorem 3.3: For a function \(f: (U_1, U_2, \tau_R(X_1, X_2)) \rightarrow (V_1, V_2, \tau_R'(Y_1, Y_2)) \) the following conditions are equivalent:

(i) \(f \) is \(N_B \)- contra continuous.

(ii) The inverse image of each \(N_B \) closed set in \((V_1, V_2) \) is \(N_B \) open in \((U_1, U_2) \).

(iii) For each \((x_1, x_2) \in (U_1, U_2) \) and each \(N_B \) closed set \((B_1, B_2) \) in \((V_1, V_2) \) with \(f(x_1, x_2) \in (B_1, B_2) \), there exists an \(N_B \) open set \((A_1, A_2) \) in \((U_1, U_2) \) such that \(f(A_1, A_2) \subseteq (B_1, B_2) \).

Proof: (i) \(\Rightarrow \) (ii) Let \(f \) be \(N_B \)- contra continuous. Let \((B_1, B_2) \) be \(N_B \) closed in \((V_1, V_2) \). That is, \((V_1, V_2) - (B_1, B_2) \) is \(N_B \) open in \((V_1, V_2) \). Since \(f \) is \(N_B \)- contra continuous, \(f^{-1}((V_1, V_2) - (B_1, B_2)) \) is \(N_B \) closed in \((U_1, U_2) \). But \(f^{-1}((V_1, V_2) - (B_1, B_2)) = (U_1, U_2) - f^{-1}(B_1, B_2) \). Therefore, \(f^{-1}(B_1, B_2) \) is \(N_B \) open in \((U_1, U_2) \). Thus the inverse image of each \(N_B \) closed set in \((V_1, V_2) \) is \(N_B \) open in \((U_1, U_2) \).

(ii) \(\Rightarrow \) (i) Let \((B_1, B_2) \) be a \(N_B \) open in \((V_1, V_2) \). Then \((V_1, V_2) - (B_1, B_2)\) is \(N_B \) closed in \((V_1, V_2) \). By assumption, \(f^{-1}((V_1, V_2) - (B_1, B_2)) \) is \(N_B \) open in \((U_1, U_2) \). Therefore, \(f^{-1}(B_1, B_2) \) is \(N_B \) closed in \((U_1, U_2) \). Hence \(f \) is \(N_B \)- contra continuous.

(iii) \(\Rightarrow \) (ii) Let \((B_1, B_2) \) be a \(N_B \) closed set such that \(f(x_1, x_2) \in (B_1, B_2) \). By assumption, \((x_1, x_2) \in f^{-1}(B_1, B_2) \), which is \(N_B \) open. Let \((A_1, A_2) = f^{-1}(B_1, B_2) \). Then \(f(A_1, A_2) \subseteq (B_1, B_2) \).

Remark 3.4: The concept of \(N_B \)- continuity and \(N_B \)- contra continuity are independent as
shown in the following example

Example 3.5: Let \(U_1 = \{a, b, c\}, U_2 = \{1, 2\} \) with \((U_1, U_2)/R = (\{\{a, b\}, \{2\}\}, \{\{c\}, \{1\}\}) \) and \((X_1, X_2) = (\{b\}, \{2\})\). Then \(\tau_R(X_1, X_2) = (\{\Phi, \Phi\}, (U_1, U_2), (\{a, b\}, \{2\})) \). Let \(V_1 = \{x, y, z\}, V_2 = \{e, f\} \) with \((V_1, V_2)/R' = (\{\{x, z\}, \{e\}\}, \{\{y\}, \{f\}\}) \) and \((Y_1, Y_2) = (\{z\}, \{e\})\). Then \(\tau_{R'}(Y_1, Y_2) = (\{\Phi, \Phi\}, (V_1, V_2), (\{y\}, \{f\})) \). Define \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) as \(f (\{a\}, \{1\}) = (\{x\}, \{f\}), f(\{a\}, \{2\}) = (\{x\}, \{e\}), f (\{b\}, \{1\}) = (\{z\}, \{f\}), f (\{b\}, \{2\}) = (\{z\}, \{e\}), f (\{c\}, \{1\}) = (\{y\}, \{f\}), f (\{c\}, \{2\}) = (\{y\}, \{e\}) \). Here \((B_1, B_2) = (\{x, z\}, \{e\})\). Then \(f^{-1}(\{x, z\}, \{e\}) = (\{a, b\}, \{2\}) \). Here \(f \) is \(N_B \)-continuous function, but not \(N_B \)- contra continuous. Because \((\{a, b\}, \{2\})\) is not \(N_B \) closed in \((U_1, U_2)\), where \((\{x, z\}, \{e\})\) is \(N_B \) open in \((V_1, V_2)\). Therefore, \(f \) is \(N_B \)-continuous but not \(N_B \)-contra continuous.

