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1. INTRODUCTION 

         The study of locally closed sets was introduced by Bourbaki [1] in 1966 then the authors 

Ganster and Reilly [3] have studied it extensively. A subset A of a topological space X is called 

locally closed if A = U ∩ F, where U is open and F is closed. It is interesting that a locally closed 

set is a generalization of both open sets and closed sets. In 1963 Kelly [5] define a bitopological 

spaces (X, 𝜏1, 𝜏2) with two topologies 𝜏1 and 𝜏2 on X. Raja Rajeswari [8] defined and studied the 

concepts of ultra-locally closed sets in bitopological spaces. In this paper, a new notion of locally 
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closed as (1,2)𝑆𝑃-Locally closed sets in bitopological spaces are defined and study some of their 

properties.  

 

2. PRELIMINARIES 

    Throughout this paper by X, we mean bitopological space (X, 𝜏1, 𝜏2). For a subset A of a 

bitopological space (X, 𝜏1, 𝜏2), then cl(A), int(A) and 𝐴𝑐 denote the closure of A, the interior of A 

and the complement of A in X respectively.              

Definition 2.1. [6] A subset A of a bitopological space X is called a 

   (i)  (1,2)semi-open if A ⊆  𝜏1𝜏2Cl(𝜏1𝐼𝑛𝑡(𝐴)). 

   (ii)  (1,2)pre-open if A ⊆  𝜏1Int(𝜏1𝜏2𝐶𝑙(𝐴)).     

  (iii)  (1,2)regular-open if A = 𝜏1Int(𝜏1𝜏2𝐶𝑙(𝐴)).   

The collection of all (1,2)semi-open, (1,2)pre-open and (1,2)regular-open sets are denoted 

by (1,2)SO(X), (1,2)PO(X) and (1,2)RO(X) respectively. 

Definition 2.2. [6] A subset A of a bitopological space X is called a  

      (i)  (1,2)α-closed if 𝜏1Cl(𝜏1𝜏2Int(𝜏1Cl(A))) ⊆ A. 

     (ii)  (1,2)semi-closed if  𝜏1𝜏2Int(𝜏1Cl(A)) ⊆ A.    

    (iii)  (1,2)pre-closed if 𝜏1Cl(𝜏1𝜏2Int(A)) ⊆ A. 

    (iv)  (1,2)regular-closed if A = 𝜏1Cl(𝜏1𝜏2Int(A)). 

The set of all (1,2)α-closed, (1,2)semi-closed, (1,2)pre-closed and (1,2)regular-closed sets 

are defined in the usual sense and denoted as (1,2)αCL(X), (1,2)SCL(X), (1,2)PCL(X) and 

(1,2)RCL(X) respectively.  

Also, for any subset A of X, the (1,2)α-closure, (1,2)semi-closure, (1,2)pre-closure and 

(1,2)regular-closure of A is denoted as (1,2)αCl(A), (1,2)SCl(A), (1,2)PCl(A) and (1,2)RCl(A) 

respectively. 

Definition 2.3. [4] A (1,2) semi-open set A of a bitopological space X is called (1,2)𝑆𝑃-open set 

if for each x ∈ A, there exists a (1,2) pre-closed set F such that x ∈ F ⊆ A. 

Definition 2.4. [2] A subset A of X is called a (1,2)𝑆𝑃-generalized-closed (briefly (1,2)𝑆𝑃-closed) 

set if (1,2)𝑆𝑃Cl(A) ⊆ U whenever A ⊆ U and U ∈ (1,2)𝑆𝑃O(X). The family of all (1,2)𝑆𝑃g-

closed sets is denoted by (1,2)𝑆𝑃GCL(X). 
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Definition 2.5. [2] A subset A of a bitopological space X is called a (1,2)𝑆𝑃-generalized-open 

(briefly (1,2)𝑆𝑃g-open) set if 𝐴𝑐 is (1,2)𝑆𝑃g-closed. The set of all (1,2)𝑆𝑃g-open set is denoted by 

(1,2)𝑆𝑃GO(X). 

Remark 2.6. [4] Any intersection of (1,2)𝑆𝑃-closed sets of a bitopological space X is (1,2)𝑆𝑃-

closed. 

Theorem 2.7. [2] Every (1,2)𝑆𝑃-closed set is a (1,2)𝑆𝑃g-closed. 

Definition 2.8. [7] A subset A of a space (X, 𝜏) is called generalized-closed (briefly 𝑔-closed), if 

cl(A) ⊆ U whenever A ⊆ U and U is open in (X, 𝜏)  and the complement of a 𝑔-closed set is 

called 𝑔-open. 

