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Abstract. In this paper, we propose the solutions of non-homogeneous fractional integral equations of the form

I2σ

0+ y(t)+a · Iσ

0+y(t)+b · y(t) = tn,

and

I2σ

0+ y(t)+a · Iσ

0+y(t)+b · y(t) = tnet ,

where Iσ

0+ is the Riemann-Liouville fractional integral of order σ = 1/2,σ = 1,n ∈ N∪{0}, t ∈ R+, and a,b are

constants, by using the Laplace transform technique. We obtain the solutions of these equations are in the form of

Mellin-Ross function and in the form of exponential function.
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1. INTRODUCTION

Fractional calculus is the theory of derivatives and integrals of arbitrary complex or real

order. It began in 1695 when G. F. A. L’Hôpital asked G. W. Leibniz to give the meaning of

dny/dxn, where n = 1/2. In predictive answer, G. W. Leibniz expects the beginning of the

area presently is named fractional calculus. Since that time, fractional calculus has interested

many mathematicians such as L. Euler, H. Laurent, P. S. Laplace, J. B. J. Fourier, N. H. Abel,

J. Liouville, and G. F. B. Riemann, etc. It has been shown that fractional calculus is very useful

and active in mathematical areas.

Fractional derivative is a part of fractional calculus which has been of interest in recent years.

It plays a key role in modeling phenomena with different branches of engineering and science

in a real-world problem, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Many mathematical

models of real problems appearing in various fields of engineering and science were established

with the help of fractional calculus such as dielectric polarization, viscoelastic, electromagnetic

waves, and electrode-electrolyte polarization, see [16, 17, 18, 19, 20, 21, 22, 23].

In addition, of course, the theory of fractional integral has been of interest in recent years, see

[24, 25, 26, 27, 28, 29, 30, 31, 32]. In 1812, P. S. Laplace defined a fractional derivative through

an integral. He developed it as a mere mathematical exercise generalizing from a case of integer

order. Later, in 1832, J. Liouville recommended a definition based on the formula for differen-

tiating the exponential function known as the first Liouville definition. Next, he presented the

second definition formula in terms of an integral, called Liouville, to integrate noninteger order.

After that J. Liouville and G. F. B. Riemann developed an approach to noninteger order deriva-

tives in terms of convergent series, conversely to the Riemann-Liouville approach, that was

given an integral. Many researchers focused on developing the theoretical aspects, methods of

solution, and applications of fractional integral equations see [30, 31, 32, 33, 34, 35, 36, 37, 38].

In 2005, T. Morita [6] studied the initial value problem of fractional differential equations by

using the Laplace transform. He obtained the solutions to the fractional differential equations

with Riemann-Liouville fractional derivative and Caputo fractional derivative or its modifica-

tion. In 2010, T. Morita and K. Sato [8] studied the initial value problem of fractional differential
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equations with constant coefficients of the form

0Dα
t u(t)+ c ·u(t) = f (t),

0Dα
t u(t)+b · 0Dβ

t u(t)+ c ·u(t) = f (t),

and

0Dσm
t u(t)+

m−1

∑
l=0

cl · 0Dσl
t u(t) = f (t),

where 0Dσm
t is the Riemann-Liouville fractional derivative, cl are constants for l = 0,1,2, . . . ,

m− 1, and t ∈ R+. They obtained solutions in terms of the Green’s function and distribution

theory. Next, they studied the solution of a fractional differential equation of the form

(a2t +b2)0D2σ
t u(t)+(a1t +b1)0Dσ

t u(t)+(a0t +b0)u(t) = f (t),

where σ = 1,σ = 1/2, t ∈ R+, and ai,bi are constants for i = 0,1,2, see [9] for more details.

In 1996, A. A. Kilbas and M. Saigo [33] introduced the connections of the Mittag-Leffler type

function with the Riemann-Liouville fractional integrals and derivatives. Their applications are

to solve the linear Abel-Volterra integral equations.

In 2015, R. Agarwal et al. [34] studied the solutions of fractional Volterra integral equation

with Caputo fractional derivative using the integral transform of Pathway type. They discussed

the solution of the non-homogeneous time-fractional heat equation in a spherical domain.

In 2017, C. Li et al. [32] studied a generalized Abel’s integral equation and its variant in the

distributional (Schwartz) sense based on fractional calculus of distributions. Next, in 2018, C.

