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Abstract: We study a single server queue with Poisson arrivals in batches of variable size. The server provides one 

by one general service to customers with a set-up time of random length before starting the first service at the start of 

the system as well as after every idle period of the system. The set-up time has been assumed to be general. Further, 

the server is subject to random breakdowns. The repair time has been assumed to be deterministic with a further delay 

time before starting repairs. The delay time in starting repairs has been assumed to be general. We find steady state 

queue length of various states of the system in terms of probability generating functions. Steady state results of a few 

interesting special cases have been derived. 
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1. INTRODUCTION 

In real life situations, most of the queuing systems are subject to interruptions and delays in service 
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due to many factors such as random breakdowns due to power failure or failure of the vital parts 

of the system, server vacations, delays in starting the service, etc. Such interruptions and delays 

have a definite effect on the system efficiency, the quality and cost of service and waiting time of 

customers. When all customers waiting for service in a system are served, the system becomes idle 

and waits for a new batch of customers to arrive.  At the end of such idle periods, the system 

needs extra time termed as ‘set-up time’ or ‘warming up time’ before serving the first customer of 

the next busy period of the system. We refer the reader to Choudhury and Madan [2] who dealt 

with such a set-up time in their work. In this paper, we study a 𝑀𝑥/𝐺/1 queueing system with a 

random set up time preceding the first service after each idle period.  

This random set up time has been assumed to be general. In addition, we assume that the system 

is subject to random breakdowns from time to time and when a breakdown occurs the repairs on 

the system do not start immediately. We further assume that there is a delay time in starting the 

repairs. This delay time too has been assumed to be general. Such a delay time was assumed by 

Madan [7]. On completion of delay time, the system undergoes repairs immediately. The repair 

time has been assumed to be deterministic with constant duration of the repair time. In order to 

refer the reader to additional literature involving breakdowns, delays, general and deterministic 

repairs, we mention Aissani and Artalejo [1], Takine and Sengupta [8], Krishnamurthy et al [5], 

Khalaf et al [4], Ke [3], Shi and Chao [9] and Madan [7, 8].  Symbolically, we denote our system 

as 𝑴𝒙/𝑮/S/D/D/1 queueing system, where 𝑴𝒙 stands for Poisson arrivals in batches of variable 

size, G stands for one by one general service, S stands for general set-up time, D stands for general 

delay time in starting repairs, the second D stands for deterministic repair time and 1 stands for a 

single server. We have obtained explicit and tractable results under the steady state in terms of 

probability generating functions of various states of the system. In real life situations, most of the 

queuing systems are subject to interruptions and delays in service due to many factors such as 

random breakdowns due to power failure or failure of the vital parts of the system, server vacations, 

delays in starting the service, etc. Such interruptions and delays have a definite effect on the system 

efficiency, the quality and cost of service and waiting time of customers. When all customers 
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waiting for service in a system are served, the system becomes idle and waits for a new batch of 

customers to arrive.  At the end of such idle periods, the system needs extra time termed as ‘set-

up time’ or ‘warming up time’ before serving the first customer of the next busy period of the 

system. We refer the reader to Choudhury and Madan [2] who dealt with such a set-up time in their 

work. In this paper, we study a M(X)/G/1 queueing system with  a random set up time, random 

breakdowns and delayed deterministic repairs. 

 

2. THE MATHEMATICAL MODEL 

• Customers (units) arrive at the system in batches of variable size in a compound Poisson 

process. Let ,...)3,2,1( =idtci  be the first order probability that a batch of i   customers 

arrives at the system during a short interval of time ( dttt +, , where 


=

=
1

1,10
i

ii cc  and 

𝜆 > 0 is the mean arrival rate of batches. 

• Customers are served one by one on a first come, first served basis. The service time ‘S’ 

follows a general distribution. Let 𝑩(𝒙) and 𝒃(𝒙) respectively be the distribution function 

and the density function of the service time S and let 𝜇(𝑥)𝑑𝑥 be the conditional probability 

of completion of service during the short interval of time (𝒕, 𝒕 + 𝒅𝒕], given that the elapsed 

time is x , so that 

 𝜇(𝑥) =
𝑏(𝑥)

1−𝐵(𝑥)
 ; and therefore,  𝑏(𝑥) = 𝜇(𝑥)𝑒− ∫ 𝜇(𝑡)

𝑥
0 𝑑𝑡 .      (2.1) 

