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Abstract. Some authors investigated the classification of the zero divisor graphs of commutative ring of degree

less than or equal 14. In this paper, we extend this classification to the zero divisor graph of commutative ring of

degree less than or equal to 22.
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1. INTRODUCTION

For a commutative ring with identity, we mean (R,M) is a local ring R with maximal ideal M,

Fqi denoted by a field with degree qi. A ring R is called reduced if R has no non zero nilpotent

elements in R. Zn denote the ring of integers modulo n. Clearly for every prime number p, Zp

is a field and Zp ∼= Fp. For every set S we denote | S | the cardinality of S and S∗ = S−{0}.

Let Z(R) be the set of all zero divisor elements in R and let Γ (R) be a simple graph with

V (Γ (R)) = Z(R)∗ and ab ∈ E(Γ (R)) if and only if a.b = 0. This concept was introduced by I.

Beck in 1988 [5] and modified by D.F. Anderson and P.S. Livingston in 1999 [1] they proved

this graph is connected with diameter less than or equal 3 and Γ (R) finite graph if and only if
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R is finite ring or integral domain. Many authors studied this concept see for example [3], [7],

[10] and [11]. It is well known that every ring can be realizable as graph but the converse is not

true in general, In [1] D.F. Anderson and P.S. Livingston classified the graphs with order less

than or equal four. Later some authors classified the graphs with order less than or equal 14 see

[3],[13] and [15]. In this paper we classify graphs to be realizable ring with order between 16

and 22 vertices. In section two we investigate special cases when R is local or reduced ring.

In section three we extend this results for all ring with zero divisor lies between 16 and 22. In

section four we use this results to find all possible cases to be matched by a ring.

2. SPECIAL CASES

Let R be a finite commutative ring with identity. Then R is local ring or R∼=R1×R2× ...×Rn,

where every Ri is local ring i = 1,2, . . .n and n ≥ 2 [4, Lemmae 2]. Let (R,M) be a local ring

with maximal ideal M 6= {0}, then |R|= pm, where p is a prime number and integer m≥ 2 also

|Z(R)|= pt , where t < n. Hence there are three cases for local ring when 16≤ |Z(R)∗| ≤ 22.

Proposition 2.1. Let (R,M) be a local ring with |Z(R)∗|= 16, then R∼= Z289 or Z17[A]/(A2)

Proof. Since |Z(R)∗|= 16, then |M|= |Z(R)|= 17 and |R|= 172 = 289. So by [4, Theorem 2]

R∼= Z289 or Z17[A]/(A2) �

By similar way we can prove the following result.

Proposition 2.2. Let (R,M) be a local ring, if

i. |Z(R)∗|= 18, then R∼= Z361 or Z19[A]/(A2)

ii. |Z(R)∗|= 22, then R∼= Z529 or Z23[A]/(A2)

Clearly if R is a finite reduced ring, then R ∼= Fq1 × Fq2 × ... × Fqn, where each Fqi is a

field, and n is a positive integer such that n≥ 2.

N. Ganesan in [8, Theorem 1] proved that for every commutative ring with identity if |Z(R)|=

t, then R has at most (t +1)2. Also if (R1,M1) and (R2,M2) are finite local rings, then |Z(R1×

R1)
∗| = |R1||M2|+ |R2||M1| − |M1||M2| − 1. Consequently if Ri is a field for i = 1,2, then

|Mi|= 1 and |Z(R1×R2)
∗|= |R1|+ |R2|−2.
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Lemma 2.3. [14] If (R1,M1), (R2,M2) and (R3,M3) are finite local rings, then |Z(R1 ×

R2×R3)
∗| = |R1||R2||M3|+ |Z(R1×R2)|(|R3| − |M3|)− 1, where |Z(R1×R2)| = |R1||M2|+

|R2||M1|− |M1||M2|.