Li and K. Clarkson [35] studied Abel’s integral equation of the second kind:

(1) y(t)+
λ

Γ(α)

∫ t

0
(t−λ )α−1y(τ)dτ = f (t), t > 0,

where Γ is the gamma function, λ is a constant, and α ∈ R. Equation (1) can be written in the

form (
1+λ Iα

0+
)

y(t) = f (t),

where Iα

0+ is the Riemann-Liouville fractional integral. They applied Babenko’s method and

fractional integral for solving the above equation.
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The linear fractional order integral equations with constant coefficients of the form

(2) c1Iα1
a+y(t)+ c2Iα2

a+y(t)+ · · ·+ cnIαn
a+y(t) = f (t),

where a ∈ R,αi ∈ Q+,α1 > α2 > · · · > αn ≥ 0,ci ∈ C, for i ∈ {1,2, . . . ,n}, and f is assumed

to be a real valued function of real variable defined on an interval (a,b). The general solution

of (2) can be found in [28] for αi ∈ R which is in the space S′+ of tempered distributions with

support in [0,∞).

In 2017, D. C. Labora and R. Rodriguez-Lopez [37] showed a new method by applying a

suitable fractional integral operator for solving some fractional order integral equations with

constant coefficients, and all the integration orders involving are rational. Next, they applied

and extended ideas presented in [37] for solving fractional integral equations with Riemann-

Liouville definition; see [31] for more details. Moreover, they studied the fractional integral

equations with Caputo derivatives and non-rational orders by limiting fractional integral equa-

tions with rational orders.

As mentioned in the abstract, we propose the solutions of non-homogeneous fractional inte-

gral equations of the form

I2σ

0+ y(t)+a · Iσ

0+y(t)+b · y(t) = tn,

and

I2σ

0+ y(t)+a · Iσ

0+y(t)+b · y(t) = tnet ,

where Iσ

0+ is the Riemann-Liouville fractional integral of order σ = 1/2,σ = 1,n ∈N∪{0}, t ∈

R+, and a,b are constants by using the Laplace transform technique and its variants in the clas-

sical sense. In Section 2, we introduce definitions of the Riemann-Liouville fractional integral

and the Laplace transform which will help us to obtain our main results. In Section 3, we es-

tablish our main results and some examples as a consequently of our main results. Finally, we

give the conclusions in Section 4.

2. PRELIMINARIES

Before we proceed to the main results, the following definitions, lemmas, and concepts are

required.



NON-HOMOGENEOUS FRACTIONAL INTEGRAL EQUATIONS 7003

Definition 2.1. [23] Let α be a constant, v a real number and t a positive real number. The

Mellin-Ross function Et(v,α) is defined by

Et(v,α) = tveαt
Γ
∗(v,αt),

where Γ∗ is the incomplete gamma function:

Γ
∗(v, t) = e−t

∞

∑
k=0

tk

Γ(v+ k+1)
,

in which Γ is the gamma function.

In addition, if v > 0, then Et(v,α) has an integral representation as

Et(v,α) =
1

Γ(v)

∫ t

0
xv−1eα(t−x)dx.

Example 2.1. Let α be a constant, v a real number and t a positive real number. Some spe-

cial values and recursion relations of Mellin-Ross function needed for our calculations are as

follows:

(i) Et(0,α) = eαt ;

(ii) Et(v,0) =
tv

Γ(v+1)
;

(iii) Et(1,α) =
Et(0,α)−1

α
;

(iv) Et

(
−1

2
,α

)
= αEt

(
1
2
,α

)
+

t−1/2
√

π
;

(v) Et(v,α) = αEt(v+1,α)+
tv

Γ(v+1)
.

Definition 2.2. [23] Let f (t) be piecewise continuous on (0,∞) and integrable on any finite

subinterval of [0,∞). Then the Riemann-Liouville fractional integral of f (t) of order v is defined

by

Iv
0+ f (t) =

1
Γ(v)

∫ t

0
(t− x)v−1 f (x)dx,

where v ∈ R+.