• Whenever a new customer arrives at the system at the end of an idle period, the system needs 

warming up time called ‘set-up time’. We assume that the set-up time ‘W’ follows a general 

distribution. Let 𝑮(𝒙) and 𝒈(𝒙) respectively be the distribution function and the density 

function of the set-up time ‘𝑊’ and let 𝛿(𝑥) be the conditional probability of completion of 

delay during the short interval of time (𝒕, 𝒕 + 𝒅𝒕], given that the elapsed time is x , so that 

 𝛿(𝑥) =
𝑔(𝑥)

1−𝐺(𝑥)
 ; and therefore,  𝑔(𝑥) = 𝛿(𝑥)𝑒− ∫ 𝛿𝑡

𝑥
0 )𝑑𝑡        (2.2) 
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• It is assumed that the server is subject to random breakdowns. Let ∝ 𝑑𝑡 be the first order 

probability that the server may breakdown while providing service to a customer during the 

short interval of time(𝑡, 𝑡 + 𝑑𝑡]. 

• As soon as the server fails, the customer whose service is interrupted comes back to the head 

of the queue and would be taken up first for service immediately alter the server becomes 

operative. 

• We assume that as soon as the server breaks down, its repairs do not start immediately. There 

is a delay in the start of its repairs. 

• The delay time ‘D’ in starting repairs follows a general distribution. Let 𝑯(𝒙)  and 𝒉(𝒙)  

respectively be the distribution function and the density function of the delay time ‘𝐷’ and let 

𝜑(𝑥) be the conditional probability of completion of delay time during the short interval of 

time (𝒕, 𝒕 + 𝒅𝒕], given that the elapsed time is x , so that 

 𝜑(𝑥) =
ℎ(𝑥)

1−𝐻(𝑥)
   and, therefore,  ℎ(𝑥) = 𝜑(𝑥)𝑒− ∫ 𝜑𝑡

𝑥
0 )𝑑𝑡         (2.3) 

• We assume that the repair time of the server is deterministic with constant repair time ‘d’. 

• All stochastic processes involved in the system are independent of each other. 

 

3. DEFINITIONS AND NOTATIONS 

• Let 𝑊𝑛(𝑥, 𝑡) be the probability that at time t there are n (0) customers in the queue excluding 

one customer in service with elapsed service time x. Accordingly,  𝑊𝑛(𝑡) = ∫ 𝑊𝑛(𝑥, 𝑡)
∞

𝑥=0
𝑑𝑥 

denotes the probability that at time t there are 𝑛 ≥0 customers in the queue excluding one 

customer in service irrespective of the value of x.   

• Let  𝑆𝑛(𝑥, 𝑡) be the probability that at time t there are 𝑛 ≥ 1 customers in the queue and the 

server is under set-up time with elapsed time x. Accordingly,  𝑆𝑛(𝑡) = ∫ 𝑆𝑛(𝑥, 𝑡)
∞

𝑥=0
𝑑𝑥 

denotes the probability that at time t there are 𝑛 ≥1customers in the queue and the server is 

under set-up time irrespective of the value of x.   
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• Let  𝐷𝑛(𝑥, 𝑡) be the probability that at time t there are 𝑛 ≥ 1 customers in the queue and the 

server is in the failed state and the system is under delay time with elapsed time x before starting 

repairs. Accordingly,  𝐷𝑛(𝑡) = ∫ 𝐷𝑛(𝑥, 𝑡)
∞

𝑥=0
𝑑𝑥 denotes the probability that at time t there are 

𝑛 ≥ 1 customers in the queue and the server is under failed state and the system is under delay 

time before starting repairs irrespective of the value of x. 

• Let 𝑅𝑛(𝑡) be the probability that at time t, there are 𝑛 ≥ 1  customers in the queue and the 

server is under deterministic repairs 

• Let 𝑃𝑛(𝑡) = 𝑊𝑛(𝑡) + 𝑆𝑛(𝑡) + 𝐷𝑛(𝑡) + 𝑅𝑛(𝑡)  denote the probability that at time t there are n 

(0) customers in the queue irrespective of whether the server is providing service or is under 

set-up time, or delay time or is under repairs.  

• Let Q (t) be the steady state probability that there is no customer in the system and the server is 

idle.  

• We assume that all stochastic processes involved in the system are independent of each other. 

