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Abstract. In this paper, we introduce the notion of hyponormal operators in soft Hilbert spaces, some properties

of these operators are studied, and in a similar way to [6], a hyponormal soft operator is built from a family of

operators. In addition, some results are obtained for self-adjoint, invertible, unitary, unit equivalent and normal

soft linear operators that relate the properties of these soft operators with a family of operators in certain Hilbert

spaces.
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1. INTRODUCTION

In what follows X will denote any nonempty set (possibly without algebraic structure) P(X)

the set of parts of X and A a nonempty set of parameters.

Definition 1. [2] A soft set over X is a pair (F,A) where F is a mapping given by F : A→P(X).

Definition 2. [4] (Soft linear operator) Let T : SE(X̌)→ SE(Y̌ ) be a operator. Then T is said

to be soft linear if
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(L1) T (x1 + x2) = T (x1)+T (x2) for all x1,x2 ∈̃ X̌ ,

(L2) T (cx) = cT (x), for all soft scalar c and all x ∈̃ X̌ .

Theorem 3. [4] Every soft linear operator can be descomposed into a family of crisp linear

operators. This is, if T : SE(X̌)→ SE(Y̌ ) is a soft linear operator, then the family {Tλ : λ ∈ A}

where Tλ : X → Y is defined by Tλ (ξ ) = T (x)(λ ) for all ξ ∈ X and x ∈̃ X̌ with x(λ ) = ξ , is a

family of linear operators.

Theorem 4. [4] Let {Tλ : λ ∈ A} be a family of crisp linear operators of X to Y . Then the

operador T : SE(X̌)→ SE(Y̌ ) defined for T (x)(λ ) = Tλ (ξ ) with x(λ ) = ξ , λ ∈ A, is soft linear.

Definition 5. [4] Let T : SE(X̌) → SE(Y̌ ) a soft linear operator, where X̌ ,Y̌ are soft and

absolute normed vector spaces. The operator T is said to be bounded if exists M ≥̃ 0 such

that ‖T (x)‖ ≤̃M‖x‖, ∀x ∈̃ X̌ .

Proposition 6. [3] Let Ȟ be a soft Hilbert space and let T : SE(Ȟ)→ SE(Ȟ) be a bounded soft

linear operator and T ∗ the adjoint operator for T. Then T ∗
λ

defined for T ∗
λ
(x(λ )) = (T ∗(x))(λ )

is the adjoint operator of Tλ ,∀λ ∈ A.

Proposition 7. [3] Let Ȟ be a soft Hilbert space and let T : SE(Ȟ)→ SE(Ȟ) be a continuous

soft linear operator. Let {T ∗
λ

: λ ∈ A} be a family of adjoint linear operators of Tλ . Then the

soft linear operator T ∗ defined by T ∗(x)(λ ) = T ∗
λ
(x(λ )),∀λ ∈ A,∀x ∈̃ Ȟ is the adjoint operator

of T.

Definition 8. [3] A continuos soft linear operator T : SE(Ȟ)→ SE(Ȟ) is called self-adjoint soft

linear operator if T ∗ = T.

Definition 9. [1] Let X̌ , Y̌ soft normed and T : SE( ˇ̌X)→ SE(Y̌ ) a soft operator. T is said to

be invertible if exists a bounded soft operator S : SE(Ȟ)→ SE(Ȟ) such that T S(ỹ) = IY̌ for all

ỹ ∈ Y̌ and ST (x̃) = IX̌ for all x̃ ∈ X̌ . We write S = T−1

Definition 10. [5] Let (Ȟ,A) be a soft Hilbert space and T : SE(Ȟ)→ SE(Ȟ) a bounded soft

operator. If T ∗T = T T ∗ is said to be that T es normal soft.

Theorem 11. [3] Suppose that T ∈ B(Ȟ, Ȟ). Then 〈T (x̃), ỹ〉 = 0 for all x̃, ỹ ∈̃ Ȟ If and only if

T = O, the soft zero linear operator.
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2. HYPONORMAL OPERATORS IN SOFT SETS

Next we show a result that allows us to introduce hyponormal operators in soft sets.

Proposition 12. Let (Ȟ,A) be a soft Hilbert space. If T : SE(Ȟ) → SE(Ȟ) is a bounded

operator, then T ∗T −T T ∗ is self-adjoint soft.

