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Abstract. In this paper, comparative study of DST interpolation approach of various order by using different

fractional derivatives are presented. First the definition of different fractional order derivatives like Grunwald-

Letnikov, Weyl’s and Conformable are reviewed. Next, Fractional derivative of a discrete signal is determined

after applying the DST interpolation approach. Next, the DST-IV method approach transfer function are obtained

with the help of index-mapping technique. Lastly, some computative problems are discussed for checking the

effectiveness of digital fractional order differentiators for design of proposed method using the integral square

error formula. Error values of various fractional order derivatives have been presented in the form of table.

Keywords: digital fractional order differentiator; Grunwald-Letnikov fractional derivative; Weyl’s fractional de-

rivative; conformable fractional derivative; hanning window; discrete sine transform.
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1. INTRODUCTION

The concept of fractional derivative is not entirely new, G.W. Leibniz mentioned about it in

a correspondence (1695) with L’Hospital. In the 19th century it has been systematically studied

at different periods by Liouville (1832), Reimann (1853), N. Sonin,A.V.Letinkov, Laurent and

Holmgreen etc. Preceding them are Euler (1730) and Lagrange(1772).
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Fractional order of differentiation are more mysterious because they have no obvious geo-

metric interpretation [1]-[4]. This subject started becoming more popular when it was realized

that, compared to Frick’s laws of diffusion, leads to the derivatives and integrals with half order

for calculating the certain electrochemical problem is more convenient and economical.

Digital fractional order based differentiator applications is applicable in biomedical signal

processing, digital signature verification, sharpness of images in digital image processing,

neural networks, collection of real-time data using cloud computing etc [4]-[10]. Dβ f (x) =

dβ f (x)/dxβ is a β th derivative order for a function f (x). If β takes positive integral value

then we get ordinary derivatives, otherwise it is known as fractional order derivative such that

Re(β )> 0.

In this section, design approach of differentiator will be discussed of non-integer order deriva-

tives definitions as Grunwald-Letnikov, Weyl’s and Conformable derivative. In section 2, the

different derivatives definitions are discussed. In section 3, transfer function of DST-IV is de-

termined using various non-integer derivatives further, we also determine the transfer function

of DST-I, DST-II and DST-III [11][12]. In section 4, computative problems and comparative

analysis is discussed and at last, conclusion discussed based on DST interpolation approach.

2. DEFINITIONS OF VARIOUS FRACTIONAL ORDER DERIVATIVES

2.1. Grunwald-Letnikov fractional derivative. Fractional derivative of a function f (t) of

order Re (β )> 0 using Grunwald-Letinkov definition.

Dβ ( f (t)) = lim
h→0

∞

∑
k=0

(−1)k(β

k

)
f (t− kh)

hβ
(1)

Where (
β

k

)
=

β !
k!(β − k)!

=
Γ(β +1)

Γ(k+1)Γ(β − k+1)

The symbol of gamma function is denoted Γ(·)

Γ(x) =
∫

∞

0
e−t tx−1dt
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Theory of gamma function is generalizing the factorial function of natural numbers.

Dβ eat = aβ eat (2)

Dβ Asin(ωt +φ) = Aω
β sin(ωt +φ +

π

2
β ) (3)

Dβ Acos(ωt +φ) = Aω
β cos(ωt +φ +

π

2
β ) (4)

2.2. Weyl’s Fractional Derivative.

W−β f (t) =
1

Γ(β )

∫
∞

t
(ξ − t)β−1 f (ξ )dξ , Re(β )> 0, t > 0

So that W−β f (t) exists for all f∈S and all β with Re(β ) > 0. Where S is the class of all

functions f which are infinitely differentiable everywhere.

β = n−ν

ν > 0 and the integer with smallest value is denoted by n and n always greater than ν . If f is a

function, not necessarily of class S, for which W−β f (t) exists and has n continuous derivatives;

then we define W β f (t)

W β f (t) = En[W−ν f (t)] (5)

W β is represented by Weyl’s derivative.

