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Abstract. Finding sparse solutions to under-determined or ill-conditioned equations is a problem that usually

arise in compressive sensing. In this article, a derivative-free iterative method is presented for recovering sparse

signal in compressive sensing by approximating the solution to a convex constrained nonlinear equation. The

proposed method is derived from the modified Polak-Ribiere-Polyak conjugate gradient method for unconstrained

optimization. The global convergence is established under mild assumptions. Preliminary numerical results in

recovering sparse signal are given to show that the proposed method is efficient.

∗Corresponding author

E-mail address: apiwat.khu@pcru.ac.th

Received May 28, 2021
6045



6046 A. KAMBHEERA, S.B. ABDULLAHI, A.H. IBRAHIM, A.B. ABUBAKAR

Keywords: compressive sensing; nonlinear equations; derivative-free method; conjugate gradient method; projec-

tion method; global convergence.

2010 AMS Subject Classification: 65L09, 65K05, 90C30.

1. INTRODUCTION

The task of signal recovery is to recover a high quality signal from its degraded measurement,

which is known to be an ill-posed inverse problem. The under-determined problem needs to be

limited by successful priors for ensuring appropriate solutions. The mathematical formulation

of signal recovery can be generally modeled as:

(1) b = Nv+ k,

where b∈Rm is representing the observed data, v∈Rn is the unknown image, k is the noise and

N is a linear mapping such that N ∈ Rm×n(m < n). In order to address problem (1), one of the

tools usually employed is the `1-regularization. The restoration is obtained by approximating

the following unconstrained optimization

(2) min
v

1
2
‖Nv−b‖2

2 +µ‖v‖1,

where µ is a positive regularization parameter and ‖ · ‖1 is the `1-regularization term.

Several numerical methods have been developed in recent years for finding solution to model

(2), among which iterative shrinkage thresholding (IST) [1], fast iterative shrinkage thresh-

olding algorithm (FISTA) [2] are one of the most common ones widely known due to their

simplicity and efficiency.

Gradient methods are also common methods to solve the model (2). For instance, Figueiredo

[3] proposed a gradient based projection algorithm to solve (2). Motivated by the work in

[3], Xiao and Xhu [4, 5] derived an approximate equivalence of (2) as a nonlinear monotone

operator equation. Referring to [6], we briefly present a review on the reformulation procedure

of (2) into a convex quadrtic program problem.

Let v be a vector in the Euclidean space Rn. The vector v can be rewritten as

v = α−β , α ≥ 0, β ≥ 0,
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where α ∈ Rn, β ∈ Rn and αi = (vi)+, βi = (−vi)+ for all i ∈ n with (·)+ = max{0, ·}. Sub-

sequently, the `1-norm of a vector can be represented as ‖v‖1 = eT
n α + eT

n β , where en is an

n-dimensional vector with all elements one. Hence the `1-norm problem (2) was transformed

into

(3) min
α,β

1
2
‖b−N(α−β )‖2 +µeT

n α +µeT
n β , such that α ≥ 0, β ≥ 0.

From [6], it also can be easily rewritten as the quadratic program problem with box con-

straints

(4) min
1
2

uT Ju+ cT u, such that u≥ 0,

where q =

α

β

 , y = NT b, c = µe2n+

−y

y

 , and J=

 NT N −NT N

−NT N NT N

 .
It can be observed that J is a semi-definite positive matrix. Hence, (4) is a convex quadratic

program problem, and it is equivalent to the following nonlinear convex constrained equation

(5) χ(q) = min{q, Jq+ c}= 0, such that q ∈D ,

where D = R2n
+ is a convex set.

In recent years, numerous authors (see, e.g.,[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]) have proposed several algorithms based on the

conjugate gradient methods to solve the convex constraint problem (5). Since solving (5) is

equivalent to solving the `1-regularization problem (2), in this paper, we continue study on it-

erative algorithms based on conjugate gradient methods and extend our new method to solve

the `1-regularization problem (2). In the next section, we will propose a derivative-free itera-

tive method for solving the `1- regularization problem (2). The proposed method is inspired

by the excellent numerical success of the NPRP method proposed in [31] for solving uncon-

strained optimization problem. Our proposed method does not require to compute gradient at

each iteration, neither does it need to solve a linear equations using the Jacobian matrix or an

approximation of it in per-iteration as in the case of the Newton method, Quasi-Newton and

their variants (see, [32, 33, 34, 35]).
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The outline of the paper is as follows. In the next Section, we recall the definition of the

projection map and introduced our algorithm for solving the `1-regularization problem. In

Section 3, the convergence analysis of the proposed method is analysed. Global convergence

result for the proposed method is obtained. Finally, numerical experiments in recovering sparse

signal in compressing sensing are illustrated.

