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Abstract: In this paper, we theoretically analyzed the within-human host model for Lassa fever earlier proposed by 

Obasi and Mbah, so as to understand the dynamics of Lassa fever transmission at the human population level. The 

model has locally asymptotically stable disease-free equilibrium whenever the associated reproduction number is less 

than unity. This model will undergo the phenomenon of backward bifurcation where the stable disease-free co-exists 

with a stable endemic equilibrium, when the associated reproduction number is less than unity. This implies that 

bringing down the reproduction number to below unity is not enough to eradicate Lassa fever disease within human 

population. It is also shown that the model has a globally-asymptotically stable disease-free equilibrium whenever the 

associated reproduction number is less than unity. The reproduction number, 1WHR  , which is an important parameter 

in the control of Lassa fever infection, has been calculated using the next generation method. We have also shown that 

the endemic equilibrium point exists for 1WHR   and has been noted that this endemic equilibrium is unique and 

locally asymptotically stable based on Lyaponuv Function. However, this work has thrown up important parameters 

that could be gathered by the relevant government agencies for better understanding of the burden of Lassa fever 

disease in the human population.  
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1. INTRODUCTION 

Lassa fever (LF) is a deadly epidemic disease which threaten public health security and was 

discovered in Nigeria in 1969. LF is a viral hemorrhagic fever caused by the arenavirus and 

transmitted primarily from rodents (multimammate rats) to humans, human to human and aerosol 

transmission [2, 4, & 6]. The Arenaviruses are a family of viruses whose members are generally 

associated with rodent-transmitted diseases in humans. The incubation period is 5-21 days in a 

susceptible host and treatment is done using ribavirin drug which is effective when started within 

the first 6 days of illness. An estimated 300,000-500,000 infections per year with 5000 deaths have 

been reported [6]. The spread of infection diseases has always been of concerns and a threat to 

public health epidemiologists [3].   

The goal of public health epidemiologists is first to understand the dynamics of LF, then to predict 

its course, and finally to develop ways of controlling it. This goal however will be absolutely 

achieved through mathematical modeling. By mathematical model we mean a mathematical 

representation of a system that can be used to explore its behaviour. Mathematical modeling is a 

significant and powerful tool that can be employed in analyzing the spread and control of infectious 

diseases such as LF. Many studies have been carried out to model the transmission dynamics of 

LF disease in humans and rodents [3, 4, & 5]. Many of these studies focuses only on the 

transmission of the disease in human and the rodent populations but recently, Obasi and Mbah [3] 

formulated a coupled deterministic system of differential equations accounting for all the three 

known LF transmission routes. Thus, it is instructive to carry out modeling studies to analyze the 

transmission dynamic properties of the uncoupled model at the within-human host level. To the 

best of our knowledge, there are no theoretical models that examine the uncoupled transmission 

dynamics of LF analytically. Our goal is to theoretically analyze the within-human host model for 

LF earlier proposed by Obasi and Mbah [3] so as to understand the dynamics of LF transmission 

at the human population level. The paper is organized as follows: the model is given in section 2 

and analyzed in sections 3 and 4. Section 5 provides concluding remarks.    

 

2. WITHIN-HUMAN HOST MODEL 

According to Obasi and Mbah [3], the model sub-divides the total human population at time 𝑡, 

namely; S  denoting the number of susceptible individuals, E  the exposed non-infectious 
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individuals, I  denoting the number of infectious individuals (infected and diagnosed or 

symptomatic) and R , denoting the number of recovered individuals. The susceptible human 

population increases due to recruitment at  , a loss of immunity from the recovered class at a rate 

  and recovered humans without immunity at a rate ( )1 v− . The susceptible human population 

reduces as a result of a contact with an infectious rodent and a sexual contact with infected humans, 

aerosols and a natural death at a rate  . The exposed human population increases the transmission 

routes and reduces due to a transition of individuals from the class of exposed to the infected class 

at a rate of  and a natural death at a rate of  . The infected humans may recover with temporary 

immunity at a rate v  and progress to recovered class while the remaining proportion recovers 

without immunity and become susceptible at a rate ( )1 v− , while   is the proportion of humans 

who recovered spontaneously. The infected human population reduces by natural death and 

induced death at rates   and 𝛿 respectively.  The recovered human population reduces by natural 

death at a rate   and loss of immunity at a rate  . Another aspect of the transmission route is the 

opportunistic airborne transmission-infectious that naturally cause disease by small airborne 

particles (aerosol) that contain microorganisms. The modified version of Wells-Riley equation is 

used to describe airborne transmission route in this Lassa fever model. The exponent represents 

the degree of exposure to infection and ( )1 rte−−  is the probability of a single susceptible being 

infected. Note that 𝑡 is the exposure time while 𝑟 is the exposure rate, which is given as  q

Q
r = . 