Where

En = (−1)n dn

dtn

W β eat = aβ eat (6)

W β Asin(ωt +φ) = Aω
β sin(ωt +φ − π

2
β ) (7)

W β Acos(ωt +φ) = Aω
β cos(ωt +φ − π

2
β ) (8)
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2.3. Conformable fractional derivative. If g is a function g : [0,∞)→ R then the fractional

order β Conformable derivative definition is

Dβ (g(t)) = lim
h→0

g(t +ht1−β )−g(t)
h

(9)

t>0 i.e. for all values of t, β ∈ (0,1). If an condition exists for a function g which is

β -differentiable with in the range (0,b), with condition b > 0 and limt→0+ Dβ (g(t)). Its

expression can be define as

Dβ (g(0)) = lim
t→0+

Dβ (g(t))

If function g is β -differentiable then the conformable fractional derivative of some elementary

function is

Dβ eat = at1−β eat , a∈R (10)

Dβ Asin(ωt +φ) = Aωt1−β sin(ωt +φ +
π

2
), (11)

Dβ Acos(ωt +φ) = Aωt1−β cos(ωt +φ +
π

2
), (12)

3. DESIGN METHOD FOR VARIOUS FRACTIONAL ORDER DERIVATIVES USING DST-

IV

3.1. Design method for Grunwald-Letnikov fractional order derivative using DST-IV.

Suppose we have a signal f (t) in continuous-time domain and signal f (t) are sampled and

converted into f (0), f (1), · · · , f (P− 1) i.e. finite-time sequence/discrete-time sequence. Then

DST-IV function is defined as

F(k) =
P−1

∑
m=0

√
2
P

f (m)sin

(
π(m+ 1

2)(k+
1
2)

P

)
(13)

f (m) =
P−1

∑
k=0

√
2
P

F(k)sin

(
π(m+ 1

2)(k+
1
2)

P

)
(14)

After putting the value eq.(13) into eq.(14), we get

f (m) = ∑
P−1
k=0

√
2
P

[√
2
P ∑

P−1
n=0 f (n)sin

(
π(n+ 1

2 )(k+
1
2 )

P

)]
sin
(

π(m+ 1
2 )(k+

1
2 )

P

)
(15)
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f (m) =
P−1

∑
n=0

P−1

∑
k=0

{
2
P

f (n)sin

(
π(n+ 1

2)(k+
1
2)

P

)
sin

(
π(m+ 1

2)(k+
1
2)

P

)}

Put t in place m in the previous equation, here t represent continuous-time and m represent

discrete-time.

f (t) =
P−1

∑
n=0

f (n)b(n, t) (16)

f (t) is a interpolated signal for the continuous-time domain and b(n, t) is a basis interpolated

function

b(n, t) =
2
P

P−1

∑
k=0

sin

(
π(n+ 1

2)(k+
1
2)

P

)
sin

(
π(t + 1

2)(k+
1
2)

P

)
(17)

Apply Grunwald-Letnikov fractional derivative definition of β th order on equation (16)

Dβ f (t) =
P−1

∑
n=0

f (n)
[
Dβ b(n, t)

]
(18)

From eq. 18 fractional derivative of basis interpolated function is

Dβ b(n, t) = 2
P ∑

P−1
k=0

(
π(k+ 1

2 )
P

)β

sin
(

π(n+ 1
2 )(k+

1
2 )

P

)
sin
(

π(t+ 1
2 )(k+

1
2 )

P + πβ

2

)
(19)

Putting the value of Dβ b(n, t) into the eq.(18)

Dβ f (t) =
P−1

∑
n=0

f (n)Gn(t) (20)

Gn(t) = 2
P ∑

P−1
k=0

(
π(k+ 1

2 )
P

)β

sin
(

π(n+ 1
2 )(k+

1
2 )

P

)
sin
(

π(t+ 1
2 )(k+

1
2 )

P + πβ

2

)
(21)

The ideal frequency response of digital differentiator and its transfer function approximates

equal

Hd(ω) = ( jω)β e− jωI (22)

Delay value denotes by I and the equation of the FIR filters system function is

H(z) =
P−1

∑
υ=0

h(υ)z−υ (23)
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When an input signal u(m) is passed through a system FIR filter then its output generate u(m−

1),u(m− 2), ...,u(m−P+ 1) samples with equal amount of delay in each of the input signal.

