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Abstract. In this manuscript, we investigate projective synchronization (PS) between identical chaotic new Hamil-

tonian systems based on Hénon-Heiles Model using parameter identification method (PIM). Initially, Lyapunov’s

theory of stability is used to design the proper adaptive controllers in view of master-slave configuration to achieve

the global asymptotic stability. Also, the proposed technique establishes identification of parameter simultane-

ously via PS scheme. Additionally, numerical simulations are performed using MATLAB software for visualizing

the efficiency and feasibility of the proposed methodology. Furthermore, the discussed approach has numerous

significant applications in encryption and secure communication.
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1. INTRODUCTION

Chaos theory is undoubtedly an important and intriguing field of applied mathematics that

deals with highly complex nonlinear dynamical systems. This theory has played a vital role in

several disciplines, including physics [1], biomedical engineering [2], chemistry [3], ecology
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[4], economics [5], image encryption [6], secure communication [7] and so on. As a result,

chaos synchronization and chaos control have now become the most promising fields for re-

searchers and scientists.

Chaos phenomenon has been a fundamental topic of applied mathematics ever since its intro-

duction in 1963 due to the pioneering work of E.N. Lorenz [8]. He observed the chaotic system

for the first time while examining weather prediction model and also proposed the term ’butter-

fly effect’ which is the sensitive dependency to the initial conditions. Afterwards, Pecora and

carroll [9] firstly in 1990 pronounced the chaos synchronization among chaotic systems using

master-slave configuration. Furthermore, Ott et al. [10] in 1990 introduced a technique known

as OGY method to control chaotic systems.

Synchronization is a procedure to adjust two or more (identical or non-identical) chaotic sys-

tems in a manner that both (all) exhibit the similar behavior owing to pairing to gain stability.

Till now, several synchronization schemes for chaotic systems are introduced such as com-

plete synchronization[11], hybrid synchronization [12], anti-synchronization [13, 14], function

projective synchronization [15], hybrid projective synchronization [16], phase synchronization

[17], projective synchronization [18], modified projective synchronization [19], combination

synchronization [20], compound synchronization [21] etc. Up to now, numerous techniques

like active control [22, 23, 24], adaptive control [16, 25, 20], backstepping design [26], feed-

back control [27], sliding mode control [28, 21], impulsive control [29] etc have been initiated

to achieve chaos control in chaotic systems.

Synchronization among chaotic systems using parameter identification method (PIM) or

adaptive control method was introduced in 1989 by Hubler [30]. In [16, 25, 31, 32, 33, 34, 35,

36, 37, 38], many control techniques are studied for controlling and synchronizing the chaotic/

hyperchaotic systems. Vaidyanathan et al. [39] defined and studied a new chaotic Hamilton-

ian system based on Hénon-Heiles system, describing the nonlinear complex motion of a star

around a galactic centre with the motion restricted to a plane, which was modeled by Hénon

and Heiles [40] in 1964.

Considering the above literature review and discussion, the main objective of this manuscript

is to carry out an investigation of projective synchronization (PS) scheme in a new Hamiltonian
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chaotic systems using PIM. The underlying idea here is to use Lyapunov’s theory of stability to

design proper adaptive controllers to achieve global asymptotic stability.

The remainder of this manuscript is organized as: Sect. 2 comprising of few mathematical

preliminaries having essential notations and terminology to be utilised within the manuscript. In

Sect. 3, basic structured properties of Hamiltonian system to be synchronized, are mentioned.

Sect. 4 investigates the active control method to stabilize the given chaotic system asymptoti-

cally. Sect. 5 deals with the numerical simulations illustrating the effectiveness and feasibility of

the discussed complete synchronization approach using active control method. Finally, Sect. 6

concludes the paper.

2. MATHEMATICAL PRELIMINARIES

Considering the master system and corresponding slave system as:

v̇m = φ1(vm),(1)

v̇s = φ2(vs)+η ,(2)

where vm = (vm1,vm2, . . . ,vmn)
T , vs = (vs1,vs2, . . . ,vsn)

T are state variables of (1) and (2) respec-

tively, φ1,φ2 : Rn→ Rn are nonlinear continuous vector functions and η = (η1,η2, . . . . . . ,ηn) ∈

Rn is the properly constructed controller.

We define the projective synchronization (PS) error as:

lim
t→∞
‖E(t)‖= lim

t→∞
‖vs(t)−Avm(t)‖= 0,(3)

for some matrix A = diag(ξ ,ξ ,ξ , . . . ,ξ ) and ‖ · ‖ represents vector norm.