Example 2.2. Let α be a constant, µ a real number, v and t positive real numbers. Then the

following Riemann-Liouville fractional integrals hold:

(i) Iv
0+tµ =

Γ(µ +1)
Γ(µ + v+1)

tµ+v, µ >−1;
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(ii) Iv
0+eαt = Et(v,α);

(iii) Iv
0+
[
teαt]= tEt(v,α)− vEt(v+1,α);

(iv) Iv
0+ [Et(µ,α)] = Et(µ + v,α), µ >−1;

(v) Iv
0+ [tEt(µ,α)] = tEt(µ + v,α)− vEt(µ + v+1,α), µ >−2.

Definition 2.3. [23] Let f (t) be piecewise continuous on (0,∞) and integrable on any finite

subinterval of [0,∞). Then Riemann-Liouville fractional derivative 0Dβ

t f (t) is defined by

0Dβ

t f (t) =
1

Γ(n−β )

dn

dtn

∫ t

0
(t− x)n−β−1 f (x)dx,

where β ∈ R+ and n is an integer that satisfies n−1≤ β < n.

Definition 2.4. [23] Let f (t) be a function satisfying the conditions in Definition 2.2 and of

exponential order v where v ∈ R+. The Laplace transform of f (t) is defined by

F(s) = L { f (t)}=
∫

∞

0
f (t)e−stdt,

where Re s > v.

Example 2.3. Let α be a constant, n a real number, v and t positive real numbers. Then the

following Laplace transforms hold:

(i) L {1}= 1
s
, s > 0;

(ii) L {tn}= Γ(n+1)
sn+1 , s > 0,n >−1;

(iii) L
{

eαt}= 1
s−α

, s > α;

(iv) L
{

tneαt}= Γ(n+1)
(s−α)n+1 , s > α,n > 0;

(v) L {Et(v,α)}= 1
sv(s−α)

, s > α.

Lemma 2.1. [23] Let f (t) be a function satisfying the conditions in Definition 2.2 and of expo-

nential order v where v ∈ R+. Then

L
[
Iv
0+ f (t)

]
= s−vL [ f (t)] .
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Definition 2.5. Let f (t) be a function satisfying the conditions in Definition 2.4 and L { f (t)}=

F(s). The inverse Laplace transform of F(s) is defined by

f (t) = L −1 {F(s)}= 1
2πi

lim
ω→∞

∫ c+iω

c−iω
F(s)estds,

where Re(s)> σa,σa is an abscissa of absolute convergence for L { f (t)}.

Example 2.4. Let α be a constant, v a real number, n and t positive real numbers. Then the

following inverse Laplace transforms hold:

(i) L −1
{

1
sv+1

}
=

tv

Γ(v+1)
, v > 0;

(ii) L −1
{

1
s−α

}
= Et(0,α) = eαt ;

(iii) L −1
{

Γ(n+1)
(s−α)n+1

}
= tneαt ;

(iv) L −1
{

1
s1/2−α

}
= Et

(
−1

2
,α2
)
+αEt

(
0,α2) ;

(v) L −1
{

1
sv(s−α)2

}
= tEt (v,α)− vEt (v+1,α) , v >−2.

Lemma 2.2. [23] Let n be a positive integer, α be a constant, v be a real number, and t be a

positive real number. Then

L −1
{

1
sv(s−α)n

}
=

1
(n−1)!Γ(v)

n−1

∑
i=0

(−1)i
(

n−1
i

)
Γ(v+ i)tn−1−iEt(v+ i,α),

where v >−n.

3. MAIN RESULTS

In this section, we will state our main results and give their proofs.

Theorem 3.1. Consider the non-homogeneous fractional integral equation of the form

(3) I2σ

0+ y(t)+a · Iσ

0+y(t)+b · y(t) = tn,

where Iσ

0+ is the Riemann-Liouville fractional integral of order σ = 1/2,σ = 1,n∈N∪{0},a,b

are constants and t ∈ R+. Then the solutions of (3) are as the follows:

(i) If σ = 1/2, and j,k ∈ R\{0} with j 6= k such that a = j+ k and b = jk, then the solution
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of (3) is of the form

y(t) =
n!

j− k

2n

∑
i=0

(−1)i
[

j2n−i+1− k2n−i+1

Γ(i/2)

]
t(i−2)/2 +

n! j2n

j− k

[
Et

(
−1

2
,

1
j2

)
− 1

j
Et

(
0,

1
j2

)]
− n! k2n

j− k

[
Et

(
−1

2
,

1
k2

)
− 1

k
Et

(
0,

1
k2

)]
.(4)

(ii) If σ = 1, and j,k ∈ R\{0} with j 6= k such that a = j+ k and b = jk then the solution of

(3) is of the form

(5) y(t) =
n!

j− k

n

∑
i=0

(−1)n−i+1
[

jn−i− kn−i

Γ(i)

]
t i−1 +

(−1)n+1n!
j− k

[
jn−1e−t/ j− kn−1e−t/k

]
.