Now, if the steady state exists, we define the following limiting probabilities as the steady state 

probabilities corresponding to the probabilities defined above for the various states of the 

system: 

  𝐿𝑖𝑚
𝑡→∞

 𝑊𝑛(𝑥, 𝑡) = 𝑊𝑛(𝑥),   𝐿𝑖𝑚
𝑡→∞

 𝑊𝑛( 𝑡) = 𝑊𝑛, 𝑛 ≥ 0 

𝐿𝑖𝑚
𝑡→∞

 𝑆𝑛(𝑥, 𝑡) = 𝑆𝑛(𝑥), 𝐿𝑖𝑚
𝑡→∞

 𝑆𝑛(𝑡) = 𝑆𝑛, 𝑛 ≥ 1 

 𝐿𝑖𝑚
𝑡→∞

 𝐷𝑛(𝑥, 𝑡) = 𝐷𝑛(𝑥), 𝐿𝑖𝑚
𝑡→∞

 𝐷𝑛(𝑡) = 𝐷𝑛, 𝑛 ≥ 1          

𝐿𝑖𝑚
𝑡→∞

 𝑅𝑛(𝑡) = 𝑅𝑛                (3.1) 

We further assume that 𝐾𝑟 is the probability of r arrivals during the deterministic period of 

repairs and therefore,  

𝐾𝑟 =
𝑒𝑥𝑝(𝜆𝑑)(𝜆𝑑)𝑟

𝑟!
,  𝑟 = 0,1,2,.  .  .             (3.2) 

Next, we define the following Probability Generating Functions (PGFs): 

𝑊(𝑥, 𝑧) = ∑ 𝑊𝑛(𝑥)𝑧𝑛∞
𝑛=0 ,  𝑊(𝑧) = ∑ 𝑊𝑛𝑧𝑛,∞

𝑛=0            (3.3) 
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𝑆(𝑥, 𝑧) = ∑ 𝑆𝑛(𝑥)𝑧𝑛∞
𝑛=1 ,  𝑆(𝑧) = ∑ 𝑆𝑛𝑧𝑛,∞

𝑛=1           (3.4) 

𝐷(𝑥, 𝑧) = ∑ 𝐷𝑛(𝑥)∞
𝑛=1 𝑧𝑛,  𝐷(𝑧) = ∑ 𝐷𝑛𝑧𝑛,∞

𝑛=1           (3.5) 

𝑅(𝑧) = ∑ 𝑅𝑛 𝑧
𝑛∞

𝑛=1 ,               (3.6) 

𝐾(𝑧) = ∑ 𝐾𝑛𝑧𝑛 = ∑
𝑒𝑥𝑝( − 𝜆𝑑)(𝜆𝑑)𝑛

𝑛!

∞

𝑛=0

∞

𝑖=0

𝑧𝑛 

 = exp [−𝜆𝑑(1 − 𝑧)],  |𝑧| ≤ 1                    (3.7) 

𝐶(𝑧) = ∑ 𝑐𝑖𝑧
𝑖∞

𝑖=1 , |𝑧| ≤ 1               (3.8) 

 

4.  STEADY STATE EQUATIONS 

Based on the underlying assumptions of the model, we obtain the following steady state equations 

for our system: 

𝑑

𝑑𝑥
𝑊𝑛(𝑥) + (𝜆+∝ +𝜇(𝑥))𝑊𝑛(𝑥) = 𝜆 ∑ 𝑐𝑖𝑊𝑛−𝑖(𝑥)𝑛

𝑖=1 , 𝑛 ≥ 1             (4.1) 

𝑑

𝑑𝑥
𝑊0(𝑥) + (𝜆+∝ +𝜇(𝑥))𝑊0(𝑥) = 0                        (4.2) 

𝑑

𝑑𝑥
𝑆𝑛(𝑥) + (𝜆 + 𝛿(𝑥))𝑆𝑛(𝑥) = 𝜆 ∑ 𝑐𝑖𝑆𝑛−𝑖(𝑥)𝑛

𝑖=1 , 𝑛 ≥ 1             (4.3) 

𝑑

𝑑𝑥
𝐷𝑛(𝑥) + (𝜆 + 𝜑(𝑥))𝐷𝑛(𝑥) = 𝜆 ∑ 𝑐𝑖𝐷𝑛−𝑖(𝑥)𝑛

𝑖=1 𝑛 ≥ 1             (4.4) 