Lemma 2.4. [14] If Fq1 , Fq2 and Fq3 are fields, then |Z(Fq1 × Fq2 × Fq3)
∗| = |Fq1||Fq2|+

|Fq1||Fq3|+ |Fq2 ||Fq3|− |Fq1|− |Fq2|− |Fq3 |.

Lemma 2.5. [4] Suppose R be a ring has t nonzero zero-divisors and Let k be the smallest

positive integer such that, t<2k−2. Then R is a product of k–1 or fewer fields.

Firs, we shall give the following result.

Lemma 2.6. Let R be a ring and R∼= R1×R2×R3×R4 with Ri local for every 1≤ i≤ 4, then

(1) If |Ri| ≥ 3 for some 1≤ i≤ 4, then |Z(R)∗| ≥ 21

(2) If |Ri| ≥ 4 for some 1≤ i≤ 4, then |Z(R)∗| ≥ 30

(3) If |R1| and |R2| ≥ 3, then |Z(R)∗| ≥ 34

(4) |Z(R)∗|= 14 if and only if R∼= F2×F2×F2×F2

Proof. (1) Without loss of generality assume that |R1| ≥ 3. Then there exists a ∈ R−{0,1}.

So, (1,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,0,0), (0,0,1,0),

(0,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1), (0,1,1,1), (a,0,0,0), (a,1,0,0), (a,0,1,0), (a,0,0,1),

(a,1,1,0), (a,1,0,1), (a,0,1,1) are non-zero zero-divisors of Z(R1× R2× R3× R4). Therefore

|Z(R)| ≥ 21

By a similar way we can prove 2, 3, and 4. �

Remark 2.7. From Lemma 2.5, R is a product of at most four fields, when 16 ≤ |Z(R)∗| ≤ 22.

Also Lemma 2.6, R is not product of at four fields, when 16 ≤ |Z(R)∗| ≤ 22 except the case

|Z(R)∗|= 21 and hence R∼= F2×F2×F2×F3.

Now, we shall investigate all reduced rings with 16≤ |Z(R)∗| ≤ 22.

Proposition 2.8. Let R be a reduced ring with |Z(R)∗|= 16, then R∼=F2×F16, F5×F13, F7×F11

or F9×F9
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Proof. If R is a product of three fields and |Fqi| ≥ 3 for all 1 ≤ i ≤ 3, then by Lemma 2.4

|Z(R)∗| ≥ 18 which is a contradiction, so |Fqi| = 2 for some 1 ≤ i ≤ 3, without loss generality

let |Fq1| = 2, then by Lemma 2.4 we have |Fq3 | =
18−|Fq2 |
1+ |Fq2|

. Since |Fq2| is integer, then we

have a contradiction. So R is a product of two fields and hence |Fq1|+ |Fq2| = 18. Therefore

|Fq1| = 2, |Fq2| = 16, |Fq1| = 5, |Fq2| = 13, |Fq1| = 7, |Fq2| = 11 or |Fq1| = 9, |Fq2| = 9. This

gives R∼= F2×F16, F5×F13, F7×F11 or F9×F9. �

Proposition 2.9. Let R be a reduced ring with |Z(R)∗| = 17, then R ∼= F2×F3×F4, F2×F17,

F3×F16 or F8×F11

Proof. If R is a product of three fields, then by Lemma 2.4 17 = |Z(Fq1 × Fq2 × Fq3)
∗| =

|Fq1||Fq2|+ |Fq1||Fq3|+ |Fq2||Fq3|−|Fq1|−|Fq2|−|Fq3|. So that |Fq1 |= 2, |Fq2 |= 3 and |Fq3|= 4,

then we have R∼= F2×F3×F4. Finally if R is a product of two fields, then |Fq1|+ |Fq2|= 19. So

|Fq1|= 2, |Fq2|= 17, |Fq1 |= 3, |Fq2|= 16 or |Fq1 |= 8, |Fq2 |= 11. Thus R∼= F2×F17, F3×F16

or F8×F11. �

Proposition 2.10. Let R be a reduced ring with |Z(R)∗|= 18, then R∼= F3×F3×F3, F3×F17,

F4×F16, F7×F13 or F9×F11.