Proof. Applying the Laplace transform to both sides of (3), we have

(6) L {I2σ

0+ y(t)}+aL {Iσ

0+y(t)}+bL {y(t)}= L {tn}.

Using Lemma 2.1, Example 2.3 (ii), and denoting the Laplace transform L {y(t)} = Y (s) to

(6), we obtain

(7) Y (s) =
n!s2σ

sn+1 (bs2σ +asσ +1)
.

For σ = 1/2, equation (7) becomes

Y (s) =
n!

sn
(
bs+as1/2 +1

) ,
and turns into

Y (s) =
n!

u2n (bu2 +au+1)
,

with a substitution of u= s1/2. Using partial fractions with explicit values of a,b, we can rewrite

it as

(8) Y (s) =
n!

j− k

2n

∑
i=1

(−1)i [ j2n−i+1− k2n−i+1] 1
ui +

n! j2n

j− k

(
1

u+1/ j

)
− n! k2n

j− k

(
1

u+1/k

)
.

Finally, resubstituting u = s1/2 and taking the inverse Laplace transform to (8) with the help of

Example 2.4 (i), (iv), we obtain a solution of (3) in the form of (4).

For σ = 1, equation (7) becomes

Y (s) =
n!

sn−1 (bs2 +as+1)
.
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Using partial fractions with explicit values of a,b, we can rewrite the above equation as

(9)

Y (s) =
n!

j− k

n

∑
i=1

(−1)n−i+1 [ jn−i− kn−i] 1
si +

(−1)n+1n!
j− k

[
jn−1

(
1

s+1/ j

)
− kn−1

(
1

s+1/k

)]
.

Applying the inverse Laplace transform to (9) and using Example 2.4 (i), and (ii), yield a solu-

tion of (3) in the form of (5). In order to include the case n = 0 into the solution formulas of

both cases, we adopt the notation 1/Γ(0) = 0. The proof is completed. �

Remark 3.1. Let n be a non-negative integer and a,b satisfy condition in Theorem 3.1. Then

(5) is a solution of

b · y′′(t)+a · y′(t)+ y(t) = n(n−1)tn−2

see [37] for more details.

Example 3.1. Letting a = 5
2 ,b = 1, and σ = 1/2, equation (3) changes to

(10) I0+y(t)+
5
2
· I1/2

0+ y(t)+ y(t) = tn.

From Theorem 3.1, equation (10) has a solution

y(t) =
n!
3

2n

∑
i=0

(−1)i
[

22n−i+2− (1/2)2n−i

Γ(i/2)

]
t(i−2)/2 +

n! 22n+1

3

[
Et

(
−1

2
,
1
4

)
− 1

2
et/4
]

− n! (1/2)2n−1

3

[
Et

(
−1

2
,4
)
−2e4t

]
.(11)

By applying Example 2.2 (i), (ii), and (iv), it is not difficult to verify that (11) satisfies (10).

Moreover, if n = 1, then equation (10) becomes

(12) I0+y(t)+
5
2
· I1/2

0+ y(t)+ y(t) = t.

From (11), it follows that (12) has a solution

(13) y(t) =
8
3

Et

(
−1

2
,
1
4

)
− 1

6
Et

(
−1

2
,4
)
− 4et/4

3
+

e4t

3
− 5t−1/2

2
√

π
+1.

It is not difficult to verify that (13) satisfies (12).

Example 3.2. Letting a = 5
2 ,b = 1, and σ = 1, equation (3) changes to

(14) I2
0+y(t)+

5
2
· I0+y(t)+ y(t) = tn.
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From Theorem 1, equation (14) has a solution

(15)

y(t) =
n!
3

n

∑
i=0

(−1)n−i+1
[

2n−i+1− (1/2)n−i−1

Γ(i)

]
t i−1 +

(−1)n+1n!
3

[
2ne−t/2− (1/2)n−2e−2t

]
.

