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Abstract. This paper is concerned with the estimation problem using L-moments method of estimation for the

unknown parameters of Gamma/Gompertz distribution based ranked set sampling methods. Computer simulation

results are given to compare the efficiencies for the Neoteric ranked set sampling (NRSS) as a dependent sampling

technique, with ranked set sampling (RSS), median ranked set sampling (MRSS), percentile ranked set sampling

(PRSS) as an independent sampling techniques, and simple random sampling (SRS).
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1. INTRODUCTION

McIntyre [13] submitted a sampling method for the estimation of pasture and forage yields in

the field of agriculture it is called RSS. He aim was to maintain the unbiasedness property of the

estimators like in SRS estimator with take minimum information about the estimator provided
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by visual inspection or by any inexpensive method. The McIntyre’s technique was used first by

Halls and Dell [7]. They found experimentally that RSS was more efficient than SRS. They also

stated the name ranked set sampling that is in current use. Dell and Clutter [5] appeared that the

mean estimator under imperfect RSS remains an unbiased estimator of a population mean.

RSS method as suggested by McIntyre [13] may be amended to come up with new sampling

methods that can be made more efficient than the usual RSS method with small mean square

errors (MSE). Muttlak [15] used MRSS to estimate the population mean and he showed that

it is more efficient than the usual RSS method. Muttlak[16] introduced PRSS procedure with

different value of 0 ≤ p ≤ 1 for estimating the population mean. Al-Saleh and Al-Hadrami [2]

used different set sizes for RSS technique for estimating the mean of the Normal and Exponen-

tial distributions, they explored that this procedure is more useful than RSS for estimating the

mean of symmetric distributions. Khamnei and Mayan [12] estimated the parameters of Gumbel

distribution based on SRS and RSS with compared the estimators of these two methods. A

recently developed modification of RSS, Zamanzade and Al-Omari [21] introduced the NRSS

technique and they showed that the efficiency of the estimators based on NRSS are greater than

their estimators using RSS and SRS techniques. Esemen and Grler[8] estimated the parameters

of Generalized Rayleigh distribution based on RSS and it is some modification.

The Gamma/Gompertz (GG) distribution has been used to estimate customer lifetime and

a model of death rate risks. GG distribution was introduced by Bemmaor and Glady [4]. The

probability density function (PDF), the cumulative distribution function (CDF), and quantile

function (QF) of the GG distribution are, respectively, given by[14]

(1) f (x;b,s,β ) =
bsebxβ s

(β −1+ ebx)s+1 ; 0≤ x≤ ∞,b > 0,s > 0,β > 0,

(2) F(x;b,s,β ) = 1− β s

(β −1+ ebx)s ; 0≤ x≤ ∞,b > 0,s > 0,β > 0,

and

(3) x(F) =
1
b

ln[β (1−F)
−1
s −β +1]

where b is the scale parameter, s and β are the shape parameters. (see Fig. 1)
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FIGURE 1. Three parameters Gamma/Gompertz distribution density function.

In this paper, the performance of NRSS method has been compared with the other ranked set

sampling methods using L-moment method of estimation with the usual SRS technique for GG

distribution parameters. The remaining part of this paper is organized as follows: In Section 2,

introduced ranked set sampling methods. L-moment method of estimation will be discussed in
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Section 3. In Section 4, computer simulation results are given to compare the efficiency for the

estimators based on SRS with its counterparts RSS MRSS, PRSS, and NRSS. It is shown that

for the GG distributions considered in this study, NRSS has less mean square error and more

efficiency than all the other methods. Conclusions are presented in Section 5.

2. SOME RANKED SET SAMPLING TECHNIQUES

In this section, different sampling techniques for selection of units in the sample are RSS,

MRSS, PRSS and NRSS will be considered with explanation figures for each case for each one

of these techniques.

2.1. Ranked set sampling

The original idea of ranked set sampling (RSS) was showed by McIntyre’s [13]. Ranked

set sampling is a methodology that can improve the efficiency of techniques such as estimation

without taking large a number of substantial observations. In addition, it is designed to decrease

the number of measured observations required to achieve the desired precision in making infer-

ences. The RSS scheme can be described as follows:[3]

(1) In order to draw a sample of size n, we identify n2 units from the target population.

(2) Randomly allocate these units to n sets each of size n. The n units in each sample are

ranked visually or by any inexpensive method with respect to the variable of interest.

(3) From the first set of n units, the smallest ranked unit is measured. From the second set

of n units, the second smallest ranked unit is measured. The process is continued until

from the nth set of n units the largest ranked until is measured. (see Fig. 2)

(4) Repeat steps 1 through 3 for m cycles to obtain a sample of size nm.