Example 3.6: Let \(U_1 = \{a, b, c\}, U_2 = \{1, 2\} \) with \((U_1, U_2)/R = (\{\{a, b\}, \{2\}\}, \{\{c\}, \{1\}\}) \) and \((X_1, X_2) = (\{b\}, \{2\})\). Then \(\tau_R(X_1, X_2) = (\{\Phi, \Phi\}, (U_1, U_2), (\{a, b\}, \{2\})) \). The \(N_B \) closed sets are \((\Phi, \Phi), (U_1, U_2), (\{c\}, \{1\})\). Let \(V_1 = \{x, y, z\}, V_2 = \{e, f\} \) with \((V_1, V_2)/R' = (\{\{x, z\}, \{e\}\}, \{\{y\}, \{f\}\}) \) and \((Y_1, Y_2) = (\{y\}, \{f\})\). Then \(\tau_{R'}(Y_1, Y_2) = (\{\Phi, \Phi\}, (V_1, V_2), (\{y\}, \{f\})) \). Define \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) as \(f (\{a\}, \{1\}) = (\{x\}, \{f\}), f(\{a\}, \{2\}) = (\{x\}, \{e\}), f (\{b\}, \{1\}) = (\{z\}, \{f\}), f (\{b\}, \{2\}) = (\{z\}, \{e\}), f (\{c\}, \{1\}) = (\{y\}, \{f\}), f (\{c\}, \{2\}) = (\{y\}, \{e\}) \). Therefore, \(f^{-1}(\{y\}, \{f\}) = (\{c\}, \{1\}) \), which is \(N_B \) closed in \((U_1, U_2)\) but not \(N_B \) open in \((U_1, U_2)\). Hence \(f \) is \(N_B \)-contra continuous but not \(N_B \)-continuous.

Note 3.7: Every \(N_B \)-continuous is \(N_B \)-contra continuous if every \(N_B \) open set is \(N_B \) closed.

Definition 3.8: A function \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) is said to be

(i) \(N_B \) perfectly continuous, if \(f^{-1}(A_1, A_2) \) is \(N_B \) clopen in \((U_1, U_2)\) for every \(N_B \) open set \((A_1, A_2)\) in \((V_1, V_2)\).

(ii) \(N_B \) strongly continuous, if \(f^{-1}(A_1, A_2) \) is \(N_B \) clopen in \((U_1, U_2)\) for every subset \((A_1, A_2)\) in \((V_1, V_2)\).

Definition 3.9: A function \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) is said to be
(i) N_B contra α-continuous, if $f^{-1}(B_1, B_2)$ is N_B α-closed in (U_1, U_2) for every N_B open (B_1, B_2) in (V_1, V_2).

(ii) N_B contra pre-continuous, if $f^{-1}(B_1, B_2)$ is N_B pre-closed in (U_1, U_2) for every N_B open (B_1, B_2) in (V_1, V_2).

(iii) N_B contra semi-continuous, if $f^{-1}(B_1, B_2)$ is N_B semi-closed in (U_1, U_2) for every N_B open (B_1, B_2) in (V_1, V_2).

(iv) N_B contra β-continuous, if $f^{-1}(B_1, B_2)$ is N_B β-closed in (U_1, U_2) for every N_B open (B_1, B_2) in (V_1, V_2).

Result 3.10:

i) Every N_B-contra continuous is N_B contra α-continuous.

ii) Every N_B contra α-continuous is N_B contra pre-continuous.

iii) Every N_B contra α-continuous is N_B contra semi-continuous.

iv) Every N_B-contra continuous is N_B contra pre-continuous.

v) Every N_B-contra continuous is N_B contra semi-continuous.

vi) Every N_B contra pre-continuous is N_B contra β-continuous.

vii) Every N_B contra semi-continuous is N_B contra β-continuous.

viii) Every N_B-contra continuous is N_B contra β-continuous.

ix) Every N_B contra α-continuous is N_B contra β-continuous.

Proof: (i) Given f is N_B-contra continuous. Let (B_1, B_2) be N_B open in (V_1, V_2). Since f is N_B-contra continuous, $f^{-1}(B_1, B_2)$ is N_B closed in (U_1, U_2). Since every N_B closed is N_B α-closed, $f^{-1}(B_1, B_2)$ is N_B α-closed in (U_1, U_2). Therefore, f is N_B contra α-continuous.

Similarly we can prove (ii), (iii), (iv), (v), (vi), (vii), (viii) and (ix).