Remark 1. For ξ = 1, complete synchronization is achieved.

Remark 2. For ξ =−1, anti-synchronization is attained.



CONTROLLING AND SYNCHRONIZATION IN CHAOTIC SYSTEMS 5783

3. MODEL ANALYSIS

Reported by Sundarapandian Vaidyanathan et al. [39], the discussed chaotic system can be

written as: 

v̇m1 = vm2

v̇m2 =−vm1−2vm1vm3 + pv2
m1

v̇m3 = vm4

v̇m4 =−vm3− v2
m1 + v2

m3 +qv4
m3,

(4)

where (vm1,vm2,vm3,vm4)
T ∈R4 is the state vector and p and q are parameters. When p=−1.95

and q = 1.48, the system (4) displays chaos. Also, the Lyapunov exponents of system (4) are

LE1 = 0.0015, LE2 = 0, LE3 = 0, LE1 =−0.0015. Further, Fig. 1(a-d) display the phase graphs

of (4). Moreover, the detailed analytic study and simulation results for system (4) may be found

in [39].
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FIGURE 1. Phase graphs of Hamiltonian chaotic system in (a) vm1− vm4 plane,

(b) vm1− vm3 plane, (c) vm1− vm3− vm4 space, (d) vm4− vm2− vm1 space
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4. STABILITY ANALYSIS

In this section, we study PS scheme for the new chaotic Hamiltonian system to design proper

adaptive controllers using PIM in such a way that each state variable vm1, vm2, vm3 and ym4

approaching to equilibrium points as t tending to infinity.

The system (4) is chosen as master system and corresponding slave system is defined as:

v̇s1 = vs2 +η1

v̇s2 =−vs1−2vs1vs3 + pv2
s1 +η2

v̇s3 = vs4 +η3

v̇s4 =−vs3− v2
s1 + v2

s3 +qv4
s3 +η4,

(5)

where η1, η2, η3 and η4 are adaptive nonlinear controllers to be constructed so that PS scheme

between two identical Hamiltonian chaotic systems will be attained.

State errors are defined as 

E1 = vs1−ξ vm1

E2 = vs2−ξ vm2

E3 = vs3−ξ vm3

E4 = vs4−ξ vm4

(6)

The main goal in this manuscript is to design controllers vi, (i = 1,2,3,4) so that state errors

mentioned in eq. (6) satisfy

lim
t→∞

Ei(t) = 0, for (i = 1,2,3,4).

The resulting error dynamics would be written as:

Ė1 = E2 +η1

Ė2 =−E1−2(vs1vs3−ξ vm1vm3)+ p(v2
s1−ξ v2

m1)+η2

Ė3 = E4 +η3

Ė4 =−E3− (v2
s1−ξ v2

m1)+(v2
s3−ξ v2

m3)+q(v4
s3−ξ v4

m3)+η4.

(7)
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Next, we describe the adaptive controllers by

η1 =−E2−M1E1

η2 = E1 +2(vs1vs3−ξ vm1vm3)− p̂(v2
s1−ξ v2

m1)−M2E2

η3 =−E4−M3E3

η4 = E3 +(v2
s1−ξ v2

m1)− (v2
s3−ξ v2

m3)− q̂(v4
s3−ξ v4

m3)−M4E4,

(8)

where M1 > 0, M2 > 0, M3 > 0, M4 > 0 are gain constants.

By substituting the controllers as defined in eq. (8) in error dynamics eq. (7), one finds that

Ė1 =−M1E1

Ė2 = (p− p̂)(v2
s1−ξ v2

m1)−M2E2

Ė3 =−M3E3

Ė4 = (q− q̂)(v4
s3−ξ v4

m3)−M4E4

(9)

where p̂, q̂ are estimated quantities of unknown parameter p, q respectively.

Defining the parameter estimation error as:

p̃ = p− p̂, q̃ = q− q̂.(10)

Using eq. (10), the error dynamics eq. (9) is written as:

Ė1 =−M1E1

Ė2 = p̃(v2
s1−ξ v2

m1)−M2E2

Ė3 =−M3E3

Ė4 = q̃(v4
s3−ξ v4

m3)−M4E4.