Proof. If R is a product of three fields, then by Lemma 2.4 18 = |Z(Fq1 × Fq2 × Fq3)
∗| =

|Fq1||Fq2 |+ |Fq1||Fq3|+ |Fq2||Fq3| − |Fq1 | − |Fq2| − |Fq3|. So |Fq1| = |Fq2| = |Fq3| = 3, and we

have R ∼= F3× F3× F3. Finally if R is a product of two fields, then |Fq1|+ |Fq2| = 20. So

|Fq1|= 3, |Fq2 |= 17, |Fq1|= 4, |Fq2|= 16, |Fq1 |= 7, |Fq2|= 13 or |Fq1 |= 9, |Fq2|= 11. Hence

R∼= F3×F17, F4×F16, F7×F13 or F9×F11 �

Proposition 2.11. Let R be a reduced ring with |Z(R)∗| = 19, then R ∼= F2×F19, F4×F17,

F5×F16 or F8×F13

Proof. If R is a product of three fields, then |Z(R)∗| = |Z(Fq1 × Fq2 × Fq3)
∗| = |Fq1||Fq2|+

|Fq1 ||Fq3|+ |Fq2||Fq3| − |Fq1| − |Fq2| − |Fq3| = 19, this leads to contradiction. Therefore R is

a product of two fields and we have |Fq1|+ |Fq2| = 21. So |Fq1| = 2, |Fq2| = 19, |Fq1| = 4,

|Fq2 | = 17, |Fq1| = 5, |Fq2| = 16 or |Fq1 | = 8, |Fq2 | = 13. Therefore R ∼= F2×F19, F4×F17,

F5×F16 or F8×F13. �
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Proposition 2.12. Let R be a reduced ring with |Z(R)∗| = 20, then R ∼= F3×F19, F5×F17,

F9×F13 or F11×F11.

Proof. If R is a product of three fields, then |Z(R)∗| = |Z(Fq1 × Fq2 × Fq3)
∗| = |Fq1 ||Fq2|+

|Fq1||Fq3|+ |Fq2||Fq3|−|Fq1 |−|Fq2|−|Fq3 |= 20, which is a contradiction. So that R is a product

of two fields, and we have |Fq1|+ |Fq2 | = 22. Therefore R ∼= F3×F19, F5×F17, F9×F13 or

F11×F11. �

Proposition 2.13. Let R be a reduced ring with |Z(R)∗| = 21, then R ∼= F2× F2× F2× F3,

F2×F2×F7, F2×F3×F5, F4×F19 or F7×F16.

Proof. If R is a product of four fields, then by Remark 2.7 R ∼= F2×F2×F2×F3. If R is a

product of three fields, then |Z(R)|= |Z(Fq1×Fq2×Fq3)|= |Fq1||Fq2 |+ |Fq1||Fq3|+ |Fq2||Fq3|−

|Fq1|− |Fq2 |− |Fq3|= 21. Then the solutions of this equation are |Fq1|= |Fq2|= 2 and |Fq3|= 7

or |Fq1| = 2, |Fq2| = 3 and |Fq3| = 5. So R ∼= F2×F2×F7 or F2×F3×F5. If R is a product of

two fields, then |Fq1|= |Fq2|= 23, therefore R∼= F4×F19 or F7×F16. �

Proposition 2.14. Let R be a reduced ring with |Z(R)∗|= 22, then R∼= F2×F4×F4, F5×F19,

F7×F17, F8×F16 or F11×F13.