𝑅𝑛= ∫ 𝐷𝑛(𝑥)𝜑(𝑥)𝑑𝑥
∞

0
, 𝑛 ≥ 1                    (4.5)    

𝜆 𝑄 = ∫ 𝑊0(𝑥)
∞

0
𝜇(𝑥)𝑑𝑥                  (4.6) 

Above equations must be solved subject to the following boundary conditions: 

𝑊𝑛(0) = ∫ 𝑊𝑛+1(𝑥)𝜇(𝑥)𝑑𝑥
∞

0
 +∫ 𝑆𝑛+1(𝑥)

∞

0
𝛿(𝑥)𝑑𝑥  

        +(𝑅1𝐾𝑛 + 𝑅2𝐾𝑛−1+. . . +𝑅𝑛+1𝐾0),  𝑛 ≥ 1           (4.7) 

𝑊0(0) = ∫ 𝑊1(𝑥)𝜇(𝑥)𝑑𝑥
∞

0
 + ∫ 𝑆1(𝑥)

∞

0
𝛿(𝑥)𝑑𝑥+ 𝑅1𝐾0              (4.8) 

𝑆𝑛(0) = 𝜆𝐶𝑛 𝑄 ,  𝑛 ≥ 1                (4.9) 

𝐷𝑛+1(0) =∝  𝑊𝑛, 𝑛 ≥ 0                    (4.10) 
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5. STEADY STATE SOLUTION 

Multiplying both sides of equation (4.1) by suitable powers of z, adding equation (4.2) in 

the result and using (3.3) and (3.8) and on simplifying we obtain, 

𝑑

𝑑𝑧
𝑊(𝑥, 𝑧) + (𝜆 − 𝜆𝐶(𝑧)+∝ +𝜇(𝑥))𝑊(𝑥, 𝑧) = 0.             (5.1) 

Similar operations on (4.3), (4.4) and (4.5) separately, using (3.4), (3.5), (3.6) and (3.8) lead to  

𝑑

𝑑𝑧
𝑆(𝑥, 𝑧) + (𝜆 − 𝜆𝐶(𝑧) + 𝛿(𝑥))𝑆(𝑥, 𝑧) = 0.               (5.2) 

𝑑

𝑑𝑧
𝐷(𝑥, 𝑧) + (𝜆 − 𝜆𝐶(𝑧) + 𝜑(𝑥))𝐷(𝑥, 𝑧) = 0.                    (5.3) 

𝑅(𝑧) = ∫ 𝐷(𝑥, 𝑧)𝜑(𝑥)𝑑𝑥
∞

0
                     (5.4) 

Next, similar operations on (4.7), (4.8), (4.9) and |(4.10) lead to 

𝑧 𝑊(0, 𝑧 ) = ∫ 𝑊(𝑥, 𝑧)𝜇(𝑥)𝑑𝑥
∞

0
 +∫ 𝑆(𝑥, 𝑧)

∞

0
𝛿(𝑥)𝑑𝑥  

           +𝑅(𝑧)𝐾(𝑧) − 𝜆𝑄                          (5.5) 

Which on using (5.4) becomes 

𝑧 𝑊(0, 𝑧 ) = ∫ 𝑊(𝑥, 𝑧)𝜇(𝑥)𝑑𝑥
∞

0
 +∫ 𝑆(𝑥, 𝑧)

∞

0
𝛿(𝑥)𝑑𝑥  

           +∫ 𝐷(𝑥, 𝑧)𝜑(𝑥)𝑑𝑥
∞

0
𝐾(𝑧) − 𝜆𝑄                       (5.6) 

𝑆(0, 𝑧) = 𝜆𝐶(𝑧)𝑄                       (5.7) 

𝐷(0, 𝑧) =∝ 𝑧 𝑊(𝑧)                   (5.8) 

Now, we integrate equations (5.1), (5.2) and (5.3) between the limits 0 and 𝑥 and obtain 

𝑊(𝑥, 𝑧) = 𝑊(0, 𝑧) 𝑒𝑥𝑝[−((𝜆 − 𝜆𝐶(𝑧)+∝)𝑥) − ∫ 𝜇(𝑡)𝑑𝑡
𝑥

0
]              (5.9) 

𝑆(𝑥, 𝑧) = 𝑆(0, 𝑧) 𝑒𝑥𝑝[−((𝜆 − 𝜆𝐶(𝑧))𝑥) − ∫ 𝛿(𝑡)𝑑𝑡
𝑥

0
]           (5.10) 

𝐷(𝑥, 𝑧) = 𝐷(0, 𝑧) 𝑒𝑥𝑝[−((𝜆 − 𝜆𝐶(𝑧))𝑥) − ∫ 𝜑(𝑡)𝑑𝑡
𝑥

0
]          (5.11) 

Where 𝑊 (0, 𝑧) , 𝑆(0, 𝑧)  and  𝐷(0, 𝑧)    have been obtained above in (5.6), (5.7) and (5.8) 

respectively. 