Here 𝑞 is the number of doses of airborne infection while 𝑄 is the volume flow rate of fresh or 

disinfected air on airborne infection. Thus, putting the above formulations and assumptions 

together gives the following within-human host model, given by system of ordinary differential 

equations below. A full description of the variables and parameters to be used in the model are in 

Table (1) and Table (2) respectively.   

( ) ( )

( ) ( )

( )

( )

1 2

1 2

1 1

1

(1)

rt

r

rt

r

dS
v I R I S IS e S S

dt

dE
I S IS e S E

dt

dI
E I

dt

dR
vI R

dt

       

      

   

  

−

−


=  + − + − − − − −


 = + + − − +


       
 = − + +


 = − +


 



5805 

WITHIN-HUMAN HOST MODEL FOR LASSA FEVER 

 

Table 1: Description of the state variables of the model  

Variable Description 

S  Number of Susceptible humans 

E  Number of Exposed humans 

I  Number of Infectious humans 

R  Number of Recovered humans 

rI
 Number of Infected rodents 

 

Table 2: Description of the parameters of the basic Lassa fever model 

Parameters Description 

  Recruitment level of humans 

  Per capita Lassa-induced death rate 

  Recovered human loss of immunity 

  Spontaneous individual recovery 

v  Fraction of recovered humans without immunity  

1  Transmission rate per contact by an infectious rodent 

2  Transmission rate per contact by an infective through sexual activity 

  Relative infectiousness of individuals with aerosol 

  Natural mortality rate for humans 

  Progression rate of human from exposed to infected 

  Contact rate of rodent per human per unit time 

  Relative human-to-human transmissibility of infected humans 

r  Exposure rate to aerosol 

 

3. QUALITATIVE PROPERTIES OF THE MODEL 

For the model (1) to be meaningful, it is important to prove that all its state variables are non-

negative for all time (t). In other words, the solutions of the model (1) with positive initial data 

will remain positive for all 0.t  Suppose ( )0 0hS  . The first equation of system (1) can be written 

as: 
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( ) ( ) ( ) ,
d

S t t t
dt

 =   
    (2) 

where  

( ) ( )
0

exp 0

t

t S dS  
 

= +    
 


 

is the integrating factor. Hence, integrating this last relation with respect to t, we have 

( ) ( ) ( ) ( )
0

0 ,

t

S t t S S dS − = 
  

so that the division of both side by ( )t yields 

( ) ( ) ( ) ( )1

0

0 0.

t

S t S S dS t  −
 

= +    
 

  

The same arguments can be used to show that other state variables are positive for all 0t  . The 

dynamics of model (1) is a dynamical system in the biological feasible compact set: 

( )
( )

4: , , , :
1 rt

S E I R N
e 

+ −

  
 =   

− +  

  (3) 

 

4. ASYMPTOTIC STABILITY OF DISEASE-FREE EQUILIBRIUM (DFE) 

The disease-free equilibrium of the model (1) is given by 

( )
( )0 , , , ,0,0,0
1 rt

S E I R
e


 

   

−

 
 = =
 − +
 

 

The linear stability of 0  can be established using the next generation operator method on the 

system (1). Using the notations in [3, 5], it follows that F and V, which stands for the new infection 

terms and remaining transition terms, respectively, are given by  

( )

( )
2

00
;

0 0

S
F V

  

   

+  
= =   

− + +   

   

It follows that the dynamics is completely determined by the reproduction number,
WHR , is given 

by 

( )( ) ( )( )
2

1
WH rt

R
e

 

      −


=

+ + + − +

   (4) 

The result below follows from theorem 2 in [3]. 
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Lemma 2: The DFE of the within-human host model, given by 0 , is locally asymptotically stable 

(LAS) if 1WHR   , and unstable if 1WHR  . 

Hence, by Theorem 2 in [3], the DFE is locally asymptotically stable (LAS) whenever 1WHR   but 

unstable if 1WHR  .Therefore, we do not need to show the LAS of the DFE by the method of 

linearization of the system (at the DFE). Calculating WHR  using the method of the next generation 

matrix approach in [3] automatically proves the LAS of the DFE. Epidemiologically, this implies 

that Lassa fever will be eliminated from the population whenever 1WHR   if the initial size of the 

sub-populations are in the basin of attraction of the DFE i.e. a small influx of Lassa fever infectious 

individuals into the community will not generate a large Lassa fever outbreak and the disease dies 

out in time. 

 

5. BACKWARD BIFURCATION ANALYSIS 

It is instructive to characterize the type of bifurcation the model (1) may undergo. This will go a 

long way in determining factors that could hinder efforts in tackling Lassa fever in the human 

population. We claim the following result. 

