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Abstract. In this paper, we derive recurrence relations for moment, conditional moment generating

functions and product moments of generalized order statistics based on exponentiated family of distribu-

tions. Recurrence relations for moment, conditional moment generating functions and product moments

of ordinary order statistics and ordinary record values are obtained as special cases. These recurrence

relations are also used to characterize this family.
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1. Introduction

A concept of generalized order statistics (gOSs) was introduced by Kamps [10,11].

Ordinary order statistics (oOSs), ordinary record values (oRVs), sequential order statis-

tics, ordering via truncated distributions and censoring schemes are special cases of the

gOSs. Keseling [12] characterized some continuous distributions based on conditional dis-

tributions of gOSs. Ahsanullah [4] characterized the exponential distribution based on

independence of functions of gOSs and presented the estimators of its parameters. Cramer
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and Kamps [8] derived relations for expectations of functions of gOSs within a class of

continuous distributions. Pawlas and Szynal [14] derived recurrence relations for single

and product moments of gOSs from Pareto, generalized Pareto and Burr distributions.

In recent years, a large number of publications have dealt with recurrence relations for

single and product moments of gOSs. Ahmad and Fawzy [3] derived recurrence relations

for moments of gOSs within a class of doubly truncated distributions. Athar and Islam

[7] obtained recurrence relations for single and product moments of gOSs from a general

class of distribution. AL-Hussaini et al. [5] obtained recurrence relations for moment

and conditional moment generating functions of gOSs based on random samples drawn

from a population whose distribution is a member of a doubly truncated class of distri-

butions. Ahmad [2] derived recurrence relations for single and product moments of gOSs

from doubly truncated Burr type XII distribution. Abdul-Moniem [1] obtained recur-

rence relations for moments of lower gOSs form exponentiated Lomax distribution and

its characterization.

Consider the cumulative distribution function (cdf) F (x) as

F (x) = (1− e−λ(x))θ, x ≥ 0, (1)

where λ(x) is a non-negative, continuous, monotone increasing, differentiable function of

x such that λ(x) → 0 as x → 0+ and λ(x) → ∞ as x → ∞ and the parameter θ > 0.

We call this class the exponentiated family of distributions. This family contains many

exponentiated distributions such as exponentiated Weibull, exponentiated exponential,

exponentiated Rayleigh, exponentiated Pareto distributions,...etc.

The probability density function (pdf) corresponding to (1) is given by

f(x) = θ λ
′
(x) e−λ(x) [1− e−λ(x)]θ−1. (2)

Eq. (2) can be rewritten as

F̄ (x) = 1 +
(1− eλ(x))
θ λ′(x)

f(x). (3)
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2. Characterizations Based on Recurrence Relations for Single

Moment Generating Functions of gOSs

Let X1;n;m; k, X2;n;m; k, ..., Xn;n;m; k be n gOSs from the pdf (2), ( m and k are real

numbers, n > 1 and k ≥ 1). The pdf of Xr;n;m; k, 1 ≤ r ≤ n, is given by Kamps [10] as

follows:

fXr,n,m,k(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1f(x)gr−1m (F (x)), x ∈ χ, (4)

where χ is the domain on which fXr,n,m,k(x) is positive,

Cr−1 =
r∏
i=1

γi, γi = k + (n− i)(m+ 1),

and for z ∈ (0, 1),

gm(z) =



[
1−(1−z)m+1

]
m+1

, m 6= -1,

− ln(1− z), m = -1.

(5)

The single moment generating functions (mgf) of gOSs can be obtained, for a ≥ 1, from

(4) as

M
(a)
r;n;m; k(t) = E[etX

(a)
r;n;m; k ] =

Cr−1
(r − 1)!

∫ ∞
0

et x
a

[F̄ (x)]γr−1f(x)gr−1m (F (x)) dx. (6)

Theorem 2.1. Let X be a random variable. Then for integers a such that a ≥ 1, the

following recurrence relation is satisfied iff X has the cdf (1).

M
(a)
r;n;m; k(t)−M

(a)
r−1;n;m; k(t) =

a t

θ γr
E

[
X

(a−1)
r;n;m; k e

tX
(a)
r;n;m; k

λ′(Xr;n;m; k)

(
1− eλ(Xr;n;m; k)

+ eλ(Xr;n;m; k) [1− e−λ(Xr;n;m; k)]1−θ

)]
,m ≥ −1.