Next, we again integrate (5.8), (5.9) and (5.10) and with respect to 𝑥 and obtain 

𝑊(𝑧) = 𝑊(0, 𝑧) (
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)                          (5.12) 



6575 

ON AN 𝑀𝑥/𝐺/1 QUEUE WITH A RANDOM SET UP TIME 

𝑆(𝑧) = 𝑆(0, 𝑧) (
1−�̅�[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)                     (5.13) 

𝐷(𝑧) = 𝐷(0, 𝑧) (
1−�̅�[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)                 (5.14) 

Where �̄�(𝜆 − 𝜆𝑧+∝) = ∫ 𝑒𝑥𝑝[−(𝜆 − 𝜆𝐶(𝑧)+∝]𝑥 𝑑𝐵(𝑥)
∞

0
  is the Laplace-Stieltjes transform of 

the service time 𝑆  , and �̄�(𝜆 − 𝜆𝑧) = ∫ 𝑒𝑥𝑝[−(𝜆 − 𝜆𝐶(𝑧)]𝑥 𝑑𝐺(𝑥)
∞

0
  is Laplace- Stieltjes 

transform of the set up time W and  �̄�(𝜆 − 𝜆𝑧) = ∫ 𝑒𝑥𝑝[−(𝜆 − 𝜆𝑧)]𝑥 𝑑𝐻(𝑥)
∞

0
  is the Laplace- 

Stieltjes transform of the delay time D in starting repairs. 

Next, we multiply equations (5.9), (5.10) and (5.11) respectively by𝜇(𝑥), 𝛿(𝑥) and 𝜑(𝑥) and 

integrate each with respect to x. Thus, we obtain 

∫ 𝑊(𝑥, 𝑧)𝜇(𝑥)𝑑𝑥
∞

0
= 𝑊(0, 𝑧) �̄�(𝜆 − 𝜆𝑧+∝)                (5.15) 

∫ 𝑆(𝑥, 𝑧)𝛿(𝑥)𝑑𝑥
∞

0
= 𝑆(0, 𝑧) �̄�(𝜆 − 𝜆𝑧)                (5.16) 

 

∫ 𝐷(𝑥, 𝑧)𝜑(𝑥)𝑑𝑥
∞

0
= 𝐷(0, 𝑧) �̄�(𝜆 − 𝜆𝑧)                  (5.17) 

Now, we use (5.15), (5.16) and (5.17) into the result (5.6) and simplify. Thus, we obtain 

𝑧 𝑊(0, 𝑧 ) = 𝑊(0, 𝑧) �̄�(𝜆 − 𝜆𝑧+∝) +𝑆(0, 𝑧) �̄�(𝜆 − 𝜆𝑧)  

           +𝐷(0, 𝑧) �̄�(𝜆 − 𝜆𝑧)𝐾(𝑧) − 𝜆𝑄                           (5.18) 

Next, using (5.7) and (5.8) into (5.18) and simplifying we get 

[𝑧 −  �̄�(𝜆 − 𝜆𝑧+∝)]𝑊(0, 𝑧 ) = ∝ 𝑧 𝑊(𝑧 )�̄�(𝜆 − 𝜆𝑧)𝐾(𝑧) 

                                                                +[𝜆𝐶(𝑧) �̄�(𝜆 − 𝜆𝑧) − 𝜆]𝑄          (5.19) 

We now use (5.19) into (5.12) and simplify to obtain 

W(z) =
[𝜆𝐶(𝑧)�̄�(𝜆−𝜆𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 �̄�(𝜆−𝜆𝑧)𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                      (5.20) 

Next, using (5.7) and (5.8) in (5.13) and (5.14), we get 

𝑆(𝑧) = 𝜆𝐶(𝑧)𝑄 (
1−�̅�[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)                       (5.21) 
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𝑫(𝒛) =
∝𝑧 [𝜆𝐶(𝑧)�̄�(𝜆−𝜆𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)(