2. THE METHOD

We begin this section with the definition of the projection map.

Definition 2.1. Let D ⊆ Rn be a nonempty closed convex set. Then for any y ∈ Rn, its

projection onto D , denoted by PD [y], is defined by

PD [y] := argmin{‖y− x‖ : x ∈D}.

The projection operator PD has a well-known property, that is, for any y,x ∈Rn the following

nonexpansive property hold

(6) ‖PD [y]−PD [x]‖ ≤ ‖y− x‖.

Inspired by the proposed conjugate gradient method in [31], we solve (5) by proposing a

derivative-free method whose iterate takes the form

(7) et = qt + εt pt

where εt is the steplength and pt is the search direction computed by

(8) pt :=


−χ(qt) if t = 0,

−χ(qt)+β ENPRP
t pt−1 if t > 0,

where

(9) β
ENPRP
t :=

χ(qt)
T yt−1

wt−1
+η
‖yt−1‖2

w2
t−1

χ(qt)
T pt−1,

where

(10) yt−1 := χ(qt)−χ(qt−1), wt−1 = max{r‖pt−1‖,‖χ(qt−1)‖}, η >
1
4
,r > 0.
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The search direction defined by (8) satisfies the following Lemma.

Lemma 2.2. Let pt be the search direction generated by (8), then pt is a sufficient descent

direction. That is for all t ≥ 0,

(11) χ(qt)
T pt ≤−

(
1− 1

4η

)
‖χ(qt)‖2, η >

1
4
.

Proof. For t = 0, equation (11) obviously holds. For t > 0, we have

χ(qt)
T pt =−‖χ(qt)‖2 +β

ENPRP
k χ(qt)

T pt−1

≤−‖χ(qt)‖2 +

(
χ(qt)

T yt−1

wt−1
+η
‖yt−1‖2

w2
t−1

χ(qt)
T pt−1

)
χ(qt)

T pt−1

≤−‖χ(qt)‖2 +

(
wt−1χ(qt)

T pt−1χ(qt)
T yt−1 +η‖yt−1‖2(χ(qt)

T pt−1)
2

w2
t−1

)

By defining uα = 1√
2η

wt−1χ(qt) and uτ =
√

2ηχ(qt)
T pt−1yt−1, we get

χ(qt)
T pt =−‖χ(qt)‖2 +

(
uT

αuτ − (1/2)‖uτ‖2

‖wt−1‖2

)
,

=−
(

1− 1
4η

)
‖χ(qt)‖2 +

(
uT

αuτ − (1/2)
(
‖uα‖2 +‖uτ‖2)

‖wt−1‖2

)
,

≤−
(

1− 1
4η

)
‖χ(qt)‖2.

where η > 1
4 . Thus, (11) holds. �
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In what follows, we state the iterative procedures/steps of our method.

Algorithm 1
Input. Set an initial point q0 ∈D , the positive constants: Tol > 0, r ∈ (0,1), m ∈ (0,2), a >

0,ρ > 0. Set t = 0.

Step 0. Compute χ(qt). If ‖χ(qt)‖ ≤ Tol, stop. Otherwise, generate the search direction pt

using (8).

Step 1. Determine the step-size εt = max{ari|i≥ 0} such that

(12) χ(qt + εt pt)
T pt ≥ ρεt‖pt‖2.

Step 2. Compute et = qt + εt pt , where et is a trial point.

Step 3. If et ∈D and ‖χ(et)‖= 0, stop. Otherwise, compute the next iterate by

(13) qt+1 = PD

[
qt−m

χ(et)
T (qt− et)

‖χ(et)‖2 χ(et)

]
,

Step 4. Finally we set t = t +1 and return to step 0.

3. CONVERGENCE ANALYSIS

In this section, we obtain the global convergence property of Algorithm 1. We also make the

following assumptions on the mapping χ .

Assumption 1.