Let {X1,X2, ..,Xn} be a random sample with probability density function f (x)with mean µ

and variance σ2. Let {X(1)1,X(1)2, ..,X(1)n1; X(2)1,X(2)2, ...,X(2)n2 ; ..., X(n)1,X(n)2, ...,X(n)nn} be

independent random variables. Let X(i;n) j denotes the ithorder statistic from the ithsample of size

n where (i = 1,2, ...,n). The cycle may be repeated m times to get nm units. LetX(i) j denotes

the jth cycle of size m where ( j = 1,2, ...,m). Then PDF and CDF of X(i) j are given by [19]

(4) fn(x(i) j) =
n!

(i−1)!(n− i)!
f (x(i) j;θ) [F(x(i) j;θ)]i−1 [1−F(x(i) j;θ)]n−i,
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and

(5) Fn(x(i) j) =
n

∑
t=i

n!
t!(n− t)!

[F(x(i) j;θ)]t [1−F(x(i) j;θ)]n−t .

FIGURE 2. RSS design in cases of a) n is an even b) n is an odd

2.2. Median ranked set sampling

Muttlak [15] introduced Median ranked set sampling (MRSS) scheme for estimating the pop-

ulation mean. MRSS procedure is explained as follows:

(1) In order to draw a sample of size n, we identify n2 units from the target population.

(2) Randomly allocate these units to n sets each of size n. The n units in each sample are

ranked visually or by any inexpensive method with respect to the variable of interest.

(3) for even sample size n, identify n2units from the target population. Each sample is

ranked in itself as in ranked set sampling design. Select the n
2th smallest rank from the

first n
2 sets and select the n+2

2 th smallest rank from the other n
2 sets. Similarly, for odd

sample size n, Select the n+1
2 th smallest rank from all sets.

(4) Repeat steps 1 through 3 for m cycles to draw a sample of size nm. (see Fig. 3)

The PDF of X(i) j that ranked by MRSS when n is an even is given by [19]

fn(x(i) j) = [
n!

(n−2
2 )!(n

2)!
f (x( n

2 ) j;θ) [F(x( n
2 ) j;θ)]

n−2
2 [1−F(x( n

2 ) j;θ)]
n
2 ](6)

[
n!

(n
2)!(

n−2
2 )!

f (x( n+2
2 ) j;θ) [F(x( n+2

2 ) j;θ)]
n
2 [1−F(x( n+2

2 ) j;θ)]
n−2

2 ].
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Otherwise when n is an odd is given by

(7) fn(x(i) j) =
n!

(n−1
2 )!(n−1

2 )!
f (x( n+1

2 ) j;θ) [F(x( n+1
2 ) j;θ)]

n−1
2 [1−F(x( n+1

2 ) j;θ)]
n−1

2 .

FIGURE 3. MRSS design in cases of a) n is an even b) n is an odd

2.3. Percentile ranked set sampling

Muttlak [16] used percentile ranked set sampling (PRSS) technique with a different values of

0≤ p≤ 1 for estimating the population mean. PRSS procedure is explained as follows:[18]

(1) In order to draw a sample of size n, we identify n2 units from the target population.

(2) Randomly allocate these units to n sets each of size n. The n units in each sample are

ranked visually or by any inexpensive method with respect to the variable of interest.

(3) For even sample size n, select the (p(n+1))th smallest ranked unit from the first n
2 sets

and select the (q(n+1))th smallest ranked unit from the other n
2 sets. Similarly, for odd

sample size n, select the (p(n+1))th smallest ranked unit from first n−1
2 sets. Select the

(q(n+ 1))th smallest ranked unit from second n−1
2 sets and the median with rank n+1

2

from the remaining set.

(4) Repeat steps 1 through 3 for m cycles to draw a sample of size nm. (see Fig. 4)

The PDF of X(i) j that ranked by PRSS when n is an even is given by

fn(x(i) j) = [
n!

(p(n+1)−1)!(n− p(n+1))!

f (x(p(n+1)) j;θ) [F(x(p(n+1)) j;θ)]p(n+1)−1 [1−F(x(p(n+1)) j;θ)]n−p(n+1)]
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[
n!