(7)

Proof. If X has the cdf (1), then the mgf of the ath power of the rth gOSs, Xa
r;n;m; k , is

given, from (6), as follows

M
(a)
r;n;m; k(t) =

Cr−1
γr(r − 1)!

∫ ∞
0

et x
a

gr−1m (F (x)) d
[
− [F̄ (x)]γr

]
. (8)
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Integrating by parts, we obtain

M
(a)
r;n;m; k(t) =

a tCr−1
γr (r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr gr−1m (F (x))

+
(r − 1)Cr−1
γr (r − 1)!

∫ ∞
0

et x
a

[F̄ (x)]γr−1−1 f(x) gr−2m (F (x)) dx.

(9)

The second term in the right hand side is M
(a)
r−1;n;m; k(t), so we obtain

M
(a)
r;n;m; k(t)−M

(a)
r−1;n;m; k(t) =

a tCr−1
γr (r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr gr−1m (F (x))dx. (10)

By rewriting [F̄ (x)]γr = [F̄ (x)]γr−1 [F̄ (x)], in (10), then making use of (3), we get

M
(a)
r;n;m; k(t)−M

(a)
r−1;n;m; k(t)

=
a tCr−1
γr (r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr−1 gr−1m (F (x))
[
1 +

(1− eλ(x))
θ λ′(x)

f(x)
]
dx

=
a tCr−1

θ γr (r − 1)!

∫ ∞
0

xa−1 et x
a

(1− eλ(x))
λ′(x)

[F̄ (x)]γr−1 gr−1m (F (x)) f(x) dx

+
a tCr−1
γr (r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr−1 gr−1m (F (x)) dx.

(11)

Since,

[
eλ(x) f(x) [1−e−λ(x)]1−θ

θ λ′ (x)
= 1

]
. So, we can rewrite (11) in the form

M
(a)
r;n;m; k(t)−M

(a)
r−1;n;m; k(t)

=
a t

θ γr
E

[
X

(a−1)
r;n;m; k e

tX
(a)
r;n;m; k (1− eλ(Xr;n;m; k))

λ′(xr;n;m; k)

]

+
a tCr−1
γr(r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr−1 gr−1m (F (x))

[
eλ(x) f(x) [1− e−λ(x)]1−θ

θ λ′(x)

]
dx,

or equivalently,

M
(a)
r;n;m; k(t)−M

(a)
r−1;n;m; k(t)

=
a t

θ γr
E

[
X

(a−1)
r;n;m; k e

tX
(a)
r;n;m; k (1− eλ(Xr;n;m; k))

λ′(Xr;n;m; k)

]

+
a tCr−1

γr θ (r − 1)!

∫ ∞
0

[
xa−1 et x

a
eλ(x) [1− e−λ(x)]1−θ

λ′(x)

]
[F̄ (x)]γr−1 gr−1m (F (x)) f(x) dx,
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which can be written as

M
(a)
r;n;m; k(t)−M

(a)
r−1;n;m; k(t)

=
a t

θ γr
E

[
X

(a−1)
r;n;m; k e

tX
(a)
r;n;m; k (1− eλ(Xr;n;m; k))

λ′(Xr;n;m; k)

]

+
a t

θ γr
E

[
X

(a−1)
r;n;m; k e

tX
(a)
r;n;m; k eλ(Xr;n;m; k) [1− e−λ(Xr;n;m; k)]1−θ

λ′(Xr;n;m; k)

]
.

So, we have the result.

Conversely, if the characterizing Condition (7) holds, then from (10) and (11), we have

a tCr−1
γr (r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr gr−1m (F (x)) dx

=
a tCr−1

θ γr (r − 1)!

∫ ∞
0

xa−1 et x
a

(1− eλ(x))
λ′(x)

[F̄d(x)]γr−1 gr−1m (F (x)) f(x) dx

+
a tCr−1
γr (r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr−1 gr−1m (F (x)) dx,

(12)

which can be written as

a tCr−1
γr (r − 1)!