Remark 3.11: The concept of N_B contra pre-continuous and N_B contra semi-continuous are independent as shown in the following examples.

Example 3.12: Let $U_1 = \{a, b, c\}$, $U_2 = \{1, 2\}$ with $(U_1, U_2)/_R = \{\{(a, b), \{2\}\}, \{(c), \{1\}\}\}$ and $(X_1, X_2) = \{\{b\}, \{2\}\}$. Then $\tau_R(X_1, X_2) = \{(\Phi, \Phi), (U_1, U_2), (\{a, b\}, \{2\})\}$. Let $V_1 = \{x, y, z\}$, $V_2 =$
\{e,f\} with \((V_1,V_2)/_{R'} = \{(x,z),\{e\}\},\{(y),\{f\}\}\) and \((Y_1,Y_2) = (\{z\},\{e\}\) . Then \(\tau_{R'}(Y_1,Y_2) = \{(\Phi,\Phi),(Y_1,Y_2),(\{x,z\},\{e\}\}\) . Define \(f: (U_1,U_2,\tau_{R}(X_1,X_2)) \rightarrow (V_1,V_2,\tau_{R'}(Y_1,Y_2))\) as \(f([a],[1]) = ([x],[e]), f([a],[2]) = ([x],[f]), f([b],[1]) = ([y],[e]), f([b],[2]) = ([y],[f]), f([c],[1]) = ([z],[e]), f([c],[2]) = ([z],[f])\) . Here \((B_1,B_2) = ([x,z],[e])\) . Then \(f^{-1}([x,z],[e]) = ([a,c],[1])\) . Here \(f\) is \(N_B\) contra pre-continuous, but not \(N_B\) contra semi-continuous. Because \([a,c],[1]\) is \(N_B\) pre-closed and not \(N_B\) semi-closed in \((U_1,U_2)\), where \(([x,z],[e])\) is \(N_B\) open in \((V_1,V_2)\) . Therefore, \(f\) is \(N_B\) contra pre-continuous but not \(N_B\) contra semi-continuous.

Example 3.13: Let \(U_1 = \{a,b,c,d,e\}, U_2 = \{1,2,3,4\}\) with \((U_1,U_2)/_R = \{(a,b),\{2\}\},\{(c),\{4\}\},\{(d),\{3\}\},\{(e),\{1\}\}\) . Let \((X_1,X_2) = (\{a,c,d\},\{2,3,4\}\) . Then \(\tau_{R}(X_1,X_2) = \{(\Phi,\Phi),(U_1,U_2),\{(c,d),\{3,4\}\},\{(a,b,c,d),\{2,3,4\}\},\{(a,b),\{2\}\}\) .

Let \(V_1 = \{x,y,z\}, V_2 = \{e,f\}\) with \((V_1,V_2)/_{R'} = \{(x,z),\{e\}\},\{(y),\{f\}\}\) . Let \((Y_1,Y_2) = ([x],[e])\) . Then \(\tau_{R'}(Y_1,Y_2) = \{(\Phi,\Phi),(V_1,V_2),\{(x,z),\{e\}\}\) . Define \(f: (U_1,U_2,\tau_{R}(X_1,X_2)) \rightarrow (V_1,V_2,\tau_{R'}(Y_1,Y_2))\) as \(f([a],[1]) = ([x],[e]), f([a],[2]) = ([x],[f]), f([b],[1]) = ([z],[e]), f([b],[2]) = ([z],[f]), f([c],[1]) = ([y],[e]), f([c],[2]) = ([y],[f]), f([d],[1]) = ([y],[e]), f([d],[2]) = ([y],[f]), f([e],[1]) = ([y],[e]), f([e],[2]) = ([y],[f]), f([e],[3]) = ([y],[f]), f([e],[4]) = ([y],[f])\) .

\(f^{-1}([x,z],[e]) = ([a,b],[1,2])\) . Here \(f\) is \(N_B\) contra semi-continuous, but not \(N_B\) contra pre-continuous. Because \([a,b],[1,2]\) is \(N_B\) semi-closed and not \(N_B\) pre-closed in \((U_1,U_2)\) , where \(([x,z],[e])\) is \(N_B\) open in \((V_1,V_2)\) . Therefore, \(f\) is \(N_B\) contra semi-continuous but not \(N_B\) contra pre-continuous.

Theorem 3.14: Let \(f: (U_1,U_2,\tau_{R}(X_1,X_2)) \rightarrow (V_1,V_2,\tau_{R'}(Y_1,Y_2))\) be the function. If \(f\) is \(N_B\) strongly continuous then \(f\) is \(N_B\) perfectly continuous.