Theorem 1: The model (1) exhibits backward bifurcation at 1WHR =  whenever a bifurcation 

coefficient, denoted by a  (and given below) is positive. 

Proof 

Let  ( )1 , , ,S E I R    =  

represents any arbitrary endemic equilibrium of the model (1) (that is, an equilibrium in which at 

least one of the infected components is non-zero). The existence of backward bifurcation will be 

explored using Centre Manifold Theory [1]. To apply this theory, it is convenient to carry out the 

following change of variables.  

Let 
1 2 3 4, , , .S x E x I x R x= = = =  Further, by using the vector notation ( )1 2 3 4, , , ,

T
X x x x x= the 

model (1) can be written in the form ( ) ,
dX

F X
dt

= with ( )1 2 3 4, , , ,
T

F f f f f= as follows 
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( ) ( )

( ) ( )

( )

( )

1 1 3 4 1 1 2 3 1 1 1

2 2 1 1 2 3 1 1 2

3 3 2 3

4 4 3 4

1 1

1

rt

r

rt

r

x f v x x I x x x e x x

x f I x x x e x x

x f x x

x f vx x

       

      

   

  

−

−

 =  + − + − − − − −

 = + + − − +

 = − + +

 = − +

 (5) 

where 

 ( ) ( )1 2 2 2 3 41 , , , 1 rtG v S G S G G e           −= − − = = + + = − +   

and force of infection given by 

 

( )1 2 1 rt

rI I e       −= + + −  

Let us choose 
2  = as a bifurcation parameter. Solving for 

2  = from 1WHR =  gives 

( ) 3 4

2

G G 
 




+
= =


 

The Jacobian of the transformed system (3), evaluated at the DFE with 
2 ,  = is given by 

( )
( ) ( )

( )

2

4 1

2

0

3

0

1 0
|

0 0

0 0

rt

G G

e G
J J

G

v

 



  




  



−



=

− 
 

− − + 
= =  

− 
 − + 

   (6) 

The matrix J  has a right eigenvector given by ( )1 2 3 4, , , ,
T

w    = where 

( )

1 3 4
1

4

2 2

2
3

3

4 2

3

0

0

0

G

G

G

v

G

 


 




 
 

 

+
=

= 

= 

= 
+

       (7) 

Furthermore, the matrix J  has a left eigenvector ( )1 2 3 4, , , ,
T

v    = satisfying 1,w v = with 

( )
1 2

4

2 2

3 2

4 2

1
0

0

0

0

rte

G


 

 

 
 



 
 



−−
= 

= 

+
= 

+
= 

        (8) 
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It follows from Theorem 3 in [1], by computing the associated non-zero partial derivatives of 

( )F X  (evaluated at the DFE), that the associated bifurcation coefficients, a  and ,b  defined by 

( )

( )

24

, , 1

24

, 1

0,0

0,0

k
k i j

k i j i j

k
k i

k i i

f
a v w w

x x

and

f
b v w

x 

=


=


=

 


=

 





       (9) 

are computed to be 

( )
1 3 4 2

2

4 3 4

1
2 1 0

rteG
a

G G G

  
 

−


 −  +
 = −   
    

   (10) 

and 

1 3 4 2
2 3 1 2 1

4 3

G
b x x

G G

  
     +

= −   
   

     (11) 

In summary, the Centre Manifold Theorem [1] states that, at a bifurcation point, the system (or 

model) undergoes a backward bifurcation if the bifurcation coefficients satisfies 0a   and 0b  . 

Thus, the within-human host model will exhibit backward bifurcation. The epidemiological 

implication of this result is that bringing down the reproduction number to below unity is not 

enough to eradicate Lassa fever disease within human population. 

 

6. GLOBAL ASYMPTOTIC STABILITY: SPECIAL CASE 0 = = . 

Consider the model (1) with 0 = = . We claim the following: 

Theorem 2: The DFE of the model (1) with 0 = =  is globally-asymptotically stable (GAS) 

whenever 1.WHR   

Proof. Consider the model (1) with 0 = = . Further, consider the following linear Lyaponuv 

function 

( ) ( ) ( )F E t I t  = + +  

with Lyaponuv derivative (where a dot represents differentiation with respect to t 

( ) ( ) ( )

( )( ) ( ) ( )( )

( )( )
( )( )

( )( ) 

2 1

1WH

F E t I t

S E E I

S
I

F R I

  

         

 
    

    

    

= + +

= − + + + − + +

 
= + + + − 

+ + + 

 + + + −

    (12) 
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Hence, 0F   if 1WHR   with 0F =  if and only 0.I =  Therefore F  is a Lyaponuv function in 

  and it follows Salle’s Invariance Principle [1], that every solution to the equations in (1) (with 

0 = = ) with initial conditions in   converges to 0  as .t →  i.e.,  

( ) ( )( ), ( ), ( ) 0,0,0E t I t R t →  as .t →   Substituting 0E I R= = = into the first equation of (1) gives 

( )
( )

1 rt

h

S t
e −


→

− +

 as , 1,WHt R→    so the DFE point is globally asymptotically stable for 

1WHR  . 