∫ ∞
0

xa−1 et x
a

[F̄ (x)]γr−1 gr−1m (F (x))

[
F̄ (x)−1− f(x) (1− eλ(x))

θ λ′(x)

]
dx = 0. (13)

The extension of Müntz-Szàsz theorem,[Hwang and Lin [9]] can be applied to obtain

F̄ (x) = 1 +
(1− eλ(x))
θ λ′(x)

f(x).

Remark 2.1. By differentiating both sides of Condition (7) with respect to t and then

setting t = 0, we obtain the following recurrence relation for single moment of gOSs

µ
(a)
r;n;m; k − µ

(a)
r−1;n;m; k =

a

θ γr
E

[
X

(a−1)
r;n;m; k

λ′(Xr;n;m; k)

(
1− eλ(Xr;n;m; k)

+ eλ(Xr;n;m; k) [1− e−λ(Xr;n;m; k)]1−θ

)]
, m ≥ −1,

(14)

where µ
(a)
r;n;m; k = E[Xa

r;n;m; k].

If we set θ = 1 in (7) and (14) we get

M
(a)
r;n;m; k(t)−M

(a)
r−1;n;m; k(t) =

a t

γr
E

[
X

(a−1)
r;n;m; k e

tX
(a)
r;n;m; k

λ′(Xr;n;m; k)

]
, m ≥ −1, (15)
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µ
(a)
r;n;m; k − µ

(a)
r−1;n;m; k =

a

γr
E

[
X

(a−1)
r;n;m; k

λ′(Xr;n;m; k)

]
, m ≥ −1. (16)

Eqs. (15) and (16) agree with the results given by AL-Hussaini et al [5].

Remark 2.2. If we put m = 0 and k = 1 in (7) and (14), we obtain the recurrence

relations of oOSs, [γr = n− r + 1 and Xr;n;m; k ≡ Xr;n] in the form

M (a)
r;n(t)−M (a)

r−1;n(t) =
a t

θ (n− r + 1)
E

[
X

(a−1)
r;n etX

(a)
r;n

λ′(Xr;n)

×
(

1− eλ(Xr;n) + eλ(Xr;n) [1− e−λ(Xr;n)]1−θ
)]
,

(17)

µ(a)
r;n−µ

(a)
r−1;n =

a

θ (n− r + 1)
E

[
X

(a−1)
r;n

λ′(Xr;n)

(
1−eλ(Xr;n) + eλ(Xr;n) [1−e−λ(Xr;n)]1−θ

)]
. (18)

Remark 2.3. If we put m = −1 and k = 1 in (7) and (14), oRVs, [γr = k and

Xr;n;m; k ≡ XU(r)] we have

M
(a)
U(r)(t)−M

(a)
U(r−1)(t) =

a t

θ
E

[
X

(a−1)
U(r) etX

(a)
U(r)

λ′(XU(r))

×

(
1− eλ(XU(r)) + eλ(XU(r))

(
1− e−λ(XU(r))

)1−θ)]
,

(19)

µ(a)
r − µ

(a)
r−1 =

a

θ
E

[
X

(a−1)
U(s)

λ′(XU(r))

(
1− eλ(XU(r)) + eλ(XU(r))

(
1− e−λ(XU(r))

)1−θ)]
. (20)

3. Characterizations Based on Recurrence Relations for Condi-

tional Moment Generating Functions of gOSs

The joint density function of the gOSs Xs;n;m; k and Xr;n;m; k , s > r is given by Kamps

[10], as follows

fX(s;n;m; k), X(r;n;m; k)(x, y) =
Cs−1

(r − 1)! (s− r − 1)!

× f(y) [F̄ (y)]m [F̄ (x)]γs−1 f(x) gr−1m (F (y))

× [hm(F (x))− hm(F (y))]s−r−1, x > y,

(21)
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hm(z) =


−(1−z)m+1

m+1
, m 6= -1,

− ln(1− z), m = -1.

(22)

Using (4) and (21), the conditional distribution function ofX(s; n; m; k) givenX(r; n; m; k)

is given by

f
(
X(s; n; m; k)|X(r; n; m; k) = y

)
= B f(x) [F̄ (x)]γs−1 [hm(F (x))− hm(F (y))]s−r−1,

(23)

where

B =
Cs−1 [F̄ (y)]1+m−γr

Cr−1 (s− r − 1)!
. (24)

Theorem 3.1. Let X be a random variable, r, s be two integers such that 1 ≤ r ≤ s ≤ n,

m and k be real numbers such that m ≥ −1, k ≥ 1. Then for integers a such that a ≥ 1,

the following recurrence relation is satisfied iff X has the cdf (1).