Proof: Given \(f\) is \(N_B\) strongly continuous. Let \((B_1,B_2)\) be \(N_B\) open in \((V_1,V_2)\) . Since \(f\) is \(N_B\) strongly continuous then \(f\) is \(N_B\) perfectly continuous.
strongly continuous, \(f^{-1}(B_1, B_2) \) is \(N_B \) clopen in \((U_1, U_2)\). Hence \(f \) is \(N_B \) perfectly continuous.

Remark 3.15: The converse of the above theorem need not be true by the following example.

Example 3.16: Let \(U_1 = \{a, b, c\}, U_2 = \{1, 2\} \) with \((U_1, U_2)/R = \{([a, b], \{2\}), ([c], \{1\})\} \) and \((X_1, X_2) = ([a, c], \{1\})\). Then \(\tau_R(X_1, X_2) = ([\Phi, \Phi], (U_1, U_2), ([c], \{1\}), ([a, b], \{2\})\). The \(N_B \) closed sets are \((U_1, U_2), ([\Phi, \Phi], ([a, b], \{2\})([c], \{1\}))\). Let \(V_1 = \{x, y, z\}, V_2 = \{e, f\} \) with \((V_1, V_2)/R' = \{([x, z], \{e\}), ([y], \{f\})\}\). Let \((Y_1, Y_2) = ([z], \{e\})\). Then \(\tau_{R'}(Y_1, Y_2) = ([\Phi, \Phi], (V_1, V_2), ([x, z], \{e\}))\). Define \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) as \(f ([a], \{1\}) = ([x], \{e\}), f ([a], \{2\}) = ([x], \{e\}), f ([b], \{1\}) = ([z], \{e\}), f ([b], \{2\}) = ([z], \{e\}), f ([c], \{1\}) = ([y], \{e\}), f ([c], \{2\}) = ([y], \{e\})\). \(f^{-1}([y], \{e\}) = ([c], \{2\})\), which is not \(N_B \) clopen in \((U_1, U_2)\) and \(f^{-1}([x, z], \{e\}) = ([a, b], \{2\})\), which is \(N_B \) clopen in \((U_1, U_2)\). Therefore, \(f \) is \(N_B \) perfectly continuous but not \(N_B \) strongly continuous.

Theorem 3.17: Let \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) be the function. Then \(f \) is \(N_B \) perfectly continuous if and only if \(f \) is \(N_B \)-contra continuous and \(N_B \)-continuous.

Proof: Let \((B_1, B_2)\) be \(N_B \) open in \((V_1, V_2)\). Since \(f \) is \(N_B \) perfectly continuous, \(f^{-1}(B_1, B_2)\) is \(N_B \) clopen in \((U_1, U_2)\). Hence \(f^{-1}(B_1, B_2)\) is both \(N_B \) closed and \(N_B \) open in \((U_1, U_2)\). Hence \(f \) is both \(N_B \)-contra continuous and \(N_B \)-continuous. Conversely, let \(f \) be \(N_B \)-contra continuous and \(N_B \)-continuous. Let \((B_1, B_2)\) be \(N_B \) open in \((V_1, V_2)\). Since \(f \) is \(N_B \)-contra continuous, \(f^{-1}(B_1, B_2)\) is \(N_B \) closed in \((U_1, U_2)\). Since \(f \) is \(N_B \)-continuous, \(f^{-1}(B_1, B_2)\) is \(N_B \) open in \((U_1, U_2)\). Therefore, \(f^{-1}(B_1, B_2)\) is both \(N_B \) closed and \(N_B \) open in \((U_1, U_2)\). Hence \(f \) is \(N_B \) perfectly continuous.

Remark 3.18: The above theorem is true if \(f \) is both \(N_B \)-continuous and \(N_B \)-contra continuous otherwise it is not true by the following example.

Example 3.19: Let \(U_1 = \{a, b, c\}, U_2 = \{1, 2\} \) with \((U_1, U_2)/R = \{([a, b], \{2\}), ([c], \{1\})\} \) and \((X_1, X_2) = ([b], \{2\})\). Then \(\tau_R(X_1, X_2) = ([\Phi, \Phi], (U_1, U_2), ([a, b], \{2\}))\). The \(N_B \) closed sets are \((\Phi, \Phi), (U_1, U_2), ([c], \{1\}))\). Let \(V_1 = \{x, y, z\}, V_2 = \{e, f\} \) with \((V_1, V_2)/R' = \{([x, z], \{e\}), ([y], \{f\})\}\). Let \((Y_1, Y_2) = ([z], \{e\})\). Then \(\tau_{R'}(Y_1, Y_2) = ([\Phi, \Phi], (V_1, V_2), ([x, z], \{e\}))\). Define \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) as \(f ([a], \{1\}) = ([x], \{e\}), f ([a], \{2\}) = ([x], \{e\}), f ([b], \{1\}) = ([z], \{e\}), f ([b], \{2\}) = ([z], \{e\}), f ([c], \{1\}) = ([y], \{e\}), f ([c], \{2\}) = ([y], \{e\})\). \(f^{-1}([y], \{e\}) = ([c], \{2\})\), which is not \(N_B \) clopen in \((U_1, U_2)\) and \(f^{-1}([x, z], \{e\}) = ([a, b], \{2\})\), which is \(N_B \) clopen in \((U_1, U_2)\). Therefore, \(f \) is \(N_B \) perfectly continuous but not \(N_B \) strongly continuous.
NANO BINARY CONTRA CONTINUOUS FUNCTIONS