(i) The solution set of the constrained nonlinear (5), denoted by D∗, is nonempty.

(ii) The mapping χ is Lipschitz continuous on Rn. That is, there exists a constant L > 0 such

that

(14) ‖χ(x)−χ(y)‖ ≤ L‖x− y‖ ∀x,y ∈ Rn

(iii) For any y ∈D∗ and x ∈ Rn, it holds that

(15) χ(x)T (x− y)≥ 0.

Lemma 3.1. Let {pt} and {qt} be two sequences generated by Algorithm 1. Then, there exists

a step size εt satisfying the line search (12) for all t ≥ 0.
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Proof. For any i≥ 0, suppose (12) does not hold for the iterate t0−th, then we have

−χ(qt0 +ari pt0)
T pt0 < ρari‖pt0‖

2.

Thus, by the continuity of χ and with 0 < r < 1, it follows that by letting i→ ∞, we have

−χ(qt0)
T pt0 ≤ 0,

which contradicts (11). �

Lemma 3.2. Let the sequences {qt} and {et} be generated by the Algorithm 1 method under

Assumption 1, then

εt ≥max

{
a,

rc‖χ(qt)‖2

(L+ρ)‖pt‖2

}
.(16)

Proof. Let ε̂t = εtr−1. Assume εt 6= a, from (12), ε̂t does not satisfy (12). That is,

−χ(qt + ε̂t pt)
T pt < ρε̂t‖pt‖2.

From (14) and (11), it can be obviously seen that

c‖χ(qt)‖2 ≤−χ
T
t pt

= (χ(qt + ε̂t pt)−χ(qt))
T pt−χ(qt + ε̂t pt)

T pt

≤ Lε̂t‖pt‖2 +ρε̂t‖pt‖2

≤ ε̂t(L+ρ)‖pt‖2.

This gives the desired inequality (16). �

Lemma 3.3. Suppose that Assumption 1 holds. Let {qt} and {et} be sequences generated by

the Algorithm 1, then for any solution q∗ contained in the solution set D∗ the inequality

‖qt+1−q∗‖2 ≤ ‖qt−q∗‖2−ρ
2‖qt− et‖4.(17)

holds. In addition, {qt} is bounded and

∞

∑
t=0
‖qt− et‖4 <+∞.(18)
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Proof. First, we begin by using the weakly monotonicity assumption (Assumption 1 (iii)) on

the mapping χ . Thus, for any solution q∗ ∈D∗,

χ(et)
T (qt−q∗)≥ χ(et)

T (qt− et).

The above inequality together with (12) gives

χ(qt + εt pt)
T (qt− et)≥ ρα

2
t ‖pt‖2 ≥ 0.(19)

From (6) and (19), we have the following

‖qt+1−q∗‖2 =

∥∥∥∥PD

[
qt−m

χ(et)
T (qt− et)

‖χ(et)‖2 χ(et)

]
−q∗

∥∥∥∥2

≤
∥∥∥∥[qt−m

χ(et)
T (qt− et)

‖χ(et)‖2 χ(et)

]
−q∗

∥∥∥∥2

= ‖qt−q∗‖2−2m
(

χ(et)
T (qt− et)

‖χ(et)‖2

)
χ(et)

T (qt−q∗)+m2
(

χ(et)
T (qt− et)

‖χ(et)‖

)2

= ‖qt−q∗‖2−m
(

χ(et)
T (qt− et)

‖χ(et)‖2

)
χ(et)

T (qt− et)+m2
(

χ(et)
T (qt− et)

‖χ(et)‖

)2

= ‖qt−q∗‖2−m(2−m)

(
χ(et)

T (qt− et)

‖χ(et)‖

)2

≤ ‖qt−q∗‖2.

Thus, the sequence {‖qt − q∗‖} has a nonincreasing and convergent property. Therefore, this

makes {qt} to be bounded by a positive constant say kb and therefore the following holds.

ρ
2

∞

∑
t=0
‖qt− et‖4 < ‖q0−q∗‖2 <+∞.