Proof. Follow from [3, Theorem 11]. �

Theorem 13. Let T : SE(Ȟ)→ SE(Ȟ) be a soft bounded operator with (T x̃)(λ ) = Tλ (x̃(λ ))

for all λ ∈ A and for all x̃ ∈ SE(Ȟ). If T is invertible, then Tλ is invertible for all λ ∈ A.

Proof. Let T : SE(Ȟ)→ SE(Ȟ) be a invertible soft operator, then exists W : SE(Ȟ)→ SE(Ȟ)

such that TW = WT = IȞ . By Theorem 3 exists a family {Wλ : λ ∈ A} of operators such that

(Wx̃)(λ ) =Wλ (x̃(λ )). Let x̃ ∈ SE(Ȟ) and λ ∈ A.

We make Wx̃ = ỹ, then

(TλWλ )(x̃(λ )) = Tλ (Wλ (x̃(λ ))) = Tλ ((Wx̃)(λ )) = Tλ (ỹ(λ ))

= (T ỹ)(λ ) = (T (Wx̃))(λ ) = (TWx̃)(λ ) = (IȞ x̃)(λ ) = x̃(λ )

Furthermore, if T x̃ = z̃, then

(Wλ Tλ )(x̃(λ )) =Wλ (Tλ (x̃(λ ))) =Wλ ((T x̃)(λ )) =Wλ (z̃(λ )) = (Wz̃)(λ )

= (W (T x̃))(λ ) = (WT x̃)(λ ) = (IȞ x̃)(λ ) = x̃(λ )

So Tλ is invertible for all λ ∈ A. �

Theorem 14. Let {Tλ : λ ∈ A} be a family of invertible linear operators, then a soft invertible

and bounded operator can be determined T : SE(Ȟ)→ SE(Ȟ) such that (T x̃)(λ ) = Tλ (x̃(λ ))

for all λ ∈ A and for all x̃ ∈ SE(Ȟ).

Proof. Suppose that Tλ is invertible for all λ ∈ A, then exists a Wλ such that TλWλ = Iλ and

Wλ Tλ = Iλ . By Theorem 4 exists W : SE(Ȟ)→ SE(Ȟ) such that (W (x̃))(λ ) =Wλ (x̃(λ )).
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We make Wx̃ = ỹ, then

(TWx̃)(λ ) = T (W (x̃))(λ ) = (T ỹ)(λ ) = Tλ (ỹ(λ )) = Tλ ((Wx̃)(λ ))

= Tλ (Wλ (x̃(λ ))) = (TλWλ )(x̃(λ )) = (Iλ x̃)(λ ) = (Ix̃)(λ )

Therefore, if T x̃ = z̃

(WT x̃)(λ ) =W (T x̃)(λ ) = (Wz̃)(λ ) =Wλ (z̃(λ )) =Wλ ((T x̃)(λ ))

=Wλ (Tλ (x̃(λ )) = (Wλ Tλ )(x̃(λ )) = Iλ (x̃(λ )) = (Ix̃)(λ )

So T is invertible. �

Following Das and Samanta [5], a soft bounded linear operator T : SE(Ȟ) → SE(Ȟ) is

said unitary if satisfies the condition T T ∗ = T ∗T = IȞ . In the following result we give a

characterization of soft unitary operators in terms of a family of operators in the classical sense.

Proposition 15. Let T : SE(Ȟ)→ SE(Ȟ) be a soft operator such that (T x̃)(λ ) = Tλ (x̃(λ )). If

T is unitary then Tλ is unitary for all λ ∈ A.