(11)

On differentiating eq. (12), one finds that

˙̃p =− ˙̂p, ˙̃q =− ˙̂q.(12)

Lyapunov function is defined as:

V =
1
2
[E2

1 +E2
2 +E2

3 +E2
4 + p̃2 + q̃2],(13)

which implying that V is positive definite.
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Derivative of V may be written as:

V̇ = E1Ė1 +E2Ė2 +E3Ė3 +E4Ė4− p̃ ˙̂p− q̃ ˙̂q.(14)

Keeping eq. (14) in view, we formulate the parameter estimates laws as:
˙̂p = (v2

s1−ξ v2
m1)E2 +M5 p̃

˙̂q = (v4
s3−ξ v4

m3)E4 +M6q̃,
(15)

where M5 > 0 and M6 > 0 are gain constants.

Theorem 1. The chaotic systems eqs. (4)-(5) are asymptotically projective synchronized for all

initial states (vm1(0),vm2(0),vm3(0),vm4(0)) ∈ R4 by the designed adaptive controller eq. (8)

and the parameter update law eq. (15).

Proof. The Lyapunov functional V as defined in eq. (13) is a positive definite function. By

solving eq. (11), eq. (14) and eq. (15), we have

V̇ =−M1E2
1 −M2E2

2 −M3E2
3 −M4E2

4 −M5 p̃2−M6q̃2

< 0,

confirming that V̇ is negative definite.

Thus, by Lyapunov’s theory of stability [41], we conclude that projective synchronized error

e(t)→ 0 exponentially as t→ ∞ for each initial conditions e(0) ∈ R4. �

5. NUMERICAL SIMULATION AND DISCUSSION

This section presents some simulation experiments to illustrate the efficiency of the pro-

posed PS scheme via PIM. Here, we use the fourth order Runge-Kutta methodology to solve

system of differential equations. The initial states of master(4) and slave systems (5) are

(0.2,0,−0.2,0) and (0.2,0.2,0.2,0) respectively. For scaling matrix A is selected as ξ = 2,

we have achieved complete PS in master(4) and slave (5) systems. The control gains are se-

lected as Ki = 6 for i = 1,2,3,4. Simulation results are displayed in Fig. 2(a-d) which depict

state trajectories of master(4) and slave systems(5) and Fig. 3(a) displays that synchronization

error (E1,E2,E3,E4) = (−0.2,0.2,0.6,0) tends to zero as t tends to infinity. Further, Fig. 3(b)
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displays the estimated values (p̂, q̂) asymptotically with time. Therefore, the investigated PS

scheme among master and slave systems has been attained computationally. In addition, if scal-

ing matrix A is selected as ξ =−5, we have achieved anti-PS scheme in master(4) and slave(5)

systems.The Fig. 4(a-e) shows that anti-PS scheme in systems(4) and (5) is achieved numeri-

cally. Also, Fig. 5(a) shows that synchronization error (E1,E2,E3,E4)= (1.2,0.2,−0.8,0) tends

to zero as t tends to infinity. Moreover, Fig. 5(b) shows the estimated values (p̂, q̂) asymptot-

ically with time. Thus, the investigated PS technique in the sense of both complete and anti

between chaotic master and slave systems has been obtained computationally.
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FIGURE 2. Projective complete synchronization between Hamiltonian chaotic

systems (a) between vm1(t)− vs1(t), (b) between vm2(t)− vs2(t), (c) between

vm3(t)− vs3(t), (d) between vm4(t)− vs4(t)
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FIGURE 3. Dynamics in (a) synchronization error states

(t,E1(t),E2(t),E3(t),E4(t)), (b) Parameter identification
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FIGURE 4. Projective anti-synchronization of Hamiltonian chaotic systems

(a) between vm1(t)− vs1(t), (b) between vm2(t)− vs2(t), (c) between vm3(t)−

vs3(t), (d) between vm4(t)− vs4(t)
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FIGURE 5. Dynamics in (a) synchronization error states

(t,E1(t),E2(t),E3(t),E4(t)), (b) Parameter identification

6. CONCLUSION

In this manuscript, the proposed projective synchronization scheme in identical chaotic new

Hamiltonian systems via parameter identification method has been investigated. By designing

proper controllers based on master-slave configuration and Lyapunov’s theory of stability, the

considered projective synchronization technique is achieved. The efficacy and superiority of

theoretic results are justified in numerical simulations by using MATLAB. Such techniques

would be utilised to control the nonlinear motion of a star around a galactic centre with motion

restricted to a plane. Moreover, the considered scheme is very effective as it has numerous

applications in encryption and secure communication. Furthermore, we understand that our

proposed projective synchronization scheme in identical chaotic new Hamiltonian systems may

be generalized by utilising other control and synchronization techniques.
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