 

7. EXISTENCE AND STABILITY OF THE DISEASE ENDEMIC EQUILIBRIUM 

To establish the existence of the disease endemic equilibrium of the model (1), let 

( )1 , , ,S E I R    =  

Represents any arbitrary disease endemic equilibrium of the model (1). The equations in (1) are 

solved in terms of the force of infection at steady state to give 

( )( )

( )( ) ( )( )( )( )

( )

( )( )

( )( ) ( )( )( )( )

( )( )

( )( ) ( )( )( )( ) ( )

( )

1

1

1

h h

h h

h h

h

S
v v

E
v v

I
v v

R

       

              

     

              

      

                

  





  





  





  



− + + +  + 
=  

+ − + − + + + + +  

− + + + 
=

+ − + − + + + + +

 − + + + 
=  

+ ++ − + − + + + + +  

− + +
=

( )

( )( ) ( )( )( )( ) ( )( )1

h v

v v

   

                  



  

 + 
 

+ + ++ − + − + + + + +  

 

Note that the disease force of infection at steady state,   is expressed as  

 ( )1 2 1 rtI I e        −= + + −  

Substituting the expressions above gives  
0 0 0,a b + = where 

( )( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )

( )( )( )( )

0

0 2

2

1

1WH

a v v

b

R

           

           

         

       

= + − + − + + + +

=  + − + + + +

= +  − + + +  

= + + + + −

   (13) 

The coefficient 0a  is always positive, the coefficient 0b  is positive (negative) if 
WHR  is greater 

than (less than) unity. Furthermore, there is no negative endemic equilibrium if 
0 0.b   If 

0 0,b 

then there is a unique endemic equilibrium. This result is summarized below. 
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Lemma 3: The model (1) has a unique positive endemic equilibrium when 0 = =  whenever 

1.WHR   

 

8. LOCAL ASYMPTOTIC STABILITY OF THE DISEASE ENDEMIC EQUILIBRIUM 

The local stability of the disease endemic equilibrium point can be discussed by examining the 

linearized form of the system (1) at the given steady state  𝜉1. This is done by computing the 

Jacobian matrix of the model (1). At the disease endemic equilibrium point, the Jacobian of the 

system (1) is  

( )1

0

0

0 0

0 0

P A

B C
J

D

v E










 
 

− =
 −
 

− 

       (14) 

where 

( ) ( )2 21 , , , , ,A v S B C S D E P               = − − = + = = + + = + = − +  

The characteristic polynomial, associated with the local stability of ( )1J  , is 

4 3 2

4 3 2 1 0 0A A A A A+ + + + = , 

where 

4

3

2

1

0

1A

A E D B P

A BD BE BP C DE DP EP A

A BDE BDP BEP CE CP DEP AE v

A CEP BDEP

 

    



=

= + + −

= + − − + − − −

= − − − + − − −

= −

  (15) 

and i  represents the eigenvalues of the Jacobian. The local stability of the disease endemic 

equilibrium is tied to the roots of (15). The disease endemic equilibrium point is locally 

asymptotically stable when the polynomial in (15) have negative real roots. 

 

9. CONCLUDING REMARKS 

In this paper, we theoretically analyzed the within-human host model for Lassa fever earlier 

proposed by Obasi and Mbah [3] so as to understand the dynamics of Lassa fever transmission at 

the human population level. The model has locally asymptotically stable disease-free equilibrium 
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whenever the associated reproduction number is less than unity. This model will undergo the 

phenomenon of backward bifurcation. The epidemiological implication of this result is that 

bringing down the reproduction number to below unity is not enough to eradicate Lassa fever 

disease within human population. It is also shown that the model has a globally-asymptotically 

stable disease-free equilibrium whenever the associated reproduction number is less than unity. 

The reproduction number, 1WHR  , which is an important parameter in the control of Lassa fever 

infection, has been calculated using the next generation method. We have also shown that the 

endemic equilibrium point exists for 1WHR   and has been noted that this endemic equilibrium is 

unique and locally asymptotically stable based on Lyaponuv Function. However, this work has 

thrown up important parameters (for example  and  ) that could be gathered by the relevant 

government agencies for better understanding of the burden of  Lassa fever disease in the human 

population. The analysis suggests that Lassa fever disease can be eradicated when the basic 

reproduction number is less than unity. We therefore advocate for health policies that will keep 

the basic reproduction number below one, thereby keeping the occurrence of Lasa fever under 

control. 
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