\{([x,z], \{e\}), ([y], \{f\})\} and \((Y_1, Y_2) = ([y], \{f\})\). Then \(\tau_{R'}(Y_1, Y_2) = ([\Phi, \Phi], (V_1, V_2), ([y], \{f\}))\).

Define \(f: (U_1, U_2, \tau_R(X_1, X_2)) \rightarrow (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) as \(f([a], \{1\}) = ([x], \{f\}), f([a], \{2\}) = ([x], \{e\}), f([b], \{1\}) = ([z], \{f\}), f([b], \{2\}) = ([z], \{e\}), f([c], \{1\}) = ([y], \{f\}), f([c], \{2\}) = ([y], \{e\})\). Therefore, \(f^{-1}([y], \{f\}) = ([c], \{1\})\), which is \(N_B\) closed in \((U_1, U_2)\) but not \(N_B\) open in \((U_1, U_2)\). Hence \(f\) is \(N_B\)–contra continuous but not \(N_B\)–continuous. Also \(f\) is not \(N_B\) perfectly continuous.

Result 3.20: Let \(f: (U_1, U_2, \tau_R(X_1, X_2)) \rightarrow (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) be the function.

i) If \(f\) is \(N_B\) perfectly continuous then \(f\) is \(N_B\) contra \(\alpha\)-continuous and \(N_B\) \(\alpha\)–continuous.

ii) If \(f\) is \(N_B\) perfectly continuous then \(f\) is \(N_B\) contra pre-continuous and \(N_B\) pre–continuous.

iii) If \(f\) is \(N_B\) perfectly continuous then \(f\) is \(N_B\) contra semi-continuous and \(N_B\) semi-continuous.

iv) If \(f\) is \(N_B\) perfectly continuous then \(f\) is \(N_B\) contra \(\beta\)-continuous and \(N_B\) \(\beta\)–continuous.

By theorem 3.17 and definition 2.6, the above result is true but none of these implications is reversible as example 3.19.

Theorem 3.21: Every \(N_B\) strongly continuous function is both \(N_B\)-continuous and \(N_B\)-contra continuous.

Proof: Let \((B_1, B_2)\) be a subset of \((V_1, V_2)\). Since \(f\) is \(N_B\) strongly continuous, \(f^{-1}(B_1, B_2)\) is \(N_B\) clopen in \((U_1, U_2)\). That is, \(f^{-1}(B_1, B_2)\) is both \(N_B\) open and \(N_B\) closed in \((U_1, U_2)\). Since it holds for every subset of \((V_1, V_2)\), it is also true for all the \(N_B\) open sets in \((V_1, V_2)\).

Therefore, \(f\) is both \(N_B\)-continuous and \(N_B\)-contra continuous.

Remark 3.22: The converse of the above theorem need not be true by the following example.

Example 3.23: In example 3.19, the function \(f: (U_1, U_2, \tau_R(X_1, X_2)) \rightarrow (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) is \(N_B\) – contra continuous. Consider \(([x,y], \{e\})\) is any subset of \((V_1, V_2)\). Then \(f^{-1}([x,y], \{e\}) = ([a,c], \{2\})\), which is not \(N_B\) open in \((U_1, U_2)\). Therefore, \(f\) is \(N_B\)–contra...
continuous. But \(f \) is neither \(N_B \) strongly continuous nor \(N_B \) - continuous.

Result 3.24: Let \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) be the function.

i) If \(f \) is \(N_B \) strongly continuous then \(f \) is \(N_B \) contra \(\alpha \)-continuous and \(N_B \) \(\alpha \) - continuous.

ii) If \(f \) is \(N_B \) strongly continuous then \(f \) is \(N_B \) contra pre-continuous and \(N_B \) pre – continuous.

iii) If \(f \) is \(N_B \) strongly continuous then \(f \) is \(N_B \) contra semi-continuous and \(N_B \) semi- continuous.

iv) If \(f \) is \(N_B \) strongly continuous then \(f \) is \(N_B \) contra \(\beta \)-continuous and \(N_B \) \(\beta \) – continuous.