(q(n+1)−1)!(n−q(n+1))!
f (x(q(n+1)) j;θ) [F(x(q(n+1)) j;θ)]q(n+1)−1(8)

[1−F(x(q(n+1)) j;θ)]n−q(n+1)],

Otherwise when n is an odd is given by

fn(x(i) j) =

[ n!
(p(n+1)−1)!(n−p(n+1))! f (x(p(n+1)) j;θ) [F(x(p(n+1)) j;θ)]p(n+1)−1 [1−F(x(p(n+1)) j;θ)]n−p(n+1)]

[ n!
(q(n+1)−1)!(n−q(n+1))! f (x(q(n+1)) j;θ) [F(x(q(n+1)) j;θ)]q(n+1)−1[1−F(x(q(n+1)) j;θ)]n−q(n+1)]

(9) [
n!

(n−1
2 )!(n−1

2 )!
f (x( n+1

2 ) j;θ) [F(x( n+1
2 ) j;θ)]

n−1
2 [1−F(x( n+1

2 ) j;θ)]
n−1

2 ].

FIGURE 4. PRSS design in cases of a) n is an even b) n is an odd

2.4. Neoteric ranked set sampling

Zamanzade and Al-Omari [21] have developed modification of RSS called NRSS. NRSS

differs from the original RSS scheme by the composition of a single set of n2 units, instead of n

sets of size n. This strategy has been shown to be effective, producing more efficient estimators

for the population mean. The NRSS technique can be described as follows:

(1) Select a simple random sample of size n2 units from the target finite population.



8228 NURAN M. HASSAN, EL-HOUSSAINY A. RADY, NASR I. RASHWAN

(2) Ranked the n2selected units in an increasing magnitude based on a visual inspection or

any other cost-free method with respect to a variable of interest.

(3) For odd sample size n,, select the (n+1
2 + (i− 1)n)th ranked unit for (i = 1,2, ...n).

Otherwise for even sample size n, if i is an odd, then select the(n+2
2 +(i−1)n)th ranked

unit. While if i is an even, then select the(n
2 +(i−1)n)th ranked unit for (i = 1,2, ...n).

(see Fig. 5)

(4) Repeat steps 1 through 3 m cycles if needed to obtain a NRSS of size nm.

The PDF of X(i) j that ranked by NRSS is given by [19]

(10) fn(x(i) j) =
n2!

(k(i)− k(i−1)−1)!
f (xk(i) j;θ) [F(xk(i) j;θ)−F(xk(i−1) j;θ)]k(i)−k(i−1)−1 ,

where

k(i) =


n+1

2 +(i−1)n

n+2
2 +(i−1)n

n
2 +(i−1)n

n odd

n even, iodd

n even, i even

where (i = 1,2, ...n) , k(0) = 0 and xk(0)
∼=−∞.

FIGURE 5. NRSS design in cases of a) n is an even b) n is an odd

3. ESTIMATION BASED ON L MOMENTS

Hosking [10] formalized methods for the estimation of statistics are measures of higher mo-

ments, skewness and kurtosis, are more robust with respect to sample size and the presence of

outliers. These measures, called L-moments, are based on expectations of linear combinations
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of order statistics. Indeed, Vogel and Fennessey [20] observed that the introduction of the theory

of L-moments by Hosking is probably the single most significant recent advance in relating to

our understanding of extreme events.

The method of L-moments is a parameter estimation technique that is conceptually the same

as the well-known “method of (product) moments”. Specifically, the L-moments is a method

of parameter estimation in which the parameters of a distribution are chosen so as to equate the

theoretical L-moments of the distribution (λr) to the sample L-moments (λ̂r ) for r≤ p where p

is the number of parameters of a probability distribution.[1]

3.1. Theoretical L-moments

The theoretical L-moments for a real-valued random variable X with a QF of x(F ) are defined

from the expectations of order statistics. The order statistics of X for a sample of size n are

formed by the ascending order X(1:n) ≤ X(2:n) ≤ .. ≤ X(l:n) ≤ ... ≤ X(n:n). The theoretical L-

moments (λr) are [11]

(11) λr =
1
r

r−1

∑
k=0

(−1)k

 r−1

k

E[Xr−k:r], r = 1,2, ...

where r is the order of the L-moment, andE[Xr−k:r] is the expectation of the r− k order

statistic of a sample of size r and we obtain it as follows:

(12)

E[Xr−k:r] =
6s
b

r−k−1

∑
l=0

Cr
r−kC

r−k−1
l (−1)l

β
s(r−l)(β−1)−s(r−l)−1

Φ(s(r−l)+1)((1−β )−1,2,1) f or β 6= 1,

where the Lerch transcendental function is Φ(s(r−i)+1)((1 − β )−1,2,1) =

∑
∞
h=0

(s(r−i)+1)h
h!