MXa
s;n;m; k|Xr;n;m; k

(t|y)−MXa
s−1;n;m; k|Xr;n;m; k

(t|y)

=
a t

θ γs
E

[
X

(a−1)
s;n;m; k e

tX
(a)
s;n;m; k

λ′(Xs;n;m; k)

(
1− eλ(Xs;n;m; k)

+ eλ(Xs;n;m; k) [1− e−λ(Xs;n;m; k)]1−θ

)
|Xr;n;m; k = y

]
.

(25)

Proof. From (23) we get

MXa
s;n;m; k|Xr;n;m; k

(t|y)

= E[etX
(a)
s;n;m; k |Xr;n;m; k = y]

= B

∫ ∞
y

etX
a

[F̄ (x)]γs−1 f(x) [hm(F (x))− hm(F (y))]s−r−1 dx

=
B

γs

∫ ∞
y

etX
a

[hm(F (x))− hm(F (y))]s−r−1 d
[
− [F̄ (x)]γs

]
,

(26)

where B is given by (24).
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Integrating by parts, yields

MXa
s;n;m; k|Xr;n;m; k

(t|y)

=
a tB

γs

∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs [hm(F (x))− hm(F (y))]s−r−1 dx

+
Cs−2 [F̄ (y)]1+m−γr

Cr−1 (s− r − 2)!

∫ ∞
y

et x
a

[F̄ (x)]γs−1−1 f(x) [hm(F (x))− hm(F (y))]s−r−2 dx.

The second term in the right hand side is MXa
s−1;n;m; k|Xr;n;m; k

(t|y), so we obtain

MXa
s;n;m; k|Xr;n;m; k

(t|y)−MXa
s−1;n;m; k|Xr;n;m; k

(t|y)

=
a tB

γs

∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs [hm(F (x))− hm(F (y))]s−r−1dx.
(27)

By rewriting [F̄ (x)]γs = [F̄ (x)]γs−1 [F̄ (x)], in (27), then making use of (3), gives

MXa
s;n;m; k|Xr;n;m; k

(t|y)−MXa
s−1;n;m; k|Xr;n;m; k

(t|y)

=
a tB

γs

∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs−1 [hm(F (x))− hm(F (y))]s−r−1
[
1 +

(1− eλ(x))
θ λ′(x)

f(x)
]
dx

=
a tB

θ γs

∫ ∞
y

xa−1 et x
a

(1− eλ(x))
λ′(x)

f(x) [F̄ (x)]γs−1 [hm(F (x))− hm(F (y))]s−r−1 dx

+
a tB

γs

∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs−1 [hm(F (x))− hm(F (y))]s−r−1 dx.

(28)

Since,

[
eλ(x) f(x) [1−e−λ(x)]1−θ

θ λ′ (x)
= 1

]
. So, we can rewrite (28) in the form

MXa
s;n;m; k|Xr;n;m; k

(t|y)−MXa
s−1;n;m; k|Xr;n;m; k

(t|y)

=
a t

θ γs
E

[
X

(a−1)
s;n;m; k e

tX
(a)
s;n;m; k

(
1− eλ(Xs;n;m; k)

)
λ′(Xs;n;m; k)

|Xr;n;m; k

]

+
a tB

γs

∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs−1 [hm(F (x))− hm(F (x))]s−r−1

×

[
eλ(x) f(x) [1− e−λ(x)]1−θ

θ λ′(x)

]
dx.



1902 M. A. W. MAHMOUD1,∗ AND M. G. M. GHAZAL2

Therefore,

MXa
s;n;m; k|Xr;n;m; k

(t|y)−MXa
s−1;n;m; k|Xr;n;m; k

(t|y)

=
a t

θ γs
E

[
X

(a−1)
s;n;m; k e

tX
(a)
s;n;m; k

(
1− eλ(Xs;n;m; k)

)
λ′(Xs;n;m; k)

|Xr;n;m; k

]

+
a t

θ γs
E

[
X

(a−1)
s;n;m; k e

tX
(a)
s;n;m; k eλ(Xs;n;m; k) [1− e−λ(Xs;n;m; k)]1−θ

λ′(Xs;n;m; k)
|Xr;n;m; k = y

]
.