By theorem 3.21 and definition 2.6, the above result is true but none of these implications is reversible as example 3.23.

Remark 3.25: Composition of two \(N_B \)- contra continuous functions need not be \(N_B \)- contra continuous as shown in the following example.

Example 3.26: Let \(U_1 = \{a, b, c\}, U_2 = \{1, 2\} \) with \((U_1, U_2)/R = \{\{(a, b), \{2\}\}, \{(c), \{1\}\}\} \) and \((X_1, X_2) = \{(b), \{2\}\}. \) Then \(\tau_R(X_1, X_2) = \{(\Phi, \Phi), (U_1, U_2), \{(a, b), \{2\}\}\} \). The \(N_B \) closed sets are

\((\Phi, \Phi), (U_1, U_2), \{(c), \{1\}\} \)

Let \(V_1 = \{a, b, c\}, V_2 = \{1, 2\} \) with \((V_1, V_2)/R = \{(V_1, V_2)/R', = \{(a, c), \{1\}\}, \{(b), \{2\}\}\} \) and \((Y_1, Y_2) = \{(b), \{2\}\}. \) Then \(\tau_{R'}(Y_1, Y_2) = \{(\Phi, \Phi), (V_1, V_2), \{(b), \{2\}\}\} \). The \(N_B \) closed sets are

\((\Phi, \Phi), (V_1, V_2), \{(a, c), \{1\}\} \)

Define \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) as \(f(\{a\}, \{1\}) = \{(a), \{2\}\}, f(\{a\}, \{2\}) = \{(a), \{1\}\}, f(\{b\}, \{1\}) = \{(c), \{2\}\}, f(\{b\}, \{2\}) = \{(c), \{1\}\}, f(\{c\}, \{1\}) = \{(b), \{2\}\}, f(\{c\}, \{2\}) = \{(b), \{1\}\}. \) Therefore, \(f^{-1}(\{b\}, \{2\}) = \{(c), \{1\}\}, \) which is \(N_B \) closed in \((U_1, U_2). \) Hence \(f \) is \(N_B \)- contra continuous.

Let \(W_1 = \{a, b, c\}, W_2 = \{1, 2\} \) with \((W_1, W_2)/R = \{(a), \{2\}\}, \{(b, c), \{1\}\} \) and \((Z_1, Z_2) = \{(b), \{1\}\}. \) Then \(\tau_{R'}(Z_1, Z_2) = \{(\Phi, \Phi), (W_1, W_2), \{(b, c), \{1\}\}\}. \) The \(N_B \) closed sets are

\((\Phi, \Phi), (W_1, W_2), \{(a), \{2\}\} \)

Define \(g: (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \to (W_1, W_2, \tau_{R'}(Z_1, Z_2), \) as \(g(\{a\}, \{1\}) = \{(b), \{2\}\}, g(\{a\}, \{2\}) = \{(c), \{1\}\}, g(\{b\}, \{1\}) = \{(a), \{2\}\}, g(\{b\}, \{2\}) = \{(c), \{1\}\}. \)
([a], [1]), g([c], [1]) = ([a], [2]), g([c], [2]) = ([a], [1]). Therefore, \(g^{-1}([b, c], [1]) = ([a], [2]) \). Hence \(f^{-1}(g^{-1}([b, c], [1])) = f^{-1}([a], [2]) = ([a], [1]) \), which is not a \(N_B \) closed set. Hence composition of two \(N_B \) – contra continuous functions is not a \(N_B \) – contra continuous function.

Theorem 3.27: Let \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) and \(g: (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \to (W_1, W_2, \tau_{R'}(Z_1, Z_2)) \) be the functions then \(g \circ f \) is \(N_B \) – contra continuous if \(g \) is \(N_B \) – continuous and \(f \) is \(N_B \) – contra continuous.

Proof: Given that \(g \) is \(N_B \) – continuous and \(f \) is \(N_B \) – contra continuous. Let \((B_1, B_2)\) be \(N_B \) open in \((W_1, W_2)\). Since \(g \) is \(N_B \) – continuous, \(g^{-1}(B_1, B_2) \) be \(N_B \) open in \((V_1, V_2)\). Since \(f \) is \(N_B \) – contra continuous, \(f^{-1}(g^{-1}(B_1, B_2)) \) is \(N_B \) closed in \((U_1, U_2)\). That is, \((g \circ f)^{-1}(B_1, B_2)\) is \(N_B \) closed in \((U_1, U_2)\). Hence \(g \circ f \) is \(N_B \) – contra continuous.