 

3. (1,2)𝑺𝒑-LOCALLY CLOSED SETS 

Definition 3.1. A subset A of a bitopological space X is said to be (1,2)𝑆𝑃-locally closed (briefly 

(1,2)𝑆𝑃-LC) if A = C ∩ D, where C is a (1,2)𝑆𝑃-open set and D is a (1,2)𝑆𝑃-closed set in X. The 

family of (1,2)𝑆𝑃-locally closed sets is denoted by (1,2)𝑆𝑃-LC(X). 

Proposition 3.2.  For a bitopological space X, 

(i) a subset A of X is (1,2)𝑆𝑃-locally closed if and only if its complement X  ̶ A is the 

union of a (1,2)𝑆𝑃-closed set and a (1,2)𝑆𝑃-open set in X. 

    (ii)          every (1,2)𝑆𝑃-open (resp. (1,2)𝑆𝑃-closed) subset of X is (1,2)𝑆𝑃-locally closed. 

   (iii)          the complement of (1,2)𝑆𝑃-LC set need not be an (1,2)𝑆𝑃-LC set.  

Proof.  (i) Let A be a subset of a bitopological space X and let A be (1,2)𝑆𝑃-locally closed. Then 

A = C ∩ D where C is (1,2)𝑆𝑃-open set and D is (1,2)𝑆𝑃-closed set in X which implies Cl(A) = 

Cl(C ∩ D) ⊆ Cl(D) = D that implies A ⊆ C ∩ Cl(A) ⊆ C ∩ D = A.  Thus A = C ∩ Cl(A). That is,   

A = C ∩ D. Hence X  ̶  A = 𝐶𝑐 ∪ 𝐷𝑐. Hence, X  ̶  A is the union of a (1,2)𝑆𝑃-closed set and a 

(1,2)𝑆𝑃-open set in X.                          

(ii) Let A be a (1,2)𝑆𝑃-open subset of X. Then A = A ∩ CI(A) ⊆ Int[A ∪ (X – CI(A))] ∩ CI(A) =  

A ∩ CI(A) = A. Therefore A = Int[A ∪ (X – CI(A))] ∩ CI(A). Hence A is (1,2)𝑆𝑃-locally closed. 

(iii) Let A be (1,2)𝑆𝑃-locally closed set. Then A = C ∩ D where C is a (1,2)𝑆𝑃-open set and D is a 

(1,2)𝑆𝑃-closed set in X which implies X – A = (𝐶 ∩ 𝐷)𝑐. That is X – A = (X – D) ∪ (X – C), where 

(X – D) is (1,2)𝑆𝑃-open set and (X – C) is (1,2)𝑆𝑃-closed set in X. Thus (X – A) is not (1,2)𝑆𝑃-

locally closed. Hence, the complement of an (1,2)𝑆𝑃-LC set need not be an (1,2)𝑆𝑃-LC set. 
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Example 3.3. Let X = {a, b, c, d} with two topologies 𝜏1 = {ϕ, X, {a, c}, {a, c, d}},  𝜏2 = {ϕ, X, 

{b}, {b, c}}. Then (1,2)𝑆𝑃O(X) = {ϕ, X, {a, c}, {a, c, d}}. (1,2)𝑆𝑃CL(X) = {X, ϕ, {b, d}, {b}}.  

(1,2)𝑆𝑝-LC(X) = (1,2)𝑆𝑃O(X) ∩ (1,2)𝑆𝑃CL(X) = {X, ϕ, {a, c}, {a, c, d}, {d}, {b, d}, {b}}. Here 

{d} ∈ (1,2)𝑆𝑃-LC(X), but its complement {a, b, c} does not belongs to (1,2)𝑆𝑃-LC(X). Hence the 

complement of an (1,2)𝑆𝑃-LC set need not be an (1,2)𝑆𝑃-LC set. 

Proposition3.4. A subset A of a bitopological space X is (1,2)𝑆𝑃-closed if and only if it is both 

(1,2)𝑆𝑃𝑔-closed and (1,2)𝑆𝑃-locally closed.   

Proof. Let A be a subset of a bitopological space X which is both (1,2)𝑆𝑃𝑔-closed and (1,2)𝑆𝑃-

locally closed. Then A = C ∩ D where C is (1,2)𝑆𝑃-open set and D is (1,2)𝑆𝑃-closed set. Hence  

A ⊆ C and A ⊆ D. As A is (1,2)𝑆𝑃𝑔-closed implies (1,2)𝑆𝑃Cl(A) ⊆ C and as D is (1,2)𝑆𝑃𝑔-

closed implies (1,2)𝑆𝑃Cl(A) ⊆ D. Consequently (1,2)𝑆𝑃Cl(A) ⊆ A. Hence A is (1,2)𝑆𝑃-closed. 

              Also, let A be (1,2)𝑆𝑃 -closed set. They by Theorem 2.7, A is (1,2)𝑆𝑃𝑔-closed set. 