Proof. Let T : SE(Ȟ)→ SE(Ȟ) be a soft unitary operator, then T T ∗= T ∗T = I and by Theorem

3 exists a family {Tλ : λ ∈ A} of operators such that (T x̃)(λ ) = Tλ (x̃(λ )). Let x̃ ∈ SE(Ȟ) and

λ ∈ A. We make T ∗x̃ = ỹ, then

(Tλ T ∗
λ
)(x̃(λ )) = Tλ (T

∗
λ
(x̃(λ )) = Tλ ((T

∗x̃)(λ )) = Tλ (ỹ(λ )) = (T ỹ)(λ )

= (T T ∗x̃)(λ ) = (Ix̃)(λ ) = Iλ (x̃(λ ))

Also, if T x̃ = z̃, then

(T ∗
λ

Tλ )(x̃(λ )) = T ∗
λ
(Tλ (x̃(λ ))) = T ∗

λ
((T x̃)(λ )) = (T ∗

λ
(z̃(λ )) = (T ∗z̃)(λ )

= (T T ∗x̃)(λ ) = (Ix̃)(λ ) = Iλ (x̃(λ ))

Thus Tλ is unitary for all λ ∈ A. �

Proposition 16. Let {Tλ : λ ∈ A} be a family of unitary operators, then a soft unitary operator

can be determined T : SE(Ȟ)→ SE(Ȟ) such that (T x̃)(λ ) = Tλ (x̃(λ )) for all λ ∈ A and for all

x̃ ∈ SE(Ȟ).
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Proof. Suppose that Tλ is unitary for all λ ∈ A. Let x̃ ∈ SE(Ȟ) and λ ∈ A. If T ∗x̃ = ỹ we have

(T T ∗x̃)(λ ) = (T (T ∗x̃))(λ ) = (T ỹ)(λ ) = Tλ (ỹ(λ )) = Tλ ((T
∗x̃)(λ ))

= Tλ (T
∗

λ
(x̃(λ ))) = (Tλ T ∗

λ
)(x̃(λ )) = (Iλ (x̃(λ )) = (Ix̃)(λ )

Also, if T x̃ = z̃

(T ∗T x̃)(λ ) = (T ∗(T x̃))(λ ) = (T ∗z̃)(λ ) = T ∗
λ
(z̃(λ )) = T ∗

λ
((T x̃)(λ ))

= T ∗
λ
(Tλ (x̃(λ ))) = (T ∗

λ
Tλ )(x̃(λ )) = (Iλ (x̃(λ )) = (Ix̃)(λ )

Thus T is soft unitary. �

Next, we introduce a new class of soft linear operators.

Definition 17. Let (Ȟ,A) be a complex soft Hilbert space and S, T : SE(Ȟ)→ SE(Ȟ) bounded

soft linear operator. If there is a unitary soft operator U : SE(Ȟ)→ SE(Ȟ) such that S =UTU∗,

is said to be that S is unitarily equivalent with T.

Proposition 18. Let (Ȟ,A) be a soft Hilbert space and S,T : SE(Ȟ)→ SE(Ȟ) bounded soft

operators such that (Sx̃)(λ ) = Sλ (x̃(λ )), (T x̃)(λ ) = Tλ (x̃(λ )). If S, T are unitarily equivalent,

then Sλ , Tλ are unitarily equivalent for all λ ∈ A.

Proof. Let S, T unitarily equivalent soft operators, then exists a operator U : SE(Ȟ)→ SE(Ȟ)

soft unitary such that S =UTU∗. Then by Proposition 15 there is a family of unitary operators

{Uλ : λ ∈ A} such that (Ux̃)(λ ) =Uλ (x̃(λ )). Let x̃ ∈ SE(Ȟ) and λ ∈ A. If U∗x̃ = ỹ and T ỹ = z̃,

we have

Sλ (x̃(λ )) = (Sx̃)(λ ) = (UTU∗x̃)(λ ) = (U(T ỹ))(λ ) =Uλ (z̃(λ ))

=Uλ ((T ỹ)(λ )) =Uλ (Tλ (ỹ(λ ))) =Uλ (Tλ (U
∗
λ
(x̃(λ ))))

= (Uλ TλU∗
λ
)(x̃(λ ))

Thus Sλ is unitarily equivalent with Tλ for all λ ∈ A. �

Proposition 19. Let (Ȟ,A) a soft Hilbert space and {Tλ : λ ∈ A}, {Sλ : λ ∈ A} two families of

unitarily equivalent linear operators, then two unitarily equivalent soft linear operators S,T :
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SE(Ȟ)→ SE(Ȟ) can be determined such that (Sx̃)(λ ) = Sλ (x̃(λ )), (T x̃)(λ ) = Tλ (x̃(λ )) for

all λ ∈ A and for all x̃ ∈ SE(Ȟ).