Remark 3.28: Let \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \) and \(g: (V_1, V_2, \tau_{R'}(Y_1, Y_2)) \to (W_1, W_2, \tau_{R'}(Z_1, Z_2)) \) be the functions then

i) \(g \circ f \) is \(N_B \) perfectly continuous if \(g \) is \(N_B \) perfectly continuous and \(f \) is \(N_B \) – contra continuous.

ii) \(g \circ f \) is \(N_B \) strongly continuous if \(g \) is \(N_B \) strongly continuous and \(f \) is \(N_B \) – contra continuous.

iii) \(g \circ f \) is \(N_B \) perfectly continuous if \(g \) is \(N_B \) -continuous and \(f \) is \(N_B \) perfectly continuous.

iv) \(g \circ f \) is \(N_B \) perfectly continuous if \(g \) is \(N_B \) -continuous and \(f \) is \(N_B \) strongly continuous.

v) \(g \circ f \) is \(N_B \) -continuous if \(g \) is \(N_B \) – contra continuous and \(f \) is \(N_B \) -continuous.

vi) \(g \circ f \) is \(N_B \) -continuous if \(g \) is \(N_B \) -continuous and \(f \) is \(N_B \) -continuous.

vii) \(g \circ f \) is \(N_B \) perfectly continuous if \(g \) is \(N_B \) perfectly continuous and \(f \) is \(N_B \) strongly continuous.
vii) \(gof\) is \(N_B\) strongly continuous if \(g\) is \(N_B\) strongly continuous and \(f\) is \(N_B\) perfectly continuous.

Note 3.29: The above remark follows from theorems 3.14, 3.17, 3.21 and 3.27.

4. NANO BINARY D – CONTINUOUS

Definition 4.1: A nano binary subset \((A_1, A_2)\) of a nano binary topological space \((U_1, U_2, \tau_R(X_1, X_2))\) is called nano binary dense if \(\overline{N_B}(A_1, A_2) = (U_1, U_2)\) and it is denoted by \(N_B\)-dense.

Definition 4.2: Let \((U_1, U_2, \tau_R(X_1, X_2))\) and \((V_1, V_2, \tau_{R'}(Y_1, Y_2))\) be nano binary topological spaces. Then a mapping \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) is nano binary D-continuous function if the inverse image of every \(N_B\) open in \((V_1, V_2)\) is \(N_B\)-dense in \((U_1, U_2)\) and it is denoted by \(N_B\) D-continuous.

Example 4.3: Let \(U_1 = \{a, b, c\}, U_2 = \{1, 2\}\) with \(\frac{(U_1, U_2)}{R} = \{(a, b), \{2\}, \{c\}, \{1\}\}\) and \((X_1, X_2) = \{\{b\}, \{2\}\}\). Then \(\tau_R(X_1, X_2) = \{(\Phi, \Phi), (U_1, U_2), \{(a, b), \{2\}\}\}\). Let \(V_1 = \{x, y, z\}, V_2 = \{e, f\}\) with \(\frac{(V_1, V_2)}{R'} = \{\{x, z, \{e\}\}, \{y, \{f\}\}\}\) and \((Y_1, Y_2) = \{\{x, y, \{f\}\}\}\). Then \(\tau_{R'}(Y_1, Y_2) = \{(\Phi, \Phi), (V_1, V_2), \{(x, z), \{e\}\}, \{y, \{f\}\}\}\). Define \(f: (U_1, U_2, \tau_R(X_1, X_2)) \to (V_1, V_2, \tau_{R'}(Y_1, Y_2))\) as \(f(\{a\}, \{1\}) = \{\{y\}, \{f\}\}, f(\{a\}, \{2\}) = \{\{y\}, \{e\}, f(\{b\}, \{1\}) = \{\{x\}, \{f\}\}, f(\{b\}, \{2\}) = \{\{x\}, \{e\}\}, f(\{c\}, \{1\}) = \{\{z\}, \{f\}\}, f(\{c\}, \{2\}) = \{\{z\}, \{e\}\}\). Then \(f^{-1}(\{y\}, \{f\}) = \{(a), \{1\}\}\) and \(f^{-1}(\{x, z\}, \{e\}) = \{(b, c), \{2\}\}\), which is \(N_B\)-dense in \((U_1, U_2)\). That is, the inverse image of every \(N_B\) open in \((V_1, V_2)\) is \(N_B\)-dense in \((U_1, U_2)\). Therefore, \(f\) is \(N_B\) D-continuous.