(1−β )−h

(h+1)2 for β 6= 1. By substituting the (12) in (11), the population L-moments

of order r for the GG is given by:

(13)

λr =
6s
b

r−1

∑
k=0

r−k−1

∑
l=0

[(r−1)!]2

(r− k−1− l)![k!]2(r− k)!l!
β

s(r−l)(β−1)−s(r−l)−1
Φ(s(r−l)+1)((1−β )−1,2,1).

If β has a special case when equal 1. The E[Xr−k:r] is going to be

E[Xr−k:r] = bs∑
r−k−1
l=0 Cr

r−kC
r−k−1
l (−1)l Γ(2)

(b(s(1+k)+r−k−1−i)2 .
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The first three theoretical L-moments can be obtained by taking r = 1,2and 3in (13) as fol-

lows:

(14) λ1 = E[X ] =
6s
b

β
s(β −1)−s−1

Φ(s+1)((1−β )−1,2,1),

λ2 =
1
2

E[X2:2−X1:2] =
6s
b
[(−1

2
β

2s)(β −1)−2s−1
Φ(2s+1)((1−β )−1,2,1)

− 1
2

β
s(β −1)−s−1

Φ(s+1)((1−β )−1,2,1)],

and

λ3 =
1
3

E[X3:3−2X2:3 +X1:3] =
6s
b
[(
−7
3

β
3s)(β −1)−3s−1

Φ(3s+1)((1−β )−1,2,1)

+(
10
3

β
2s)(β −1)−2s−1

Φ(2s+1)((1−β )−1,2,1)+
1
3

β
s(β −1)−s−1

Φ(s+1)((1−β )−1,2,1)].

3.2. Sample L-moments

The sample L-moments are computed from the sample order statistics. Elamir and Seheult
[6] proposed the following formula to calculate sample L-moments:

(15) λ̂ r =
1
r

n

∑
i=0

r−1

∑
k=0

(−1)kCr−1
k Ci−1

r−k−1Cn−i
k

Cn
r

xi:n, r = 1,2, ...

L-moment estimators for b, sand β can be found as follows:

(16)
6s
b

β
s(β −1)−s−1

Φ(s+1)((1−β )−1,2,1) = x,

(17)
6s
b
[(−1

2
β

2s)(β −1)−2s−1
Φ(2s+1)((1−β )−1,2,1)

− 1
2

β
s(β −1)−s−1

Φ(s+1)((1−β )−1,2,1)] =
n

∑
i=1

(i−1)− (n− i)
n(n−1)

xi:n,
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and

(18)
6s
b
[(
−7
3

β
3s)(β −1)−3s−1

Φ(3s+1)((1−β )−1,2,1)+(
10
3

β
2s)(β −1)−2s−1

Φ(2s+1)((1−β )−1,2,1)

+
1
3

β
s(β−1)−s−1

Φ(s+1)((1−β )−1,2,1)] =
n

∑
i=1

(i−1)(i−2)−4(i−1)(n− i)+(n− i)(n− i−1)
n(n−1)(n−2)

xi:n.

4. SIMULATION STUDY

Based on 1000 replications, a computer simulation is conduced to study the behavior of

the efficiency of the sample mean using RSS, MRSS, PRSS with p = 0.2, and NRSS with

respect to SRS. Random observations are generated from Gamma/Gompertz distribution based

on different sample sizes (n = 15,20 and 25), for cycles (m = 1and 3), different parameters

values GG(b,s,beta) = {GG(3,3,3),GG(2,2,4)}, were generated by the R package. Nadjafi
[17] used 300 replications in his paper because of that the replications were extended to be more

than 300. The relative efficiency (RE) of the estimator of any of the RSS methods with respect

to the usual estimator SRS is defined as [9]

(19) RE(θ̂SRS, θ̂RSS,s) =
MSE(θ̂SRS)

MSE(θ̂RSS,s)
,

where MSE(θ̂) = 1
1000 ∑

1000
j=1 (θ̂ −θ)2 and bias = θ̂ −θ .

if RE(θ̂SRS , θ̂RSS,s)>1, then θ̂RSS,sis better than θ̂SRS. The simulation results are summarized

in a list of tables and list of figures. The results of the table and these figures show the relative

efficiency (the ratio of the mean square errors) of the estimators relative to SRS.
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From Table1and Table 2, it can be observed that:

• In almost all cases, the biases are very small.

• The values of the all estimators for (b,s and beta) is very close to the real values of

b,s and beta.

• In almost all cases, MSEs of all estimators for (b,s and beta) based on RSS, MRSS, PRSS

and NRSS are smaller than MSEs of the estimators based on SRS.

• In almost all cases, MSEs of all estimators based on RSS, MRSS, PRSS and NRSS decrease

as the cycle sizes increase.