Proof. Suppose that Sλ , Tλ are unitarily equivalent, then exists a operator Uλ : H → H unitary

such that Sλ =Uλ TλU∗
λ
. Let x̃ ∈ SE(Ȟ) and λ ∈ A.

Let’s make U∗x̃ = ỹ and T ỹ = z̃.

(Sx̃)(λ ) = (Sλ (x̃(λ )) =Uλ (Tλ (U
∗
λ
(x̃(λ )))) =Uλ (Tλ (ỹ(λ )))

=Uλ ((T ỹ)(λ )) = (Uz̃)(λ ) = (U(T ỹ))(λ ) = (UTU∗x̃)(λ )

Thus S is unitarily equivalent soft with T. �

Theorem 20. Let (Ȟ,A) be a complex soft Hilbert space and T : SE(Ȟ)→ SE(Ȟ) bounded

soft such that (T x̃)(λ ) = Tλ (x̃(λ )) for all x̃ ∈ SE(Ȟ) and all λ ∈ A. If T is soft normal then Tλ

is normal for all λ ∈ A.

Proof. Let T be a normal soft operator, then T T ∗ = T ∗T. Let x̃ ∈ SE(Ȟ) and λ ∈ A. Let’s make

T ∗x̃ = ỹ and T x̃ = z̃, then

(Tλ T ∗
λ
)(x̃(λ )) = Tλ ((T

∗x̃)(λ )) = Tλ (ỹ(λ )) = (T ỹ)(λ ) = (T T ∗x̃)(λ )

= (T ∗T x̃)(λ ) = (T ∗z̃)(λ ) = T ∗
λ
(z̃(λ )) = T ∗

λ
((T x̃)(λ ))

= T ∗
λ
(Tλ (x̃(λ ))) = (T ∗

λ
Tλ )(x̃(λ ))

So Tλ T ∗
λ
= T ∗

λ
Tλ for all λ ∈ A. Thus Tλ is normal for all λ ∈ A. �

Theorem 21. Let A be a set of parameters and (Ȟ,A) be a soft Hilbert space. If {Tλ : λ ∈ A}

is a family of normal linear operators, then the linear operator T : SE(Ȟ)→ SE(Ȟ) defined by

(T x̃)(λ ) = Tλ (x̃(λ )) for all λ ∈ A and for all x̃ ∈ SE(Ȟ) is a normal soft operator.

Proof. Suppose that Tλ T ∗
λ
= T ∗

λ
Tλ for all λ ∈ A. By Theorem 3 exists a family {Tλ : λ ∈ A}

of operators such that (T x̃)(λ ) = Tλ (x̃(λ )). Let x̃ ∈ SE(Ȟ) and λ ∈ A. Let’s take T ∗x̃ = ỹ and

T x̃ = z̃

(T T ∗x̃)(λ ) = (T (T ∗x̃))(λ ) = (T ỹ)(λ ) = Tλ (ỹ(λ )) = Tλ ((T
∗x̃)(λ ))

= T ∗
λ
(Tλ (x̃(λ ))) = T ∗

λ
(T x̃)(λ )) = T ∗

λ
(z̃(λ )) = (T ∗T x̃)(λ )
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Thus T T ∗ = T ∗T. �

Proposition 22. Let (Ȟ,A) be a soft Hilbert space S, T ∈ B(Ȟ) unitarily equivalent soft. If T

is a normal soft operator, then so is S.

Proof. Let S, T : SE(Ȟ)→ SE(Ȟ) unitarily equivalent soft, then exists U : SE(Ȟ)→ SE(Ȟ)

unitary soft such that S =UTU∗, from where

S∗ = (UTU∗)∗ = ((UT )U∗)∗ = (U∗)∗(UT )∗ =U(T ∗U∗) =UT ∗U∗.

then for x̃ ∈ SE(Ȟ) and λ ∈ A we have

SS∗ =(UTU∗)(UT ∗U∗) =UT T ∗U∗ =UT ∗TU∗

=UT ∗ITU∗ = (UT ∗U∗)(UTU∗) = S∗S

Thus S is normal soft. �

Proposition 23. Let (Ȟ,A) be a complex soft Hilbert space and T : SE(Ȟ) → SE(Ȟ)

self-adjoint soft, then 〈T x̃, x̃ 〉(λ ) ∈ R for all x̃ ∈ SE(Ȟ) and for all λ ∈ A.