(29)

So, we have the result.

Conversely, if the characterizing Condition (25), is satisfied, then from (27) and (28),

we have

a tB

γs

∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs [hm(F (x))− hm(F (x))]s−r−1 dx

=
a tB

θ γs

∫ ∞
y

xa−1 et x
a

(1− eλ(x))
λ′(x)

f(x) [F̄ (x)]γs−1 [hm(F (x))− hm(F (x))]s−r−1 dx

+
a tB

γs

∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs−1 [hm(F (x))− hm(F (x))]s−r−1 dx,

which can be written as∫ ∞
y

xa−1 et x
a

[F̄ (x)]γs−1 [hm(F (x))−hm(F (x))]s−r−1

[
F̄ (x)−1− f(x) (1− eλ(x))

θ λ′(x)

]
dx = 0.

Applying the extension of Müntz-Szàsz theorem, we get

F̄ (x) = 1 +
(1− eλ(x))
θ λ′(x)

f(x).

Remark 3.1. By differentiating both sides of Condition (25) with respect to t and then

setting t = 0, we obtain the following recurrence relation for moments of gOSs

E[Xa
s;n;m; k|Xr;n;m; k = y]− E[Xa

s−1;n;m; k|Xr;n;m; k = y]

=
a

γs θ
E

[
X

(a−1)
s;n;m; k

λ′(Xs;n;m; k)

(
1− eλ(Xs;n;m; k) + eλ(Xs;n;m; k)

×
(

1− e−λ(Xs;n;m; k)
)1−θ)

|Xr;n;m; k = y

]
, m ≥ −1.

(30)
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If we set θ = 1 in (25) and (30) we get

MXa
s;n;m; k|Xr;n;m; k

(t|y)−MXa
s−1;n;m; k|Xr;n;m; k

(t|y)

=
a t

γs
E

[
X

(a−1)
s;n;m; k e

tX
(a)
s;n;m; k

λ′(Xs;n;m; k)
|Xr;n;m; k = y

]
, m ≥ −1.

(31)

E[Xa
s;n;m; k|Xr;n;m; k = y]− E[Xa

s−1;n;m; k|Xr;n;m; k = y]

=
a

γs
E

[
X

(a−1)
s;n;m; k

λ′(Xs;n;m; k)
|Xr;n;m; k = y

]
, m ≥ −1.

(32)

Eqs. (31) and (32) coincide with the result, given by AL-Hussaini et al [5].

Remark 3.2. If we put m = 0 and k = 1 in (25) and (30), we obtain the recurrence

relations of oOSs, [γs = n− s+ 1 and Xs;n;m; k ≡ Xs;n] as follows

MXa
s;n|Xr;n(t|y)−MXa

s−1;n|Xr;n(t|y)

=
a t

θ (n− s+ 1)
E

[
X

(a−1)
s;n etX

(a)
s;n

λ′(Xs;n)

(
1− eλ(Xs;n) + eλ(Xs;n) [1− e−λ(Xs;n)]1−θ

)
|Xr;n = y

]
.

(33)

E[Xa
s;n|Xr;n = y]− E[Xa

s−1;n|Xr;n = y]

=
a

θ (n− s+ 1)
λ
′
(Xs;n)

(
1− eλ(Xs;n) + eλ(Xs;n)

(
1− e−λ(Xs;n)

)1−θ)
|Xr;n = y

]
.

(34)

Remark 3.3. If we put m = −1 and k = 1 in (25) and (30), the following relations of

oRVs, [γs = k and Xs;n;m; k ≡ XU(s)] can be deduced

MXa
U(s)
|XU (r)(t|y)−MXa

U(s−1)
|XU (r)(t|y)

=
a t

θ
E

[
X

(a−1)
U(s) etX

(a)
U(s)

λ′(XU(s))

(
1− eλ(XU(s)) + eλ(XU(s)) [1− e−λ(XU(s))]1−θ|XU(r) = y

)]
.