Proof. If R is a product of three fields, then |Z(R)∗| = |Z(Fq1 × Fq2 × Fq3)
∗| =

|Fq1||Fq2| + |Fq1||Fq3| + |Fq2||Fq3| − |Fq1| − |Fq2| − |Fq3| = 22. This implies that |Fq3| =
22+ |Fq1 |+ |Fq2|− |Fq1||Fq2|

|Fq1 |+ |Fq2|−1
, the only solution of this equation is |Fq1|= 2 and |Fq2|= |Fq3|=

4. So R∼= F2×F4×F4. Finally if R is a product of two fields, then |Fq1 |+ |Fq2|= 24. Therefore

R∼= F5×F19, F7×F17, F8×F16 or F11×F13. �

3. GENERAL CASES

In this section we investigate the classification of every commutative ring R with zero divisors

of degree less than or equal to 22 .

Lemma 3.1. Let R∼= R1×R2×R3, where Ri local rings for every 1≤ i≤ 3, then

i. If Ri not field for some 1≤ i1, i2 ≤ 3, then |Z(R)∗| ≥ 27.

ii. If |R1|, |R2| ≥ 3 and R3 not field, then |Z(R)∗| ≥ 27.
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iii. If |R2| ≥ 3 and R3 not field, then |Z(R)∗| ≥ 19

iv. If R3 not field and |R3| 6= 4, then |Z(R)∗| ≥ 26

Proof. Directed by Lemma 2.3 �

By [4, Corollary 1], if |Z(R)|= p, then R is a local or reduced. If |Z(R)∗|= 16, 18 or 22 are

done. So we need to investigate the cases when |Z(R)∗|= 17, 19, 20 or 21.

Next, we shall give the following main results.

Theorem 3.2. Let R be a ring with |Z(R)∗| = 17, then R ∼= F2×F3×F4, F2×F17, F3×F16,

F8×F11, F4×Z9 or F4×Z3[A]/(A2).

Proof. By Proposition 2.9, if R is a reduced ring, then R∼=F2×F3×F4, F2×F17, F3×F16 or F8×

F11. If R is not reduced and product of three local rings we get a contradiction. Also If R1, R2 are

not fields and Ri 6= 4 for some i = 1,2, then 17 = |Z(R)∗| ≥ 21 which is a contradiction. Also if

|R1|= |R2|= 4, then |Z(R)∗|= 11. If R1 is a field and R2 not field, then |R2|+(|R1|−1)|M2|=

18 which implies |R1|= 4, |R2|= 9 and |M2|= 3. Hence R∼= F4×Z9 or F4×Z3[A]/(A2). �

Theorem 3.3. Let R be a ring with |Z(R)∗| = 19, then R ∼= F2×F19, F4×F17, F5×F16, F8×

F13, F2×F3× Z4, F2×F3× Z2[A]/(A2), F2×F4[A]/(A2), F2×F8[A]/(A2,2A), F4× Z8, F4×

F2[A]/(A3), F4×Z4[A]/(2A,A2−2), F4×Z4[A]/(2A,A2), F4×F2[A1,A2]/(A1,A2)
2, F9×Z4 or

F9×F2[A]/(A2)

Proof. If R is a reduced, then by Proposition, 2.11 R∼= F2×F19, F4×F17, F5×F16 or F8×F13.

Let R is not reduced and R∼= R1×R2×R3, where Ri local rings for all 1≤ i≤ 3. If Ri not field

for some 1≤ i1, i2 ≤ 3 or |R1|, |R2| ≥ 3, then 19 = |Z(R)∗| ≥ 27 which is a contradiction. Also

if |R1| 6= 4 or |R1| ≥ 4, then |Z(R)∗| ≥ 25 which is a contradiction. So |R1|= 2 and |R2|= 2 or

3 and |R3|= 4. If |R2|= 2 leads to contradiction. If |R2|= 3, then we have R∼= F2×F3×Z4 or

F2×F3×Z2[A]/(A2). If R∼= R1×R2, since R not reduced, then R1 and R2 not fields or R1 is a

field and R2 not field, If R1 and R2 not fields, then we get a contradiction. If R1 is a field and R2

not field with maximal ideal M2, then we have six cases:

Case1: If |R1| = 2, then |R2| = 16 and |M2| = 4. By [6] there are 21 rings of order 16 = p4,
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the only two rings are maximal ideal of order 4. Hence R2 ∼= F4[A]/(A2) or F8[A]/(A2,2A) and

R∼= F2×F4[A]/(A2) or F2×F8[A]/(A2,2A).