Proof. Let x̃ ∈ SE(Ȟ) and λ ∈ A. Since T is self-adjoint soft then T = T ∗ and by theorem 3

exists a family {Tλ : λ ∈ A} of operators that (T x̃)(λ ) = Tλ (x̃(λ )). Then

〈T x̃, x̃ 〉(λ ) = 〈 (T x̃)(λ ), x̃(λ ) 〉λ = 〈Tλ (x̃(λ )), x̃(λ ) 〉λ

= 〈 x̃(λ ),Tλ (x̃(λ )) 〉λ since Tλ is self-adjoint ∀λ ∈ A

= 〈Tλ (x̃(λ )), x̃(λ ) 〉λ = 〈 (T x̃)(λ ), x̃(λ ) 〉λ = 〈T x̃, x̃ 〉(λ )

Thus 〈T x̃, x̃ 〉(λ ) ∈ R for all x̃ ∈ SE(Ȟ) and for all λ ∈ A. �

Definition 24. Let (Ȟ,A) be a complex soft Hilbert space and S, T self-adjoint soft. If

〈Sx̃, x̃ 〉(λ )≤ 〈T x̃, x̃ 〉(λ ) for all x̃ ∈ SE(Ȟ), we write S ≤̃T.

Definition 25. Let (Ȟ,A) a complex soft Hilbert space and T : SE(Ȟ)→ SE(Ȟ) self-adjoint

soft. If 〈T x̃, x̃ 〉(λ )≥ 0 for all x̃ ∈ SE(Ȟ) and for all λ ∈ A, we write T ≥̃O, where O is the null

soft operator
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According to [3, Theorem 11], if T : SE(Ȟ)→ SE(Ȟ) is a bounded soft operator, then T ∗T ,

T T ∗ and T +T ∗ and T +T ∗ are self-adjoint soft, this implies that T ∗T −T T ∗ is self-adjoint

soft. This fact, together with the Proposition 23 motivates the following definition.

Definition 26. Let (Ȟ,A) a complex soft Hilbert space and T : SE(Ȟ)→ SE(Ȟ) a bounded soft

operator. If T T ∗ ≤̃T ∗T, T is called operador hyponormal soft.

Lema 27. Let T : SE(Ȟ)→ SE(Ȟ) be a bounded soft operator. T is hyponormal soft If and

only if ‖T ∗x̃‖≤̃‖T x̃‖ for all x̃∈̃Ȟ.

Example 28. Let H = `2 and T : SE(Ȟ)→ SE(Ȟ) a soft operator defined as follows:

T{x̃n}= T (x̃1, x̃2, x̃3, x̃4, ...)

= (x̃2, x̃3 +2x̃1, x̃4 +2x̃2, x̃5 +2x̃3, ...),

For any {x̃n} ∈ `2. clearly T is a bounded soft linear operator.

On the other hand, a calculation shows that T ∗ is given by:

T ∗{x̃n}= T ∗(x̃1, x̃2, x̃3, x̃4, ...)

= (2x̃2, x̃1 +2x̃3, x̃2 +2x̃4, x̃3 +2x̃5, ...)

Finally,

‖T{x̃n}‖2−‖T ∗{x̃n}‖2 = ‖(x̃2, x̃3 +2x̃1, x̃4 +2x̃2, x̃5 +2x̃3, ...)‖2

−‖(2x̃2, x̃1 +2x̃3, x̃2 +2x̃4, x̃3 +2x̃5, ...)‖2

= x̃2
2 +

∞

∑
n=2

(x̃n+1 +2x̃n−1)
2− (4x̃2

2 +
∞

∑
n=2

(x̃n−1 +2x̃n+1)
2)

=−3x̃2
2 +

∞

∑
n=2

[(x̃n+1 +2x̃n−1)
2− (x̃n−1 +2x̃n+1)

2)]

=−3x̃2
2 +

∞

∑
n=2

[−3x̃2
n+1 +3x̃2

n−1]

= 3x̃2
1.