(35)

E[Xa
U(s)|XU(r) = y]− E[Xa

s−1|XU(r) = y]

=
a

θ
E

[
X

(a−1)
U(s)

λ′(XU(s))

(
1− eλ(XU(s)) + eλ(XU(s))

(
1− e−λ(XU(s))

)1−θ)
|XU(r) = y

]
.

(36)

4. Characterizations Based on Recurrence Relations for Product

Moments of gOSs
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Lemma 4.1. Mahmoud and Al-Nagar [13]. For every absolutely continuous function

φ(x, y), integers 0 < r < s ≤ n and real m, k ,k ≥ 1

E
[
φ
(
Xr;n;m; k, Xs;n;m; k

)]
− E

[
φ
(
Xr;n;m; k, Xs−1;n;m; k

)]
=

Cs−2
(r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

∂ φ(x, y)

∂ y
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γsdy dx, x ≥ 0.

(37)

Theorem 4.1. Let X be a random variable with distribution F (x), Then for every contin-

uous function φ(x, y), some integers 0 < r < s < n and real m, k with k ≥ 1, k +m > 0,

the following recurrence relation is satisfied iff X has the cdf (1)

E
[
φ
(
Xr;n;m; k, Xs;n;m; k

)]
− E

[
φ
(
Xr;n;m; k, Xs−1;n;m; k

)]
=

1

θ γs
E
[
ξ
(
Xr;n;m; k, Xs;n;m; k

)]
,

(38)

where

ξ(x, y) =

[
φ
′
(x, y)

λ′(y)

(
1− eλ(y) + eλ(y) [1− e−λ(y)]1−θ

)]
. (39)

Proof. From (37) and (3), we have

E
[
φ
(
Xr;n;m; k, Xs;n;m; k

)]
− E

[
φ
(
Xr;n;m; k, Xs−1;n;m; k

)]
=

Cs−2
(r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

∂ φ(x, y)

∂ y
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1
[
1 +

(1− eλ(y))
θ λ′(y)

f(y)
]
dy dx,

or equivalently,

E
[
φ
(
Xr;n;m; k, Xs;n;m; k

)]
− E

[
φ
(
Xr;n;m; k, Xs−1;n;m; k

)]
=

Cs−2
θ (r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

(∂ φ(x, y)

∂ y

(1− eλ(y))
λ′(y)

)
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1 f(y) dy dx

+
Cs−2

(r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

∂ φ(x, y)

∂ y
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1 dy dx.

(40)
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The right hand side of (40) can be written as

Cs−2
θ (r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

(∂ φ(x, y)

∂ y

(1− eλ(y))
λ′(y)

)
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1 f(y) dy dx

+
Cs−2

(r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

∂ φ(x, y)

∂ y
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1

[
eλ(y) f(y) [1− e−λ(y)]1−θ

θ λ′(y)

]
dy dx.

(41)

Eq. (41), can be written in the following form

1

θ γs

Cs−1
(r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

ξ(x, y) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1f(x) f(y) dy dx,

(42)

where ξ(x, y) is given in (39). We get

1

θ γs
E
[
ξ
(
Xr;n;m; k, Xs;n;m; k

)]
. (43)

Using (39) in (43), the result is proved. Conversely, if the characterizing Condition (38),

m ≥ −1 is satisfied, then from (37) and (40), we get

Cs−2
(r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

∂ φ(x, y)

∂ y
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm((x))]s−r−1 [F̄ (y)]γsdy dx

=
Cs−2

θ (r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

(∂ φ(x, y)

∂ y

(1− eλ(y))
λ′(y)

)
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1 f(y) dy dx

+
Cs−2

(r − 1)! (s− r − 1)!

∫ ∞
0

∫ ∞
x

∂ φ(x, y)

∂ y
f(x) [F̄ (x)]m gr−1m (F (x))

× [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1 dy dx,

(44)

which can be written as∫ ∞
0

∫ ∞
x

∂ φ(x, y)

∂ y
f(x) [F̄ (x)]m gr−1m (F (x)) [hm(F (y))− hm(F (x))]s−r−1 [F̄ (y)]γs−1

×

[
F̄ (y)− 1− f(y) (1− eλ(y))

θ λ′(y)

]
dy dx = 0.
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After simplifying we obtain

F̄ (y) = 1 +
(1− eλ(y))
θ λ′(y)

f(y).