Definition 4.4: A nano binary topological space \((U_1, U_2, \tau_R(X_1, X_2))\) is called a nano binary submaximal space if every \(N_B\)-dense subset of \((U_1, U_2)\) is \(N_B\) open in \((U_1, U_2)\) and it is denoted by \(N_B\) submaximal space.

Definition 4.5: A nano binary topological space \((U_1, U_2, \tau_R(X_1, X_2))\) is called a nano binary hyperconnected space if every \(N_B\) open subset of \((U_1, U_2)\) is \(N_B\)-dense in \((U_1, U_2)\) and it is denoted by \(N_B\) hyperconnected space.
Remark 4.6: Every N_B D-continuous is not N_B-continuous as shown in the following example.

Example 4.7: In example 4.3, f is N_B D-continuous. But $f^{-1}(\{y\}, \{f\}) = (\{a\}, \{1\})$ and $f^{-1}(\{x,z\}, \{e\}) = (\{b, c\}, \{2\})$, which is not N_B open in (U_1, U_2). Therefore, f is not N_B – continuous. Hence f is N_B D-continuous but not N_B –continuous.

Note 4.8: Similarly we can say the following:

i) Every N_B D-continuous is not N_B α – continuous.

ii) Every N_B D-continuous is not N_B semi-continuous.

iii) Every N_B D-continuous is not N_B pre –continuous

iv) Every N_B D-continuous is not N_B β – continuous.

Remark 4.9: In N_B submaximal space, every N_B D-continuous is N_B –continuous.

Note 4.10: In N_B submaximal space,

i) Every N_B D-continuous is N_B α –continuous.

ii) Every N_B D-continuous is N_B semi–continuous.

iii) Every N_B D-continuous is N_B pre–continuous.

iv) Every N_B D-continuous is N_B β –continuous.

Remark 4.11: Every N_B –continuous is not N_B D-continuous as shown in the following example.

Example 4.12: Let $U_1 = \{a, b, c\}, U_2 = \{1, 2\}$ with $(U_1, U_2)/R = \{((a, b), \{2\}), ((c), \{1\})\}$ and $(X_1, X_2) = ((a, c), \{1\})$. Then $τ_R(X_1, X_2) = ((\Phi, \Phi), (U_1, U_2), ((c), \{1\}), ((a, b), \{2\}))$. The N_B closed sets are $(U_1, U_2), (\Phi, \Phi), ((a, b), \{2\}), ((c), \{1\})$. Let $V_1 = \{x, y, z\}, V_2 = \{e, f\}$ with $(V_1, V_2)/R' = \{([x, z], \{e\}), ([y], \{f\})\}$ and $(Y_1, Y_2) = ([x, y], \{f\})$. Then $τ_{R'}(Y_1, Y_2) = ((\Phi, \Phi), (V_1, V_2), ([x, z], \{e\}), ([y], \{f\}))$.

Define f: $(U_1, U_2, τ_R(X_1, X_2)) → (V_1, V_2, τ_{R'}(Y_1, Y_2))$ as $f(\{a\}, \{1\}) = ([x], \{f\}), f(\{a\}, \{2\}) = ([x], \{e\}), f(\{b\}, \{1\}) = ([z], \{f\}), f(\{b\}, \{2\}) = ([z], \{e\}), f(\{c\}, \{1\}) = ([y], \{f\}), f(\{c\}, \{2\}) = ([y], \{e\}).$ Then $f^{-1}(\{y\}, \{f\}) = (\{c\}, \{1\})$ and $f^{-1}(\{x, z\}, \{e\}) = (\{a, b\}, \{2\})$, which is N_B open but not N_B dense in (U_1, U_2). Therefore, f is N_B-continuous but not N_B D-continuous.

Remark 4.13: In N_B hyperconnected space, every N_B –continuous is N_B D-continuous.
Note 4.14: i) Every $N_B \alpha$ – continuous is not N_B D-continuous.

ii) Every N_B semi-continuous is not N_B D-continuous.

iii) Every N_B pre-continuous is not N_B D–continuous.

iv) Every $N_B \beta$ D-continuous is not N_B D– continuous.

5. CONCLUSION

In this paper, we have defined N_B- contra continuous function in nano binary topological spaces and their characterizations were studied. Also we have explored some nano binary contra continuous functions in nano binary topological spaces and their features were discussed. Also we have defined N_B D– continuous and some properties are discussed.

6. ACKNOWLEDGEMENT

I express my gratitude to my Guide and my Mentor Dr. G. Hari Siva Annam for her consistent support and motivation to give a shape to our research. Also I thank the reviewers for their suggestions regarding the betterment of the article.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

NANO BINARY CONTRA CONTINUOUS FUNCTIONS