So, [‖T{x̃n}‖(λ )]2 − [‖T ∗{x̃n}‖(λ )]2 ≥ 0. Thus, by the previous lemma we have that T is

hyponormal soft.
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Theorem 29. Let (Ȟ,A) be a complex soft Hilbert space and {Tλ : λ ∈ A} a family of operators

in (Ȟ,A). If T : SE(Ȟ)→ SE(Ȟ) defined by (T x̃)(λ ) = Tλ (x̃(λ )) for all λ ∈ A and all x̃∈̃Ȟ, is

hyponormal soft, then Tλ is hyponormal for all λ ∈ A.

Proof. Let T hyponormal soft, then T T ∗≤̃T ∗T. If T ∗x̃ = ỹ and T x̃ = z̃ we have

〈 (Tλ T ∗
λ
)(x̃(λ )), x̃(λ ) 〉λ = 〈 Tλ ((T

∗x̃)(λ )), x̃(λ ) 〉λ

= 〈 Tλ (ỹ(λ )), x̃(λ ) 〉λ = 〈 (T T ∗x̃)(λ ), x̃(λ ) 〉λ

≤ 〈 (T ∗T x̃)(λ ), x̃(λ ) 〉λ = 〈 (T ∗z̃)(λ ), x̃(λ ) 〉λ

= 〈 T ∗
λ
(z̃(λ )), x̃(λ ) 〉λ = 〈 T ∗

λ
((T x̃)(λ )), x̃(λ ) 〉λ

= 〈 (T ∗
λ

Tλ )(x̃(λ )), x̃(λ ) 〉λ .

Thus Tλ is hyponormal for all λ ∈ A. �

Theorem 30. Let (Ȟ,A) be a complex soft Hilbert space and {Tλ : λ ∈ A} a family of

hyponormal operators, then we can determine an operator T : SE(Ȟ)→ SE(Ȟ) hyponormal

bounded soft linear operator.

Proof. Let Tλ hyponormal, then Tλ T ∗
λ
≤ T ∗

λ
Tλ for all λ ∈ A. By Theorem 4 exists T : SE(Ȟ)→

SE(Ȟ) such that (T (x̃))(λ ) = Tλ (x̃(λ )). Let λ ∈ A and x̃ ∈ SE(Ȟ). If T ∗x̃ = ỹ and T x̃ = z̃ then

〈 (T T ∗x̃), x̃ 〉(λ ) = 〈 (T (T ∗x̃))(λ ), x̃(λ ) 〉λ = 〈 (T ỹ)(λ ), x̃(λ ) 〉λ

= 〈Tλ (ỹ(λ )), x̃(λ ) 〉λ = 〈Tλ ((T
∗x̃)(λ )), x̃(λ ) 〉λ

= 〈 (Tλ T ∗
λ
)(x̃(λ )), x̃(λ ) 〉λ ≤ 〈 (T ∗λ Tλ )(x̃(λ )), x̃(λ ) 〉λ

= 〈T ∗
λ
((T x̃)(λ )), x̃(λ ) 〉λ = 〈 (T ∗z̃)(λ ), x̃(λ ) 〉λ

= 〈 (T ∗(T x̃))(λ ), x̃(λ ) 〉λ = 〈 (T ∗T x̃), x̃ 〉(λ )

So, T T ∗ ≤̃ T ∗T. Thus T is hyponormal soft. �

Theorem 31. Let (Ȟ,A) a complex soft Hilbert space and S, T : SE(Ȟ)→ SE(Ȟ) bounded soft

operators. If T is hyponormal soft and S is unitarily equivalent soft with T, then S is hyponormal

soft.
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Proof. Exists U : SE(Ȟ)→ SE(Ȟ) unitary soft such that S = UTU∗ and exist {Tλ : λ ∈ A},

{Sλ : λ ∈ A} and {Uλ : λ ∈ A} families of operators such that (T x̃)(λ ) = Tλ (x̃(λ )), (Sx̃)(λ ) =

Sλ (x̃(λ )) and (Ux̃)(λ ) =Uλ (x̃(λ )) for all λ ∈ A and for all x̃ ∈ SE(Ȟ)

Now if x̃ ∈ SE(Ȟ) and λ ∈ A we have

〈 (SS∗x̃), x̃ 〉(λ ) = 〈 ((UTU∗)(UT ∗U∗)x̃), x̃ 〉(λ )