�

Remark 3.4. Taking into account of the definition of et and also by (18), it can be deduced that

lim
t→∞

εt‖pt‖= 0.(20)

Theorem 3.5. Suppose Assumption 1 holds. Let {qt} and {et} be sequences generated by

Algorithm 1, then

liminf
t→∞

‖χ(qt)‖= 0.(21)
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Proof. Suppose (21) is not valid, that is, there exist a constant say s > 0 such that s≤ ‖χ(qt)‖,

t ≥ 0. Then this along with (11) implies that

‖pt‖ ≥ cs, ∀t ≥ 0.(22)

From Lemma 3.3, having in view that the sequences {qt} is bounded by a positive constant

say kb. In addition with the continuity of χ , it further implies that {‖χ(qt)‖} is bounded by a

constant say u.

Moreover,from the proposed conjugate gradient parameter (9), by using Lipschitz continuity

and the triangular inequality, we can deduce that

‖β ENPRP
t ‖=

∥∥∥∥∥χ(qt)
T yt−1

wt−1
+η
‖yt−1‖2

w2
t−1

χ(qt)
T pt−1

∥∥∥∥∥
≤ ‖χ(qt)‖‖yt−1‖

r‖pt−1‖
+η

‖yt−1‖2

r2‖pt−1‖2‖χ(qt)‖‖pt−1‖

≤ 2LR‖χ(qt)‖
r‖pt−1‖

+η
(2LR)2

r2‖pt−1‖2‖χ(qt)‖‖pt−1‖

=

(
2LR

r
+

4ηL2R2

r2

)
‖χ(qt)‖
‖pt−1‖

(23)

Let Q =
(

2LR
r + 4ηL2R2

r2

)
, thus, from (8), (10) and (23), it follows that for all t ≥ 1,

‖pt‖= ‖χ(qt)‖+‖β ENPRP
t ‖‖pt−1‖ ≤ Q‖χ(qt)‖ ≤ Qu, γ,

From (16), we have

εt‖pt‖ ≥max

{
a,

rc‖χ(qt)‖2

(L+ρ)‖pt‖2

}
‖pt‖

≥max

{
acs,

rcs2

(L+ρ)γ

}
> 0,

which contradicts (20). Hence (21) is valid. �

4. NUMERICAL RESULT

The numerical section of this article focuses on evaluating the performance efficiency of

the proposed method in recovering sparse signal in compressive sensing. In what follows, the

proposed method is reffered to as ENPRP. All numerical results are obtained by implementing
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the methods in Matlab R2020b on a HP laptop with 8GB RAM and 2.40 GHz processor. ENPRP

method is compared with some other efficient methods such as the conjugate gradient method

for solving convex constrained monotone equations with applications in compressive sensing by

Xiaoh et al. [5] and the projection method for convex constrained monotone nonlinear equations

with applications by Liu et al. [36].

The experiment considered a typical compressive sensing scenario where the main aim is

to reconstruct a length-n sparse signal from m observations. We used the mean squared error

(MSE) to evaluate the quality of the signal restoration. Mathematically, the MSE is computed

using the formula

(24) MSE :=
1
n
‖q̄−q‖,

where q̄ denotes the original signal and q denotes the restored signal. The experiment is imple-

mented with chosen signal size of n = 212 and m = 210 where the original signal contains 26

randomly non-zeros elements. We note that, the matrix N in (1) is generated in MATLAB via

the command randn(m,n) and the noise k (Gaussian noise) is distributed as 10−3

In this paper, the parameters for implementation of our method are specified by η = 0.5, r =

0.5, m = 1, ρ = 0.8, a = 1 and the following merit function

(25) f (q) = µ‖q‖1 +
1
2
‖Nq−b‖2

2

is employed. The methods are implemented using the same initial point and the regularization

parameter µ is selected based on the approach in [36], that is,

µ = 0.005‖NT b‖∞.

A measurement image q0 = NT b is used in starting the experiment and the stopping criterion

‖ ft− ft−1‖
‖ ft−1‖

< 10−5

where ft is the the function value at qt is employed.
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ENPRP (MSE = 8.81e-06, Iter=84, Time=1.95s)

FIGURE 1. Reconstruction of sparse signal. From the top to the bottom is the

original signal (First plot), the measurement (Second plot), and the reconstructed

signals by CGD (Third plot), PCG (Fourth plot) and ENPRP (Fifth plot).
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FIGURE 2. Comparison results of ENPRP, CGD and PCG algorithm. From left

to right: the changed trend of MSE goes along with the number of iterations

or CPU time in seconds, and the changed trend of the objective function values

accompany the number of iterations or CPU time in seconds.