1−�̅�[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 �̄�(𝜆−𝜆𝑧)𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)

                    (5.22) 

From (5.4) 

𝑅(𝑧) =∝ 𝑧 𝑊(𝑧) �̄�(𝜆 − 𝜆𝑧) 

Which on using (5.20) gives 

R(z) =
∝𝑧 �̄�(𝜆−𝜆𝑧)[𝜆𝐶(𝑧)�̄�(𝜆−𝜆𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 �̄�(𝜆−𝜆𝑧)𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                   (5.23) 

Now, from (5.20) to (5.23) we find  

𝑊(1) = lim
𝑧→1

𝑊(𝑧) =
(𝜆𝐸(𝑆)+𝜆𝐸(𝐼))(

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

1−(∝+∝𝜆𝐸(𝐷)+∝𝜆𝑑+∝𝜆𝐸(𝐼)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                 (5.24) 

Which is the steady state probability that the server is proving service to customers 

𝑆(1) = lim
𝑧→1

𝑆(𝑧) = 𝜆𝐸(𝐼)𝜆𝐸(𝑊)𝑄                    (5.25) 

Which is the steady sate probability that the system is under set-up time 

𝐷(1) = lim
𝑧→1

𝐷(𝑧) =
∝(𝜆𝐸(𝑆)+𝜆𝐸(𝐼))𝐸(𝑊)(

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

1−(∝+∝𝜆𝐸(𝐷)+∝𝜆𝑑+∝𝜆𝐸(𝐼)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                           (5.26) 

Which is the steady state probability that the system is in the failed satte and waiting for repairs to 

start 

𝑅(1) = lim
𝑧→1

𝑅(𝑧) =
∝(𝜆𝐸(𝑆)+𝜆𝐸(𝐼))𝐸(𝐷)(

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

1−(∝+∝𝜆𝐸(𝐷)+∝𝜆𝑑+∝𝜆𝐸(𝐼)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                        (5.27) 

Which is the steady state probability that the system is under repairs. 

Now, in order to determine the only unknown probability Q, we use the normalizing condition 

Q+W 1) +S (1) +D (1) +R (1) =1                  (5.28) 

Utilizing the results found in (5.25), (5.26) and (5.27) into (5.28) and simplifying we obtain 

𝑄 =
1−(𝜆𝐸(𝐼)+∝+∝𝜆𝐸(𝐼)𝐸(𝐷)+∝𝜆𝑑)(

1−�̅�[∝]

∝
)

{
(1+𝜆𝐸(𝑊)) (1−(𝜆𝐸(𝐼)+∝+∝𝜆𝐸(𝐼)𝐸(𝐷)+∝𝜆𝑑))(

1−�̅�[∝]

∝
) 

+(𝜆𝐸(𝑊)+𝜆𝐸(𝐼))(1+∝+∝𝐸(𝐷))(
1−�̅�[∝]

∝
)

}

                      (5.29) 

Where 
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E (I) is the average batch size of arriving customers, E (D) is the average delay time in starting 

repairs and E (W) is the average warming up (set-up) time. 

Finally, on substituting the value of Q from (5.29) in the results (5.25), (5.26) and (5.27) we can 

completely and explicitly determine all the steady state probability generating functions of the 

queue length. 

 

6. PARTICULAR CASES 

 

CASE 1: NO WARMING-UP TIME 

In this case we substitute E (W) =0 and �̄�(𝜆 − 𝜆𝑧) = 1 in the main results (5.20), (5.21), (5.22), 

(5.23) and (5.29). Thus, we obtain 

W(z) =
[𝜆𝐶(𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 �̄�(𝜆−𝜆𝑧)𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                     (6.1)   

𝑆(𝑧) = 0                      (6.2) 

𝑫(𝒛) =
∝𝑧 [𝜆𝐶(𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)(

1−�̅�[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 �̄�(𝜆−𝜆𝑧)𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                      (6.3) 

R(z) =
∝𝑧 �̄�(𝜆−𝜆𝑧)[𝜆𝐶(𝑧)�̄�(𝜆−𝜆𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 �̄�(𝜆−𝜆𝑧)𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                   (6.4) 

𝑄 =
1−(𝜆𝐸(𝐼)+∝+∝𝜆𝐸(𝐼)𝐸(𝐷)+∝𝜆𝑑)(

1−�̅�[∝]