Therefore (1,2)𝑆𝑃CI(A) ⊆ U, whenever A ⊆ U and U is (1,2)𝑆𝑃O(X). Now A ⊆ C implies 

(1,2)𝑆𝑃 Cl(A) ⊆ C and A ⊆ D implies (1,2)𝑆𝑃 Cl(A) ⊆ D that implies (1,2)𝑆𝑃 Cl(A) ⊆ A. 

Therefore, A = C ∩ D where C is (1,2)𝑆𝑃-open and D is (1,2)𝑆𝑃-closed. Hence A is (1,2)𝑆𝑃𝑔-

closed and (1,2)𝑆𝑃-locally closed. 

Theorem 3.5. If X is a bitopological space, then the following are equivalent 

 (i)     A is (1,2)𝑆𝑃-locally closed. 

(ii)     A = C ∩ (1,2)𝑆𝑃CI(A) for some (1,2)𝑆𝑃-open set C. 

      (iii)   [(1,2)𝑆𝑃Cl(A)   ̶  A] is (1,2)𝑆𝑃-closed. 

(iv)   A ∪ [X   ̶  (1,2)𝑆𝑃Cl(A)] is (1,2)𝑆𝑃-open.               

(v)   A ⊆ (1,2)𝑆𝑃Int(A ∪ [X   ̶ (1,2)𝑆𝑃Cl(A)]).              

Proof. (i) => (ii):  Assume that A is (1,2)𝑆𝑃-locally closed. Therefore A = C ∩ D, where C is 

(1,2)𝑆𝑃 -open and D is (1,2)𝑆𝑃 -closed. If A ⊆ D, then (1,2)𝑆𝑃 Cl(A) ⊆ D, that is                            

A ⊆ C ∩ (1,2)𝑆𝑃Cl(A) ⊆ C ∩ D = A. Hence A = C ∩ (1,2)𝑆𝑃Cl(A) for some (1,2)𝑆𝑃-open set C. 

(ii) => (iii): Assume A = C ∩  (1,2)𝑆𝑃 Cl(A) for some (1,2)𝑆𝑃 -open set C. Then                        

[(1,2)𝑆𝑃Cl(A) – A] = 𝐶𝑐 ∩ (1,2)𝑆𝑃Cl(A) = (X – C) ∩ (1,2)𝑆𝑃Cl(A), which is (1,2)𝑆𝑃-closed [by 

Remark 2.6]. 
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(iii) => (iv): [ (1,2)𝑆𝑃 Cl(A)  ̶  𝐴]𝑐  = C ∪  ( (1,2)𝑆𝑃 Cl (𝐴))𝑐  is (1,2)𝑆𝑃 -open. If we take                    

F = [(1,2)𝑆𝑃Cl(A) – A], then X – F = [(1,2)𝑆𝑃Cl(A) –  A]𝑐 = C ∪ [(1,2)𝑆𝑃Cl(A)]𝑐 is (1,2)𝑆𝑃-

open which implies X  ̶  [(1,2)𝑆𝑃Cl(A)  ̶  A] = A ∪ [X  ̶  (1,2)𝑆𝑃Cl(A)] is (1,2)𝑆𝑃-open. 

(iv) => (v):  By assumption, A ∪  [X  ̶  (1,2)𝑆𝑃 Cl(A)] is (1,2)𝑆𝑃 -open. Again A ⊆ A ∪                   

[X  ̶  (1,2)𝑆𝑃 Cl(A)] = (1,2)𝑆𝑃 Int(A ∪  [X  ̶  (1,2)𝑆𝑃 Cl(A)]). Hence A ⊆ (1,2)𝑆𝑃 Int(A ∪                 

[X  ̶  (1,2)𝑆𝑃Cl(A)]).     

 (v) =>  (i): Let A ⊆ (1,2)𝑆𝑃Int(A ∪ [ X  ̶  (1,2)𝑆𝑃Cl(A)]), which implies A = (1,2)𝑆𝑃Int( A ∪        

[ X  ̶  (1,2)𝑆𝑃Cl(A)]) ∩ (1,2)𝑆𝑃Cl(A). Hence A is (1,2)𝑆𝑃-locally closed.   

Definition 3.6. A subset A of a bitopological space X is said to be an (1,2) 𝑆𝑃 -Q-set if 

(1,2)𝑆𝑃Int[(1,2)𝑆𝑃Cl(A)]  = (1,2)𝑆𝑃𝐶𝑙[(1,2)𝑆𝑃𝐼𝑛𝑡(𝑠)]. 

Example 3.7. Follow the Example 3.3, (1,2)𝑆𝑃O(X) = {ϕ, X, {a, c}, {a, c, d}, (1,2)𝑆𝑃𝐶𝑙(𝑋) = 

{X, ϕ, {b, d}, {b}}. Here A = {b}, {d}, {a, c}, {b, d}, {a, b, c}, {a, c, d} are an (1,2)𝑆𝑃-Q-set.  