• When the values of b and s increase, the MSEs of all estimators based on RSS, MRSS,

PRSS and NRSS decrease.

• MSEs of the estimators for (b,s and beta) based on NRSS have the smallest MSEs in all

cases comparing with other estimators based on RSS, MRSS and PRSS.



L-MOMENTS METHOD TO ESTIMATE GAMMA/GOMPERTZ DISTRIBUTION 8235

TABLE 3. Exact REs relative to SRS based on RSS, MRSS, PRSS, and NRSS.

Distribution n RSS

m = 1 r = 3

MRSS

m = 1 m = 3

PRSS

m = 1 m = 3

NRSS

m = 1 m = 3

GG(3,3,3)

15

20

25

b̂
1.1718

4.1932

2.1648

3.6780

4.3836

2.2211

2.2389

14.6188

2.6959

4.0991

8.7689

4.5559

3.1427

14.2698

4.4036

13.0538

9.7118

9.3273

18.8661

15.6442

28.3575

19.5411

20.7295

67.9058

15

20

25

ŝ
1.4955

3.4212

3.1413

3.1867

3.7668

3.1379

2.4200

5.3138

3.9230

5.1781

6.4090

3.7967

2.5107

9.1615

5.5859

68.9798

4.8103

7.0556

45.9191

52.9446

16.9299

81.0011

9.8355

24.1395

15

20

25

ˆbeta
2.2735

2.3414

4.3420

6.0463

2.7351

4.1787

2.5305

1.7776

7.3919

12.2524

3.6464

2.9307

1.7284

4.3516

6.0814

26.8113

2.0000

4.7697

12.5380

14.1599

8.8934

54.9708

3.6610

9.6184

GG(2,2,4)

15

20

25

b̂
1.2548

1.3873

6.1538

4.431

1.1908

3.0074

5.4581

2.6676

20.3993

10.8605

1.0484

4.9197

30.4087

4.3238

12.9460

12.1046

1.9480

4.4248

59.3503

27.4535

24.0068

14.4328

1.7365

15.9413

15

20

25

ŝ
6.5498

10.6288

17.7256

25.0192

12.9179

43.6959

6.8915

4.3012

26.4348

16.4541

7.9081

26.3662

38.0996

46.1929

6.1915

28.8354

14.3126

134.3402

58.6385

50.5101

40.4657

49.6355

54.7224

139.1280

15

20

25

ˆbeta
3.8078

4.6395

12.5568

6.1727

4.6868

2.3786

5.5194

8.0200

12.8752

8.3734

15.4738

5.4628

35.3623

43.6575

1.8842

14.9441

18.7304

8.1582

5.7389

48.0546

16.5923

16.8289

23.8312

9.0914

From Table3, it can be observed that:

• Efficiencies of the estimators based on RSS, MRSS, PRSS and NRSS decrease as the values

of (b, s and beta) increase.

• In almost all cases, efficiencies of the estimators for (b,s and beta) based on NRSS are

greater than the efficiencies based on RSS, MRSS and PRSS, except in some cases.
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a) For b̂ estimator b) For ŝ estimator

c) For ˆbeta estimator

FIGURE 6. Efficiencies of the estimators for GG(3,3,3).
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a) For b̂ estimator b) For ŝ estimator

c) For ˆbeta estimator

FIGURE 7. Efficiencies of the estimators for GG(2,2,4).

From Figure6 and Figure7, it can be observed that:

• Efficiencies of the estimators for (b,s and beta) based on NRSS have the largest efficiencies

in all cases, except in some cases.

• Efficiencies of the estimators for (b,s and beta) based on PRSS are greater than the effi-

ciencies based on RSS and MRSS, except in some cases.

• Efficiencies of the estimators for (b,s and beta) based on RSS have the smallest efficiencies

in all cases, except in some cases.
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• When the cycle sizes increase, the efficiencies of all estimators based on RSS, MRSS, PRSS

and NRSS increase.

5. SUMMARY AND CONCLUSIONS

Based on the numerical results from the comparative study, the findings may be summarized

as follows:

(1) The MSEs based on SRS data has the largest MSEs comparing to RSS and its modifi-

cations schemes.

(2) It can be noted that, NRSS technique has superior to the rest of other sampling schemes.

It has the smallest MSEs and largest efficiencies.

(3) Also it can be noted that RSS technique has inferior to the rest of other sampling

schemes. It has the largest MSEs and smallest efficiencies.

(4) Generally the estimators based on NRSS, PRSS, MRSS and RSS techniques are more

efficient than the estimators based on SRS techniques.

(5) L- moments method for estimation is given results very close to the real values of the

parameters with very small biases.
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