Case2: If |R1|= 3, then |R2|= 20−2|M2|, this is leads to contradiction.

Case3: If |R1|= 4, then |R2|= 20–3|M2|, implies that |R2|= 8 and |M2|= 4. Therefore by [6]

R2∼= Z8, F2[A]/(A3), Z4[A]/(2A,A2−2), Z4[A]/(2A,A2) or F2[A1,A2]/(A1,A2)
2. Thus R∼= F4×

Z8, F4×F2[A]/(A3), F4×Z4[A]/(2A,A2−2), F4×Z4[A]/(2A,A2) or F4×F2[A1,A2]/(A1,A2)
2.

Case4: If |R1|= 5, 7 or 8, then we get a contradiction.

Case5: If |R1| = 9, then |R2| = 20− 8|M2|, implies that |R2| = 4 and |M2| = 2. Therefore

R2 ∼= Z4 or F2[A]/(A2) and R∼= F9×Z4 or F9×F2[A]/(A2).

Case6: If |R1| ≥ 11, then |Z(R)∗| ≥ 23 which is a contradiction. �

Theorem 3.4. Let R be a ring with |Z(R)∗|= 20, then R∼=F3×F19, F5×F17, F9×F13, F11×F11,

F5×Z9 or F5×Z3[A]/(A2),

Proof. If R is a reduced ring, then by Proposition 2.12, R ∼= F3×F19, F5×F17, F9×F13 or

F11×F11. If R is not reduced, since R not local and from Lemmas 2.5 and 2.6 we have R is

a product three or two local rings. If R is a product three local rings, R1×R2×R3 and Ri not

field for some 1≤ i1, i2 ≤ 3, then 20 = |Z(R)∗| ≥ 27 which is a contradiction. So it’s enough to

discuss the case when R1 and R2 are fields and R3 not field. If |R3| 6= 4, then Lemma 3.1 leads a

contradiction. Also if |R3|= 4, then R3 has a maximal ideal M3 such that |M3|= 2. Hence 20 =

|Z(R)∗| = |R1||R2| · 2+(|R1|+ |R2| − 1) · (4− 2)− 1. Which implies that |R1| =
23−2|R2|
2(|R2|+1)

,

which is a contradiction. If R is a product two local rings, R1×R2, then we have two cases:

Case1: R1 and R2 are not fields, then by [14], 20 = |Z(R)∗|= |R1||M2|+ |R2||M1|− |M1||M2|−

1. This lead to a contradiction.

Case2: R1 is a field and R2 is not a field, then |M1| = 1 and so 20 = |Z(R)∗| = |R1||M2|+

|R2| − |M2| − 1. Therefore R1 ∼= F5 and R2 ∼= Z9 or Z3[A]/(A2) and we have R ∼= F5× Z9 or

F5×Z3[A]/(A2). �

Theorem 3.5. Let R be a ring with |Z(R)∗| = 21, then R is reduced. Consequently R ∼= F2×

F2×F2×F3, F2×F2×F7, F2×F3×F5, F4×F19 or F7×F16.
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Proof. If R is a product of three local rings, R1×R2×R3 and Ri not field for some 1≤ i1, i2≤ 3,

then by Lemma 3.1 |Z(R)∗| ≥ 27 that is a contradicts. If R1 and R2 are fields and R3 not field

and |R3| 6= 4, then |R3| ≥ 8 and |M3| ≥ 3 applying Lemma 2.3 we get |Z(R)∗|= |R1||R2||M3|+

(|R1|+ |R2|−1)(|R3|−|M3|)−1≥ 26 which is a contradiction. If |R3|= 4, then by [6] |M3|= 2

and we have 21= |Z(R)∗|= 2 · |R1||R2|+2(|R1|+ |R2|−1)−1, this lead a contradicts. Finally, if

R is a product of two local rings. By a same way of prove Theorem 3.4, we have a contradiction.