Theorem3.8. Let X be an (1,2)𝑆𝑃-topology and A be an (1,2)𝑆𝑃-Q-set. If A is an (1,2)𝑆𝑃-locally 

closed set, then 

(i) (1,2)𝑆𝑃𝐼𝑛𝑡(𝐴) is (1,2)𝑆𝑃-closed. 

(ii) (1,2)𝑆𝑃𝐶𝑙(𝐴)is contained in a (1,2)𝑆𝑃-closed set. 

Proof. (i) Let X be an (1,2)𝑆𝑃 -topology and A be an (1,2)𝑆𝑃 -Q-set. Assume that A is an    

(1,2)𝑆𝑃-locally closed. Then A = B ∩ (1,2)𝑆𝑃𝐶𝑙(A), where B is (1,2)𝑆𝑃-open. (1,2)𝑆𝑃Int(A) = 

(1,2)𝑆𝑃 Int(B) ∩ (1,2)𝑆𝑃 Int[(1,2)𝑆𝑃𝐶𝑙(A)] = (1,2)𝑆𝑃 Int(B) ∩ (1,2)𝑆𝑃Cl[(1,2)𝑆𝑃 Int(A)]. Thus 

(1,2)𝑆𝑃Int(A) is (1,2)𝑆𝑃-locally closed. Hence (1,2)𝑆𝑃Int(A) is (1,2)𝑆𝑃-closed. 

 (ii) Let A = B ∩  (1,2)𝑆𝑃 Cl(A). Then (1,2)𝑆𝑃 Cl(A) = (1,2)𝑆𝑃 Cl[B ∩  (1,2)𝑆𝑃 Cl(A)] ⊆ 

(1,2)𝑆𝑃Cl(B) ∩ (1,2)𝑆𝑃Cl(A). By Remark 2.6, (1,2)𝑆𝑃Cl(A) is contained in a (1,2)𝑆𝑃-closed set. 

Proposition 3.9. If A ⊂ B ⊂ X and B is (1,2)𝑆𝑃-locally closed, then there exists an (1,2)𝑆𝑃-

locally closed set C such that A ⊂ C ⊂ B. 

Proof. Let A ⊂ B ⊂ X and B be an (1,2)𝑆𝑃-locally closed. Take B = S ∩ (1,2)𝑆𝑃Cl(B), where S is 

(1,2)𝑆𝑃-open. Now A ⊂ B = S ∩ (1,2)𝑆𝑃Cl(B) which implies A ⊂ S and A ⊂ (1,2)𝑆𝑃Cl(B). 

Hence A ⊆ S ∩ (1,2)𝑆𝑃Cl(A) = C, where C is an (1,2)𝑆𝑃-locally closed set such that  A ⊂ C ⊂ B. 

Definition 3.10. A subset A of X is called (1,2)𝑆𝑃-generelized locally closed (briefly (1,2)𝑆𝑃 −

𝑔𝑙𝑐) if A = U ∩ F, where U is (1,2)𝑆𝑃𝑔-open and F is a (1,2)𝑆𝑃𝑔-closed set of X. The family of 

all (1,2)𝑆𝑃-𝑔𝑙𝑐 sets is denoted as (1,2)𝑆𝑃-GLC(X). 
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Remark 3.11. Every (1,2)𝑆𝑃-open, (1,2)𝑆𝑃-closed and (1,2)𝑆𝑃-LC sets are (1,2)𝑆𝑃g-LC.  But 

the converse is not true and is justified in the following example. 

Example 3.12. In Example 3.3, (1,2)𝑆𝑝-GC(X) = {X, ϕ, {b}, {a, b}, {b, c}, {b, d}, {a, b, c},           

{a, b, d}, {b, c, d}} and (1,2)𝑆𝑃GO(X) = {ϕ, X, {a, c, d}, {c, d}, {a, d}, {a, c}, {d}, {c}, {a}}. 

(1,2)𝑆𝑃-GLC(X) = (1,2)𝑆𝑃-GO(X) ∩ (1,2)𝑆𝑃-GC(X) = {X, ϕ, {b}, {a, b}, {a}, {b, c}, {c},      {b, 

d}, {d}, {a, b, c}, {a, c}, {a, b, d}, {a, d}, {b, c, d}, {c, d}, {a, c, d}}. Here, {a, b, c} ∈ 

(1,2)𝑆𝑃-GLC(X), but {a, b, c} ∉ (1,2)𝑆𝑃LC(X) and also {a, b, c} is neither (1,2)𝑆𝑃O(X) nor 

(1,2)𝑆𝑃CL(X). 
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