By applying Example 2.2 (ii), it is not difficult to verify that (15) satisfies (14).

Moreover, if n = 2, then equation (14) becomes

(16) I2
0+y(t)+

5
2
· I0+y(t)+ y(t) = t2.

From (15), it follows that (16) has a solution

(17) y(t) = 2− 8
3

e−t/2 +
2
3

e−2t .

It is not difficult to verify that (17) satisfies (16).

According to Remark 3.1, function (17) is a solution of y′′(t)+ 5
2y′(t)+ y(t) = 2.

Theorem 3.2. Consider the non-homogeneous fractional integral equation of the form

(18) I2σ

0+ y(t)+a · Iσ

0+y(t)+b · y(t) = tnet ,

where Iσ

0+ is the Riemann-Liouville fractional integral of order σ = 1/2,σ = 1,n∈N∪{0},a,b

are constants and t ∈ R+. Then the solutions of (18) are as the follows:

(i) If σ = 1/2, and j,k ∈ R \ {−1,0,1} with j 6= k such that a = j + k and b = jk, then the

solution of (18) is of the form

y(t) =
n!

j− k

n+1

∑
i=0

(−1)n−i
[

k2n−2i+2

(k2−1)n−i+2 −
j2n−2i+2

( j2−1)n−i+2

]
×

1
Γ(−1/2)

i

∑
l=0

(−1)l−1 Γ(−3/2+ l)
Γ(i− l +1)Γ(l)

t i−lEt

(
−3

2
+ l,1

)

+
n!et

j− k

n

∑
i=0

(−1)n−i+1

Γ(i)

[
k2n−2i+1

(k2−1)n−i+2 −
j2n−2i+1

( j2−1)n−i+2

]
t i−1

+
( jk+1)tnet

( j2−1)(k2−1)
+

(−1)n−1n! j2n

( j2−1)n+1( j− k)

[
Et

(
−1

2
,

1
j2

)
− 1

j
Et

(
0,

1
j2

)]
+

(−1)nn! k2n

(k2−1)n+1( j− k)

[
Et

(
−1

2
,

1
k2

)
− 1

k
Et

(
0,

1
k2

)]
.(19)
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(ii) If σ = 1, and j,k ∈R\{−1,0} with j 6= k such that a = j+k and b = jk, then the solution

of (18) is of the form

y(t) =
n!et

j− k

n

∑
i=0

(−1)n−i

Γ(i)

[
kn−i

(k+1)n−i+2 −
jn−i

( j+1)n−i+2

]
t i−1 +

tnet

( j+1)(k+1)

+
(−1)n+1n!

j− k

[
jn−1e−t/ j

( j+1)n+1 −
kn−1e−t/k

(k+1)n+1

]
.(20)

Proof. Performing the Laplace transform to both sides of (18), we have

(21) L {I2σ

0+ y(t)}+a ·L {Iσ

0+y(t)}+b ·L {y(t)}= L {tnet}.

Using Lemma 2.1, Example 2.3 (iv), and denoting the Laplace transform L {y(t)} = Y (s) to

(21), we obtain

(22) Y (s) =
n!s2σ

(s−1)n+1 (bs2σ +asσ +1)
.

For σ = 1/2, equation (22) becomes

Y (s) =
n! s

(s−1)n+1(bs+as1/2 +1)
,

and turns into

(23) Y (s) =
n! u2

(u2−1)n+1 (bu2 +au+1)
,

with a substitution of u= s1/2. Using partial fractions with explicit values of a,b, we can rewrite

it as

Y (s) =
n!

j− k

n+1

∑
i=1

(−1)n−i
[

k2n−2i+2

(k2−1)n−i+2 −
j2n−2i+2

( j2−1)n−i+2

]
u

(u2−1)i

+
n!

j− k

n

∑
i=1

(−1)n−i+1
[

k2n−2i+1

(k2−1)n−i+2 −
j2n−2i+1

( j2−1)n−i+2

]
1

(u2−1)i

+

[
n!