∝
)

{
 (1−(𝜆𝐸(𝐼)+∝+∝𝜆𝐸(𝐼)𝐸(𝐷)+∝𝜆𝑑))(

1−�̅�[∝]

∝
) 

+(𝜆𝐸(𝐼))(1+∝+∝𝐸(𝐷))(
1−�̅�[∝]

∝
)

}

                  (6.5) 

 

CASE 2: NO DELAY IN STARTING REPAIRS 

In this case we substitute E (D) =0 and �̄�(𝜆 − 𝜆𝑧) = 1 in the main results (5.20), (5.21), (5.22), 

(5.23) and (5.29). Thus, we obtain 

W(z) =
[𝜆𝐶(𝑧)�̄�(𝜆−𝜆𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                     (6.6) 
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𝑆(𝑧) = 𝜆𝐶(𝑧)𝑄 (
1−�̅�[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)                   (6.7) 

𝑫(z) = 0                       (6.8)  

R(z) =
∝𝑧 [𝜆𝐶(𝑧)�̄�(𝜆−𝜆𝑧)−𝜆](

1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)𝑄

𝒛−�̄�(𝜆−𝜆𝑧+∝)−∝𝑧 𝐾(𝑧)(
1−�̅�[𝜆−𝜆𝐶(𝑧)+∝]

𝜆−𝜆𝐶(𝑧)+∝
)
                                (6.9) 

𝑄 =
1−(𝜆𝐸(𝐼)+∝+∝𝜆𝑑)(

1−�̅�[∝]

∝
)

{
(1+𝜆𝐸(𝑊)) (1−(𝜆𝐸(𝐼)+∝+∝𝜆𝑑))(

1−�̅�[∝]

∝
) 

+(𝜆𝐸(𝑊)+𝜆𝐸(𝐼))(1+∝)(
1−�̅�[∝]

∝
)

}

                         (6.10) 

 

CASE 3: WARMING-UP TIME WITH NO BREAKDOWNS  

In this case we substitute ∝= 0 , �̄�(𝜆 − 𝜆𝑧) = 1 , E(D)=0, E(W)=0 in the main results (5.20), 

(5.21), (5.22), (5.23) and (5.29). Thus, we obtain 

W(z) =
[𝜆𝐶(𝑧)�̄�(𝜆−𝜆𝑧)−𝜆]𝐸(𝑆)𝑄

𝒛−�̄�(𝜆−𝜆𝑧)
                     (6.11) 

𝑆(𝑧) = 𝜆𝐶(𝑧)𝑄 (
1−�̅�[𝜆−𝜆𝐶(𝑧)]

𝜆−𝜆𝐶(𝑧)
)                (6.12) 

D(z) = 0                       (6.13) 

𝑅(𝑧) = 0                    (6.14) 

𝑄 = 𝜆𝐸(𝐼)𝐸(𝑆)                   (6.15) 

 

CASE 4: NO WARMING-UP TIME AND NO BREAKDOWNS 

In this case we substitute ∝= 0, �̄�(𝜆 − 𝜆𝑧) = 1, �̄�(𝜆 − 𝜆𝑧) = 1, E(D )= 0, E(W) = 0 in the main 

results (5.20), (5.21), (5.22), (5.23) and (5.29). Thus, we obtain 

W(z) =
[𝜆𝐶(𝑧)−𝜆]𝐸(𝑆)𝑄

𝒛−�̄�(𝜆−𝜆𝑧)
                       (6.16) 

𝑆(𝑧) = 0                     (6.17) 

D(z) = 0                       (6.18) 

𝑅(𝑧) = 0                    (6.19) 

𝑄 = 𝜆𝐸(𝐼)𝐸(𝑆)                      (6.20) 

Results of this case are known results of the 𝑀𝑋/G/1 queue. 
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CONCLUSION 

The paper studies a new queueing model in which a single server providers general service to 

customers arriving at the system in a compound Poisson process. The system needs warming up 

time at the start of service of the first customer whenever the system starts first time or before 

serving the first customer after every idle period. Further, the system is subject to random 

breakdowns and there is a delay time before starting the repairs. We assume that the service time, 

the set-up time and the delay time all follow a general distribution and the repair time is 

deterministic. We obtain new, clear and explicit tractable steady state results of the system. The 

results of many interesting particular cases have been derived from the main results. 
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