Therefore R is reduced and by Proposition 2.13 R∼=F2×F2×F2×F3, F2×F2×F7, F2×F3×F5,

F4×F19 or F7×F16. �

4. CLASSIFICATION OF ZERO DIVISOR GRAPH WITH ORDER BETWEEN 16 AND 22

In this section we classify of all zero divisor graphs with vertices between 16 and 21. Recall

that Kn ( Kn,m res.) denoted a complete graph of order n (complete bipartite graph res.).

vertices Ring type Graph

16 Z289 or Z17[A]/(A2) K16

F2×F16 K1,15

F5×F13 K4,12

F7×F11 K6,10

F9×F9 K8,8

17 F2×F3×F4 Fig. 1

F2×F17 K1,16

F3×F16 K2,15

F8×F11 K7,1o

F4×Z9 or F4×Z3[A]/(A2) Fig. 2

18 Z361 or Z19[A]/(A2) K18

F3×F17 K2,16

F4×F16 K3,15

F7×F13 K6,12

F9×F11 K8,10

F3×F3×F3 Fig. 3
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vertices Ring type Graph

18 Z361 or Z19[A]/(A2) K18

F3×F17 K2,16

F4×F16 K3,15

F7×F13 K6,12

F9×F11 K8,10

F3×F3×F3 Fig. 3

19 F2×F19 K1,18

F4×F17 K3,16

F5×F16 K4,15

F8×F13 K7,12

F2×F3×Z4 or F2×F3×F2[A]/(A2) Fig. 4

F2×F4[A]/(A2) Fig. 5

F2×F8[A]/(A2,2A) Fig. 6

F4×Z8, F4×F2[A]/(A3) or F4×Z4[A]/(2A,A2−2) Fig. 7

F4×Z4[A]/(2A,A2) or F4×F2[A1,A2]/(A1,A2)
2 Fig. 8

F9×Z4 or F9×F2[A]/(A2) Fig. 9

20 F3×F19 K2,18

F5×F17 K4,16

F9×F13 K8,12

F11×F11 K10,10

F5×Z9 or F5×F3[A]/(A)2 Fig. 10

21 F2×F2×F2×F3 Fig. 11

F2×F2×F7 Fig. 12

F2×F3×F5 Fig. 13

F4×F19 K3,18

F7×F16 K6,15



CLASSIFICATION OF ZERO DIVISOR GRAPHS OF COMMUTATIVE RING 6235

vertices Ring type Graph

22 Z529 or F23[A]/(A2) K22

F2×F4×F4 Fig. 14

F5×F19 K4,18

F7×F17 K6,16

F8×F16 K7,15

F11×F13 K10,12

FIGURE 1. Γ (F2×F3×F4)

FIGURE 2. Γ (F4×Z9) or Γ (F4×Z3[A]/(A2))
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FIGURE 3. Γ (F3×F3×F3)

FIGURE 4. Γ (F2×F3×Z4) or Γ (F2×F3×F2[A]/(A2))

FIGURE 5. Γ (F2×F4[A]/(A2))
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FIGURE 6. Γ (F2×F8[A]/(A2,2A))

FIGURE 7. Γ (F4×Z8), Γ (F4×Z2[A]/(A3)) or Γ (F4×Z4[A]/(2A,A2−2))

FIGURE 8. Γ (F4×Z4[A]/(2A,A2)) or Γ (F4×F2[A1,A2]/(A1,A2)
2)
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FIGURE 9. Γ (F9×Z4) or Γ (F9×F2[A]/(A2)

FIGURE 10. Γ (F5×Z9) or Γ (F5×F3[A]/(A2))

FIGURE 11. Γ (F2×F2×F2×F3)
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FIGURE 12. Γ (F2×F2×F7)

FIGURE 13. Γ (F2×F3×F5)
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FIGURE 14. Γ (F2×F4×F4)
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