= 〈 (UT T ∗U∗x̃), x̃ 〉(λ ) = 〈 (T T ∗)(U∗x̃),U∗x̃ 〉(λ )

≤ 〈 (T ∗T )(U∗x̃),U∗x̃ 〉(λ ) = 〈 (UT ∗TU∗x̃), x̃ 〉(λ )

= 〈 (UT ∗U∗UTU∗x̃), x̃ 〉(λ ) = 〈 (S∗Sx̃), x̃ 〉(λ )

So, SS∗≤̃S∗S. Thus S is hyponormal soft. �

Corollary 32. Let (Ȟ,A) a complex soft Hilbert space, T ∈ B(Ȟ). If T and T ∗ are hyponormal

soft, then T is normal soft.

Proof. Let T and T ∗ hyponormal soft, then T T ∗≤̃T ∗T and T ∗(T ∗)∗≤̃(T ∗)∗T ∗, which

implies that T ∗T ≤̃T T ∗. Then to x̃ ∈ SE(Ȟ) it is true that 〈T T ∗x̃, x̃〉(λ ) ≤ 〈T ∗T x̃, x̃〉(λ )

and 〈T ∗T x̃, x̃〉(λ ) ≤ 〈T T ∗x̃, x̃〉(λ ), then 〈T T ∗x̃, x̃〉(λ ) − 〈T ∗T x̃, x̃〉(λ ) ≤ 0 and

〈T ∗T x̃, x̃〉(λ )−〈T T ∗x̃, x̃〉(λ )≤ 0 so 〈(T T ∗−T ∗T )x̃, x̃〉(λ )≤ 0 and 〈(T ∗T x̃−T T ∗)x̃, x̃〉(λ )≤ 0

here 〈(−1)(T ∗T − T T ∗)x̃, x̃〉(λ ) ≤ 0 and 〈(T ∗T x̃ − T T ∗)x̃, x̃〉(λ ) ≤ 0 so (−1)〈(T ∗T −

T T ∗)x̃, x̃〉(λ ) ≤ 0 and 〈(T ∗T x̃ − T T ∗)x̃, x̃〉(λ ) ≤ 0 then 〈(T ∗T − T T ∗)x̃, x̃〉(λ ) ≥ 0 and

〈(T ∗T x̃−T T ∗)x̃, x̃〉(λ )≤ 0 then 〈(T ∗T −T T ∗)x̃, x̃〉(λ ) = 0, thus by Theorem 11 we have that

T ∗T −T T ∗ = O, which implies that T ∗T = T T ∗. Thus T is normal soft. �

Proposition 33. Let (Ȟ,A) be a complex soft Hilbert space and S, T : SE(Ȟ) → SE(Ȟ)

bounded soft linear operators. If S and T commute, then Sλ , Tλ commute for each λ ∈ A.

Proof. Suppose that ST = T S. Let x̃ ∈ SE(H̃) and λ ∈ A. If T x̃ = ỹ and Sx̃ = w̃, then

(Sλ Tλ )(x̃(λ )) = Sλ ((T x̃)(λ )) = (Sỹ)(λ ) = (ST x̃)(λ ) = (T Sx̃)(λ )

= (T w̃)(λ ) = Tλ (w̃(λ )) = Tλ ((Sx̃)(λ )) = Tλ (Sλ (x̃(λ )))

= (Tλ Sλ )(x̃(λ ))
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So Sλ Tλ = Tλ Sλ . Thus, Sλ and Tλ conmute. �

Proposition 34. Let (Ȟ,A) be a complex soft Hilbert space, S, T : SE(Ȟ) → SE(Ȟ) two

bounded soft linear operators such that (Sx̃)(λ ) = Sλ (x̃(λ )) and (T x̃)(λ ) = Tλ (x̃(λ )) for each

λ ∈ A and all x̃ ∈ SE(Ȟ). Si Sλ , Tλ conmute for each λ ∈ A, then S and T conmute.