( j+1)(k+1)

]
1

(u2−1)n+1 +

[
(−1)n−1n! j2n

( j2−1)n+1( j− k)

]
1

u+1/ j

+

[
(−1)nn! k2n

(k2−1)n+1( j− k)

]
1

u+1/k
.(24)

Finally, resubstituting u = s1/2 and taking the inverse Laplace transform to (24) with the help

of Lemma 2.2, Example 2.4 (iii), and (iv), we obtain a solution of (18) in the form of (19).
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For σ = 1, equation (22) becomes

Y (s) =
n! s2

(s−1)n+1(bs2 +as+1)
.

Using partial fractions with explicit values of a,b, we can rewrite the above equation as

Y (s) =
n!

j− k

n

∑
i=1

(−1)n−i
[

kn−i

(k+1)n−i+2 −
jn−i

( j+1)n−i+2

]
1

(s−1)i +

[
n!

( j+1)(k+1)

]
1

(s−1)n+1

+
(−1)n+1n!

j− k

[[
jn−1

( j+1)n+1

]
1

s+1/ j
−
[

kn−1

(k+1)n+1

]
1

s+1/k

]
.

(25)

Applying the inverse Laplace transform to (25) with the help of Example 2.4 (iii), and (iv),

yield a solution of (18) in the form of (20). In order to include the case n = 0 into the solution

formulas of both cases, we adopt the notation 1/Γ(0) = 0. The proof is completed. �

Remark 3.2. Let n be a non-negative integer and a,b satisfy condition in Theorem 3.2. Then

(20) is a solution of

b · y′′(t)+a · y′(t)+ y(t) = tnet +2ntn−1et +n(n−1)tn−2et .

Example 3.3. For σ = 1/2,a = 5
6 , and b = 1

6 , equation (18) changes to

(26) I0+y(t)+
5
6
· I1/2

0+ y(t)+
1
6
· y(t) = tnet .

From Theorem 3.2, equation (26) has a solution

y(t) = n!
n+1

∑
i=0

[
27

23n−3i+5 −
8

3n−i+1

]
1

Γ(−1/2)

i

∑
l=0

(−1)l−1 Γ(−3/2+ l)
Γ(i− l +1)Γ(i)

t i−lEt

(
−3

2
+ l,1

)

+n!et
n

∑
i=0

[
16

3n−i+1 −
81

23n−3i+5

]
t i−1

Γ(i)
+

7tnet

4
+

8n!
3n

[
Et

(
−1

2
,4
)
−2e4t

]
− 27n!

23n+2

[
Et

(
−1

2
,9
)
−3e9t

]
.(27)

For a fixed n = 1, equation (26) becomes

(28) I0+y(t)+
5
6
· I1/2

0+ y(t)+
1
6
· y(t) = tet .
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From (27), it follows that (28) has a solution

y(t) =
269
96

et +
7
4

tet− 175
96

Et

(
−1

2
,1
)
− 5

4

[
tEt

(
−1

2
,1
)
+

1
2

Et

(
1
2
,1
)]

+
8
3

[
Et

(
−1

2
,4
)
−2e4t

]
− 27

32

[
Et

(
−1

2
,9
)
−3e9t

]
.(29)

By applying Example 2.2 (ii), (iii), (iv), and (v), it is not difficult to verify that (29) satisfies

(28).

Example 3.4. Letting a = 3,b = 2, and σ = 1, equation (18) changes to

(30) I2
0+y(t)+3 · I0+y(t)+2 · y(t) = tnet .

From Theorem 3.2, equation (30) has a solution

(31)

y(t) = n!et
n

∑
i=0

(−1)n−i

Γ(i)

[
1

2n−i+2 −
2n−i

3n−i+2

]
t i−1 +

tnet

6
+(−1)n+1n!

[
2n−1e−t/2

3n+1 − e−t

2n+1

]
.

By applying Example 2.2 (ii), and (iii), it is not difficult to verify that (31) satisfies (30).

Moreover, if n = 1, then equation (30) becomes

(32) I2
0+y(t)+3 · I0+y(t)+2 · y(t) = tet .

From (31), it follows that (32) has a solution

(33) y(t) =
5et

36
+

tet

6
+

e−t/2

9
− e−t

4
.

It is not difficult to verify that (33) satisfies (32).

According to Remark 3.2, function (33) is a solution of 2y′′(t)+3y′(t)+ y(t) = tet +2et .
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