The output of the FIR filter is

y(m) =
P−1

∑
υ=0

h(υ)u(m−υ) (24)

The filter coefficients h(υ) is determined from the eq.(20), when y(m) approximately equal to

the Dβ u(m− I).

y(m)≈ Dβ u(m− I) (25)

For solving this problem an index mapping technique is used


u(m) = f (P−1)

u(m−1) = f (P−2)
...

u(m−P+1) = f (0)

 (26)

The eq.(26) can be simplified after linking eq.(20) and eq.(24)

f (n) = u(m− (P−1)+n) 0 6 n 6 P−1 (27)

Equate f (t) = u(m− (P−1)+ t) into eq.(20)

Dβ u(m− (P−1)+ t) =
P−1

∑
n=0

u(m− (P−1)+n)Gn(t) (28)

h(υ) = GP−1−υ(P−1− I) (29)

FIR filter coefficients is determined after equating eq.(21) into (29),

h(υ) = 2
P ∑

P−1
k=0

(
(k+ 1

2 )π
P

)β

sin
(

π(P−υ− 1
2 )(k+

1
2 )

P

)
sin
(

π(P−I− 1
2 )(k+

1
2 )

P + πβ

2

)
(30)

With the help of window techniques, we can modify the coefficients of FIR filter. So, in this

paper we are using Hanning window and it’s transfer function is defined below as

w(υ) = 0.5−0.5 cos
(

2πυ

P−1

)
(31)

Modified coefficients of FIR filter using window techniques is

hw(υ) = h(υ)w(υ) (32)
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The system performance of the digital fractional order differentiator can be evaluated for DST-

IV method with the help of integral error squares formula in frequency domain.

E =

√∫
λ1π

0
| H(e jω)−Hd(ω) |2dω (33)

Above expression in term of E is used for checking performance of designing approach of

digital fractional order differentiator.

3.2. Design method for Weyl’s fractional derivative using DST-IV. Similarly for DST-IV

method the system transfer function using Weyl’s fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0

(
(k+ 1

2 )π
P

)β

sin
(

π(P−υ− 1
2 )(k+

1
2 )

P

)
sin
(

π(P−I− 1
2 )(k+

1
2 )

P − πβ

2

)
(34)

With the help of window techniques, we can modify the coefficients of FIR filter. In this paper

we are using Hanning window

w(υ) = 0.5−0.5 cos
(

2πυ

P−1

)
(35)

Modified coefficients of FIR filter using window techniques is

hw(υ) = h(υ)w(υ) (36)

3.3. Design method For Conformable fractional derivative using DST-IV. Similarly for

DST-IV method the system transfer function using Conformable fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0

(
π(P−1−I)(k+ 1

2 )
P

)1−β

sin
(

π(P−υ− 1
2 )(k+

1
2 )

P

)
sin
(

π(P−I− 1
2 )(k+

1
2 )

P + π

2

)
(37)

With the help of window techniques, we can modify the coefficients of FIR filter.In this paper

we are using Hanning window and it’s transfer function is defined below as

w(υ) = 0.5−0.5 cos
(

2πυ

P−1

)
(38)

Modified coefficients of FIR filter using window techniques is

hw(υ) = h(υ)w(υ) (39)
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4. DESIGN EXAMPLES

Example 1: For the proposed design method error calculated for differentiators with vary-

ing fractional order using DST-IV method are given in the below table.The digital fractional

order differentiator performance evaluated with the help of eq. (33). It is given in terms of

frequency response of DST-IV approach and measured for various differentiators with the help

of error size E.Minimum value of E means that the performance of proposed design method us-

ing DST-IV DFOD perform well. The optimum design values are selected as P = 100, I = 50,

λ1 = 0.9 , orders β = 0.3,0.5,0.7,0.9 for digital fractional order differentiator (DFOD).