When comparing the efficiency of the methods, different noise samples were selected with

the experiment repeated at least 20 times. We refer readers to Table 1. The figure 1 shows the

distorted signal reconstructed by the various methods. Furthermore, the performance compari-

son of ENPRP method verses CGD and PCG in terms of their convergence behaviour from the

trend of MSE and objective function values along with the number of iterations and CPU time

increasing is illustrated on Figure 2.

From Table 1 and the provided plots, ENPRP method is the top performer as it has success-

fully reconstructed the sparse signal in most cases. In general, ENPRP method reported least

mean squared error and required lesser number of iteration and CPU time in recovering the

sparse signal. On the overall, in this experiment, based on the performance result obtained from

the experiment, we can clearly see that ENPRP method best performed in recovering the sparse

signal compared to CGD and PCG.
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TABLE 1. Result of the Numerical Experiments

CGD PCG ENPRP

SN CPU(s) #ITN MSE CPU(s) #ITN MSE CPU(s) #ITN MSE

1 3.45 130 7.20E-06 2.67 102 1.91E-05 2.23 91 6.27E-06

2 3.13 103 5.51E-06 3.25 107 4.19E-06 2.73 85 4.45E-06

3 3.20 115 9.26E-06 3.75 118 7.88E-06 2.63 89 7.50E-06

4 2.20 88 8.69E-06 3.55 106 6.41E-06 1.91 81 6.68E-06

5 2.84 115 8.19E-06 2.58 101 2.20E-05 2.44 91 8.29E-06

6 2.72 102 1.26E-05 3.38 108 1.19E-05 2.48 90 1.16E-05

7 2.92 96 1.14E-05 3.61 99 1.08E-05 2.78 77 1.14E-05

8 2.78 89 3.09E-05 2.86 99 9.42E-06 2.81 93 9.84E-06

9 2.63 102 7.88E-06 3.05 108 6.91E-06 2.02 81 7.32E-06

10 3.84 120 1.01E-05 3.03 104 9.57E-06 2.27 78 9.63E-06

11 2.38 94 7.15E-06 2.48 104 7.01E-06 2.09 87 7.55E-06

12 2.09 83 9.48E-06 3.08 116 8.81E-06 2.30 86 8.32E-06

13 3.09 113 1.32E-05 3.09 105 8.14E-06 2.06 86 8.21E-06

14 2.86 114 1.01E-05 3.09 113 8.87E-06 2.30 86 8.49E-06

15 3.14 100 1.06E-05 2.78 86 1.06E-05 2.63 89 1.11E-05

16 2.28 78 8.65E-06 2.59 100 5.71E-06 2.11 78 5.46E-06

17 2.95 98 2.01E-05 3.03 97 2.25E-05 2.94 95 1.20E-05

18 3.61 113 1.21E-05 3.50 101 1.11E-05 2.83 89 1.09E-05

19 2.50 94 1.00E-05 2.84 105 9.79E-06 2.00 73 1.00E-05

20 2.05 77 9.14E-06 2.98 108 8.34E-06 2.13 87 7.92E-06

21 2.41 95 7.02E-06 2.50 106 6.68E-06 1.89 80 6.09E-06

22 2.39 84 1.46E-05 2.47 97 1.69E-05 2.11 79 9.82E-06

23 2.31 76 6.64E-06 2.69 97 4.98E-06 2.02 80 5.19E-06

24 2.78 90 9.84E-06 3.17 106 9.01E-06 2.42 78 9.57E-06

25 3.11 99 9.81E-06 3.28 107 9.56E-06 2.67 90 9.90E-06

26 3.38 124 1.04E-05 2.95 110 1.02E-05 2.34 93 9.76E-06

27 2.20 89 8.69E-06 2.66 110 4.84E-06 2.08 81 5.09E-06

28 2.86 95 5.19E-06 3.13 98 8.02E-06 2.64 88 4.45E-06

29 2.59 88 1.33E-05 3.06 102 1.21E-05 2.31 83 1.24E-05

30 2.77 100 7.00E-06 2.59 102 2.08E-05 2.17 85 6.84E-06

31 2.41 90 9.29E-06 2.59 94 1.65E-05 2.59 87 9.07E-06

Average 2.77 99 1.05E-05 2.98 104 1.06E-05 2.35 85 8.42E-06
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