Proof. Suppose that Sλ and Tλ commute for all λ ∈ A. Let x̃ ∈ SE(H̃) and λ ∈ A. we make

T x̃ = ỹ and Sx̃ = z̃ we have

(ST x̃)(λ ) = (S(T x̃))(λ ) = Sλ (ỹ(λ )) = Sλ ((T x̃)(λ )) = Sλ (Tλ (x̃(λ )))

= (Sλ Tλ )(x̃(λ )) = (Tλ Sλ )(x̃(λ )) = Tλ ((Sx̃)(λ ))

= Tλ (z̃(λ )) = (T z̃)(λ ) = T ((Sx̃)(λ )) = (T Sx̃)(λ )

So, ST = T S. Thus S and T commute �

Theorem 35. Let (Ȟ,A) be a complex soft Hilbert space and S, T : SE(Ȟ)→ SE(Ȟ)

hyponormal soft operators. If S and T commute and T ∗S = ST ∗, then ST is hyponormal soft.

Proof. Since S, T ∈ B(Ȟ) are commutative hyponormal soft operators then SS∗ ≤ S∗S, T T ∗ ≤

T ∗T and ST = T S. Si ST ∗ = T ∗S, then (ST ∗)∗ = (T ∗S)∗, where (T ∗)∗S∗ = (S∗)(T ∗)∗, So

T S∗ = S∗T.

Let x̃ ∈ SE(Ȟ), then

〈(ST )(ST )∗x̃, x̃〉(λ ) = 〈ST T ∗S∗x̃, x̃〉(λ ) = 〈T T ∗(S∗x̃),S∗x̃〉(λ )

≤ 〈T ∗T (S∗x̃),S∗x̃〉(λ ) = 〈S∗T x̃,T S∗x̃〉(λ )

= 〈S∗T x̃,S∗T x̃〉(λ ) = 〈SS∗(T x̃),T x̃〉(λ )

≤ 〈S∗S(T x̃),T x̃〉(λ ) = 〈(ST )∗(ST )x̃, x̃〉(λ )

So (ST )(ST )∗≤̃(ST )∗(ST ). Thus ST is hyponormal soft. �

Theorem 36. Let (Ȟ,A) be a complex soft Hilbert space and S, T : SE(Ȟ) → SE(Ȟ)

hyponormal soft operators, such that T S∗ = S∗T, then S+T is hyponormal soft.
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Proof. Since T S∗ = S∗T, then (T S∗)∗ = (S∗T )∗, where (S∗)∗T ∗ = T (S∗)∗, So ST ∗ = T ∗S.

Also since T and S are hyponormal soft, then 〈 T T ∗x̃, x̃ 〉(λ )≤̃〈 T ∗T x̃, x̃ 〉(λ ) and

〈SS∗x̃, x̃ 〉(λ )≤̃〈S∗Sx̃, x̃ 〉(λ ). Let x̃ ∈ SE(Ȟ) and λ ∈ A we have

〈 (S+T )(S+T )∗x̃, x̃ 〉(λ ) = 〈 (SS∗x̃+ST ∗x̃+T S∗x̃+T T ∗x̃), x̃ 〉(λ )

= 〈SS∗x̃, x̃ 〉(λ )+ 〈ST ∗x̃, x̃ 〉(λ )+ 〈T S∗x̃, x̃ 〉(λ ) + 〈T T ∗x̃, x̃) 〉(λ )

≤ 〈S∗Sx̃, x̃ 〉(λ )+ 〈ST ∗x̃, x̃ 〉(λ )+ 〈T S∗x̃, x̃ 〉(λ ) + 〈T ∗T x̃, x̃) 〉(λ )

= 〈 (S∗S+ST ∗+T S∗+T ∗T )x̃, x̃ 〉(λ )

= 〈 ((S∗S+S∗T )+(T ∗S+T ∗T ))x̃, x̃ 〉(λ )

= 〈 (S∗(S+T )+T ∗(S+T ))x̃, x̃ 〉(λ )

= 〈 ((S∗+T ∗)(S+T ))x̃, x̃ 〉(λ )

= 〈 ((S+T )∗(S+T ))x̃, x̃ 〉(λ )

So (S+T )(S+T )∗ ≤̃ (S+T )∗(S+T ). Thus S+T is hyponormal soft. �

3. CONCLUSION

Through a family of operators in Hilbert spaces, a soft linear operator can be constructed.

Furthermore, if the family of linear operators in a set of Hilbert spaces has the property of being

hyponormal, unitarily equivalent or normal then the soft operator associated with the soft set of

said Hilbert spaces inherits these properties.
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