Orders β = 0.3 β = 0.5 β = 0.7 β = 0.9

EGrunwald 0.0159 0.0087 0.0034 8.0863×10−4

EWeyl′s 0.1245 0.2378 0.3688 0.5032

ECon f ormable 3.0838 1.0645 0.2742 0.1049

With the help of above given error table, we can determine which digital fractional order dif-

ferentiator (DFOD) will be suited for our proposed mehtod.In DST-IV case, the order from

onward β = 0.3 to β = 0.9 the size of error for Grunwald-Letinkov based digital fractional

order differentiator are smaller than Conformable and Weyl’s based digital fractional order dif-

ferentiator.Size of error for fractional order onward β = 0.7 to β = 0.9 Conformable based

DFOD is smaller than the Weyl’s based DFOD.

Fig. 1,2,3,4 indicates the frequency response i.e. the magnitude and phase response

of H(z) for order β = 0.3,0.5,0.7,0.9. For the ideal case the magnitude response is wβ

and phase response is 90β . The normalized phase response for the conventional method is

90∗ [angle(H(e jω))+ωI]/0.5π . Error determine with the help of eq.(33).
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Fig. 1: The result of the proposed design method using window technique for DST-IV based

DFOD with order β = 0.3.The error is shown with the help of magnitude and phase re-

sponse.For magnitude-frequency graph Grunwald and Weyl’s DFOD aproximately same as the

ideal response.In the Phase response graph, it shows that the Ideal response and proposed design

method response i.e. DST-IV Grunwald DFOD approximately the same at near region ω = π

for other DFOD it show huge error.
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Fig. 2: The result of the proposed design methods using window technique for DST-IV based

DFOD with order β = 0.5.For magnitude-frequency graph Grunwald based DFOD aproxi-

mately same as the ideal response.In the Phase response graph,it shows that the Ideal response

and proposed design method response i.e. DST-IV Grunwald DFOD approximately the same at

near region ω = π for other DFOD it show huge error.
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Fig. 3: The result of the proposed design methods using window technique, DST-IV based

DFOD with order β = 0.7. In the magnitude response graph Grunwald DFOD aproximately

same as the ideal response. While Conformable and Weyl’s DFOD littel bit closer to the ideal

response.In the Phase response graph,it shows that the Ideal response and proposed design

method response i.e. DST-IV Grunwald DFOD approximately the same at near region ω = π

for other DFOD it show huge error.
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Fig. 4: The result of the proposed design methods using window technique, DST-IV based

DFOD for order β = 0.9. In the magnitude response graph all the DFOD are close to the ideal

response. In the Phase response graph,it shows that the Ideal response and proposed design

method response i.e. DST-IV Grunwald DFOD approximately the same at near region ω = π

and Conformable DFOD littel bit closer to Ideal response.

Example 2: The frequency response of the proposed design approach for various DFOD

using DST-III method are shown in this example.Performance of fractional order differentiator

evaluated using DST-III method with the help of integral square error formula. It is given in

terms of frequency response.

DST-III method system transfer function is given below:

F(k) =
P−1

∑
m=0

√
2
P

cm f (m)sin

(
π(k+ 1

2)(m+1)
P

)
(40)

f (m) =
P−1

∑
k=0

√
2
P

cmF(k)sin

(
π(k+ 1

2)(m+1)
P

)
(41)
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cm =


1√
2

m = P−1

1 otherwise

The transfer function of DST-III using Grunwald-Letnikov fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0 cP−1−υcP−1−I

(
π(k+ 1

2 )
P

)β

sin
(

π(k+ 1
2 )(P−υ)
P

)
sin
(

π(k+ 1
2 )(P−I)
P + πβ

2

)
(42)

The transfer function of DST-III using Weyl’s fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0 cP−1−υcP−1−I

(
π(k+ 1

2 )
P

)β

sin
(

π(k+ 1
2 )(P−υ)
P

)
sin
(

π(k+ 1
2 )(P−I)
P − πβ

2

)
(43)

The transfer function of DST-III using Conformable fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0 cP−1−υcP−1−I

(
π(k+ 1

2 )(P−1−I)
P

)1−β

sin
(

π(k+ 1
2 )(P−υ)
P

)
sin
(

π(k+ 1
2 )(P−I)
P + π

2

)
(44)

Performance of DST-III based DFOD evaluated with the help of integral square error formula

of eq.(33) and error measured for DST-III based approach. Effectiveness of DST-III approach

can be measured for various differentiators with the help of size of error E.The Optimum design

values are selected as P = 100, I = 50, λ1 = 0.9 , orders β = 0.3,0.5,0.7,0.9 for the different

fractional derivatives.