Setting θ = 1 in (38) gives

E
[
φ
(
Xr,n,m,k, Xs,n,m,k

)]
− E

[
φ
(
Xr,n,m,k, Xs−1,n,m,k

)]
=

1

θ γs
E
[
η
(
Xr,n,m,k, Xs,n,m,k

)]
,

(45)

where η(x, y) = φ
′
(x,y)

λ′ (y)
.

Remark 4.1. If we put m = 0 and k = 1 in (38), we obtain the recurrence relation of

oOSs, [γs = n− s+ 1 and Xs;n;m; k ≡ Xs;n] as follows

E
[
φ
(
Xr,n, Xs,n

)]
− E

[
φ
(
Xr,n, Xs−1,n

)]
=

1

θ (n− s+ 1)
E
[
ξ
(
Xr,n, Xs,n

)]
.

(46)

Remark 4.2. If we put m = −1 and k = 1 in (38), we obtain the recurrence relation of

oRVs, [γs = k and Xs;n;m; k ≡ XU(s)] as follows

E
[
φ
(
XU(r), XU(s)

)]
− E

[
φ
(
XU(r), XU(s−1)

)]
=

1

θ
E
[
ξ
(
XU(r), XU(s)

)]
(47)

Remark 4.3. If we choose φ(x, y) = xa yb , a, b ≥ 0, then the relations (38), (46) and

(47) become

µ
(a,b)
r;s;n;m; k − µ

(a,b)
r;s−1;n;m; k =

b

θ γs
E

[
X

(a)
r;n;m; kX

(b−1)
s;n;m; k

λ′(Xs;n;m; k)

(
1− eλ(Xs;n;m; k)

+ eλ(Xs;n;m; k) [1− e−λ(Xs;n;m; k)]1−θ

)]
,m ≥ −1.

(48)

µ(a,b)
r;s;n−µ

(a,b)
r;s−1;n =

b

θ (n− s+ 1)
E

[
X

(a)
r;nX

(b−1)
s;n

λ′(Xs;n)

(
1−eλ(Xs;n) + eλ(Xs;n) [1−e−λ(Xs;n)]1−θ

)]
.

(49)

µ(a,b)
r;s − µ

(a,b)
r;s−1 =

b

θ
E

[
X

(a)
U(r)X

(b−1)
U(s)

λ′(XU(s))

(
1− eλ(XU(s)) + eλ(XU(s)) [1− e−λ(XU(s))]1−θ

)]
. (50)

If θ = 1 in Eq. (49) coincides with the result, given by AL-Hussaini et al [6].
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The following table (1) gives some distributions with proper choice of λ(x) as examples

on Theorems (2.1), (3.1) and (4.1).

Table (1) examples of cdf (1) distributions

Distribution cdf λ(x)

exponentiated linear failure rate [1− e−(a x+ b
2
x2)]θ (a x+ b

2
x2), a, b ≥ 0, x > 0

exponentiated Weibull [1− e−αxβ ]θ αxβ, α, x, β > 0

exponentiated Rayleigh [1− e−αx2 ]θ αx2, x, α > 0

exponentiated exponential [1− e−αx]θ αx, x, α > 0

exponentiated modified Weibull [1− e−αxβ eγ x ]θ αxβ eγ x, x, α > 0, β, γ ≥ 0

exponentiated Gompertz [1− e−αc (ec x−1)]θ α
c

(ec x − 1), x, α > 0, c ≥ 0

exponentiated Burr Type XII [1− (1 + xβ)−α]θ α ln(1 + xβ), x, α, β > 0

exponentiated Lomax [1− (1 + β x)−α]θ α ln(1 + β x) , x, α, β > 0

exponentiated Pareto [1− (1 + x)−α]θ α ln(1 + x), x, α > 0

exponentiated Gamma [1− e−αx (1 + αx)]θ αx− ln(1 + αx), x, α > 0

5. Conclusions

This paper deals with the generalized order statistics based on exponentiated family of

distributions. Recurrence relations for moment, conditional moment generating functions

and product moments are derived. These recurrence relations are used to characterize

this family.
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