Orders β = 0.3 β = 0.5 β = 0.7 β = 0.9

EGrunwald 0.0159 0.0087 0.0034 8.0090×10−4

EWeyl′s 0.1247 0.2379 0.3688 0.5032

ECon f ormable 3.0927 1.1645 0.2742 0.1050

With the help of above given error table, we can determine which digital fractional order dif-

ferentiator (DFOD) will be suited for our proposed mehtod.In DST-III case, the order from

onward β = 0.3 to β = 0.9 the size of error for Grunwald-Letinkov based digital fractional

order differentiator are smaller than Conformable and Weyl’s based digital fractional order dif-

ferentiator.Size of error for fractional order onward β = 0.7 to β = 0.9 Conformable based

DFOD is smaller than the weyl’s based DFOD. Fig. 5,6,7,8 indicates the frequency response
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i.e. the magnitude and phase response of H(z). For the ideal case the magnitude response is

wβ and phase response is 90β . The normalized phase response for the conventional method is

90∗ [angle(H(e jω))+ωI]/0.5π .

Fig. 5: The result of the proposed design method using window technique for DST-III based

DFOD with order β = 0.3.The error is shown with the help of magnitude and phase re-

sponse.For magnitude-frequency graph Grunwald and Weyl’s DFOD aproximately same as the

ideal response.In the Phase response graph, it shows that the Ideal response and proposed design

method response i.e. DST-III Grunwald DFOD approximately the same at near region ω = π

for other DFOD it show huge error.
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Fig. 6 : The result of the proposed design methods using window technique for DST-III based

DFOD with order β = 0.5.For magnitude-frequency graph Grunwald based DFOD aproxi-

mately same as the ideal response and Weyl’s DFOD also close to Ideal response.In the Phase

response graph the Ideal response and proposed design method response i.e. DST-III Grunwald

DFOD approximately the same at near region ω = π for other DFOD it show huge error.
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Fig. 7 : The result of the proposed design methods using window technique for DST-III based

DFOD with order β = 0.7.For magnitude-frequency graph Grunwald based DFOD aproxi-

mately same as the ideal response and Weyl’s DFOD also close to Ideal response.In the Phase

response graph the Ideal response and proposed design method response i.e. DST-III Grunwald

DFOD approximately the same at near region ω = π for other DFOD it show huge error.
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Fig. 8: The result of the proposed design methods using window technique for DST-III

based DFOD with order β = 0.9. For magnitude-frequency graph Grunwald based DFOD

aproximately same as the ideal response and Weyl’s DFOD also close to Ideal response.In the

Phase response graph the Ideal response and proposed design method response i.e. DST-III

Grunwald DFOD approximately the same at near region ω = π and other DFOD littel bit

closer to ideal response.

Example 3: The frequency response of the proposed design approach for various DFOD

using DST-II method are shown in this example.Performance of fractional order differentiator

evaluated using DST-II method with the help of integral square error formula. It is given in

terms of frequency response.

DST-II method system transfer function is given below

F(k) =
P−1

∑
m=0

√
2
P

cm f (m)sin

(
π(m+ 1

2)(k+1)
P

)
(45)
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f (m) =
P−1

∑
k=0

√
2
P

cmF(k)sin

(
π(m+ 1

2)(k+1)
P

)
(46)

cm =


1√
2

m = P−1

1 otherwise

The transfer function of DST-II using Grunwald-Letnikov fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0 cm

2
(

π(k+1)
P

)β

sin
(

π(P−υ− 1
2 )(k+1)

P

)
sin
(

π(P−I− 1
2 )(k+1)

P + πβ

2

)
(47)

The transfer function of DST-II using Weyl’s fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0 cm

2
(

π(k+1)
P

)β

sin
(

π(P−υ− 1
2 )(k+1)

P

)
sin
(

π(P−I− 1
2 )(k+1)

P − πβ

2

)
(48)

The transfer function of DST-II using Conformable fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0 cm

2
(

π(P−1−I)(k+1)
P

)1−β

sin
(

π(P−υ− 1
2 )(k+1)

P

)
sin
(

π(P−I− 1
2 )(k+1)

P + π

2

)
(49)

Performance of DST-II based DFOD evaluated with the help of integral square error formula

and error measured for DST-II based approach. Effectiveness of DST-II approach can be mea-

sured for various differentiators with the help of size of error E.The Optimum design values are

selected as P = 100, I = 50, λ1 = 0.9 , orders β = 0.3,0.5,0.7,0.9 for the different fractional

derivatives.

Orders β = 0.3 β = 0.5 β = 0.7 β = 0.9

EGrunwald 0.0148 0.0081 0.0033 8.5137×10−4

EWeyl′s 0.1246 0.2377 0.3686 0.5029

ECon f ormable 3.0899 1.0630 0.6305 0.0989

On the basis of above given error table, we can determine which DFOD will be suited for our

proposed design mehtod.In DST-II case, the order from onward β = 0.3 to β = 0.9 the size of

error for Grunwald-Letinkov based DFOD are smaller than other DFOD.For order β = 0.7 size

of error for weyl’s DFOD is smaaler than Conformanble DFOD, while for order β = 0.9 size

of error for Conformable based DFOD is smaller than the weyl’s based DFOD.Fig. 9,10,11 and

12 shows the frequency response.
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Fig. 9 : The result of the proposed design method using window technique for DST-II based

DFOD with order β = 0.3.For magnitude-frequency graph Grunwald and Weyl’s DFOD aprox-

imately same as the ideal response.In the Phase response graph,the Ideal response and proposed

design method response i.e. DST-II Grunwald DFOD approximately the same at near region

ω = π for other DFOD it show huge error.
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Fig. 10 : The result of the proposed design method using window technique for DST-II based

DFOD with order β = 0.5.For magnitude-frequency graph Grunwald and Weyl’s DFOD aprox-

imately same as the ideal response.In the Phase response graph, the Ideal response and proposed

design method response i.e. DST-II Grunwald DFOD approximately the same at near region

ω = π for other DFOD it show huge error.
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Fig. 11 :The result of the proposed design method using window technique for DST-II based

DFOD with order β = 0.7.For magnitude-frequency graph Grunwald and Weyl’s DFOD aprox-

imately same as the ideal response.In the Phase response graph,the Ideal response and proposed

design method response i.e. DST-II Grunwald DFOD approximately the same at near region

ω = π for other DFOD it show huge error.
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Fig. 12 : The result of the proposed design methods using window technique for DST-II

based DFOD with order β = 0.9.For magnitude-frequency graph Grunwald based DFOD

aproximately same as the ideal response and Weyl’s DFOD also close to Ideal response.In the

Phase response graph the Ideal response and proposed design method response i.e. DST-II

Grunwald DFOD approximately the same at near region ω = π and other DFOD littel bit

closer to ideal response.

Example 4: The frequency response of the proposed design approach for DFOD using DST-I

method are shown in this example. The performance of differentiators evaluated using integral

square formula in term of frequency.

DST-I method system transfer function is given below

F(k) =
P−1

∑
m=0

√
2

P+1
f (m)sin

(
π(m+1)(k+1)

P+1

)
(50)

f (m) =
P−1

∑
k=0

√
2

P+1
F(k)sin

(
π(m+1)(k+1)

P+1

)
(51)
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The transfer function of DST-I using Grunwald-Letnikov fractional order derivative is

h(υ) = 2
P+1 ∑

P−1
k=0

(
π(k+1)

P+1

)β

sin
(

π(P−υ)(k+1)
P+1

)
sin
(

π(P−I)(k+1)
P+1 + πβ

2

)
(52)

The transfer function of DST-I using Weyl’s fractional order derivative is

h(υ) = 2
P+1 ∑

P−1
k=0

(
π(k+1)

P+1

)β

sin
(

π(P−υ)(k+1)
P+1

)
sin
(

π(P−I)(k+1)
P+1 − πβ

2

)
(53)

The transfer function of DST-I using Conformable fractional order derivative is

h(υ) = 2
P ∑

P−1
k=0

(
π(P−1−I)(k+1)

P+1

)1−β

sin
(

π(P−υ)(k+1)
P+1

)
sin
(

π(P−I)(k+1)
P+1 + π

2

)
(54)

Effectiveness of DST-I approach can be measured for various differentiators with the help of

size of error E.The Optimum design values are selected as P = 100, I = 50, λ1 = 0.9 , orders

β = 0.3,0.5,0.7,0.9 for DFOD.

Orders β = 0.3 β = 0.5 β = 0.7 β = 0.9

EGrunwald 0.0147 0.0131 0.0033 7.426×10−4

EWeyl′s 0.1247 0.2382 0.3689 0.4183

ECon f ormable 3.950 1.0650 0.0965 0.0985

On the basis of above given error table, we can determine which DFOD will be suited for our

proposed design mehtod.In DST-I case, the order from onward β = 0.3 to β = 0.9 the size of

error for Grunwald-Letinkov based DFOD are smaller than other DFOD.Onwards β = 0.7 to

β = 0.9 size of error for Conformable based DFOD is smaller than the weyl’s based DFOD.

Fig. 13,14,15,16 shows the frequency response.



6084 HARI PRATAP, FAHED ZULFEQARR, AMIT UJLAYAN

Fig. 13 :The result of the proposed design method using window technique for DST-I based

DFOD for order β = 0.3.For magnitude-frequency graph Grunwald and Weyl’s DFOD aproxi-

mately same as the ideal response. In the Phase response graph,the Ideal response and proposed

design method response i.e. DST-I Grunwald DFOD approximately the same at near region

ω = π for other DFOD it is showing huge error.
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Fig. 14 : The result of the proposed design method using window technique for DST-I based

DFOD for order β = 0.5.For magnitude-frequency graph Grunwald and Weyl’s DFOD aproxi-

mately same as the ideal response. In the Phase response graph,the Ideal response and proposed

design method response i.e. DST-I Grunwald DFOD approximately the same at near region

ω = π for other DFOD it is showing huge error.
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Fig. 15 : The result of the proposed design method using window technique for DST-I based

DFOD for order β = 0.7.For magnitude-frequency graph Grunwald and Weyl’s DFOD aproxi-

mately same as the ideal response. In the Phase response graph,the Ideal response and proposed

design method response i.e. DST-I Grunwald DFOD approximately the same at near region

ω = π for other DFOD it is showing huge error.
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Fig. 16 :The result of the proposed design methods using window technique for DST-I based

DFOD with order β = 0.9.For magnitude-frequency graph Grunwald based DFOD aproxi-

mately same as the ideal response and Weyl’s DFOD also close to Ideal response.In the Phase

response graph the Ideal response and proposed design method response i.e. DST-I Grunwald

DFOD approximately the same at near region ω = π and other DFOD littel bit closer to ideal

response.

5. CONCLUSION

In this paper, comparative analysis of DSTs interpolation approach of Grunwald-Letinkov,

Weyl’s and Conformable DFOD with respect to ideal response are presented. On the basis of

computative problems we conclude that, Grunwald-Letinkov FOD with DST-IV is well suited

for optimal design values P = 100, I = 50, λ1 = 0.9. Weyl’s DFOD perform better than Con-

formable DFOD in case of DST-I,DST-II, DST-III and DST-IV.For order β = 0.9, the size

of error for Conformables DFOD is smaller than Weyls DFOD in case of all DST aprroach.

In future our interest is to design a digital fractional order differentiators for other fractional
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derivatives with DCTs/DSTs. We are also interested in extending interpolation approach to

multidimensional DCTs/DSTs.
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