Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 1, 1-14 ISSN: 1927-5307

INTUITIONISTIC (α, β) -FUZZY H_v -SUBMODULES

M. ASGHARI-LARIMI*

Department of Mathematics, Golestan University, Gorgan, Iran

Abstract. The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization of the notion of fuzzy sets. Using the notion of "belongingness (\in)" and "quasi-coincidence (q)" of fuzzy points with fuzzy sets, we introduce the concept of an intuitionistic (α, β)-fuzzy H_v -submodules of an H_v -modules, where $\alpha \in \{\in, q\}, \beta \in \{\in, q, \in \lor q, \in \land q\}$ and, then we investigate the basic properties of these notions.

Keywords: Hyperstructure, H_v -Module, Fuzzy set, Intuitionistic fuzzy set, Intuitionistic (α, β)-fuzzy H_v -submodule.

2000 AMS Subject Classification: 20N20; 20N25; 03B52

1. Introduction

The notion of a hypergroup introduced by Marty in 1934 [16]. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Since then, hundreds of papers and

^{*}Corresponding author

E-mail address: asghari2004@yahoo.com

Received December 12, 2011

M. ASGHARI-LARIMI*

several books have been written on this topic, see [11, 12, 19]. Vougiouklis [19] introduced a new class of hyperstructures, the so-called H_v -structures. The H_v -structures are hyperstructures where equality is replaced by non-empty intersection.

The notion of a fuzzy subset introduced by Zadeh in 1965 [21] as a function from a nonempty set H to unit real interval I = [0, 1].

After the introduction of fuzzy sets by Zadeh, there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [2, 3] is one among them. An intuitionistic fuzzy set gives both a membership degree and a non-membership degree. The membership and non-membership values induce an indeterminacy index, which models the hesitancy of deciding the degree to which an object satisfies a particular property. Many concepts in fuzzy set theory were also extended to intuitionistic fuzzy set theory, such as intuitionistic fuzzy relations, intuitionistic L-fuzzy sets, intuitionistic fuzzy implications, intuitionistic fuzzy grade of hypergroups, intuitionistic fuzzy logics, and the degree of similarity between intuitionistic fuzzy sets, etc., [1, 9, 10]. In [4] Biswas applied the concept of intuitionistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a group. Davvaz et al. [14] considered the intuitionistic fuzzy sets for H_v -modules.

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [17], played a vital role to generate some different types of fuzzy subgroups. Bhakat and Das [6, 7] gave the concepts of (α, β) -fuzzy subgroups by using the notion of "belongingness (\in) " and "quasi-coincidence (q)" between a fuzzy point and a fuzzy subgroup, where α, β are any two of $\{\in, q, \in \forall q, \in \land q\}$ with $\alpha \neq \in \land q$, and introduced the concept of an $(\in, \in \lor q)$ -fuzzy subgroup. In [8] $(\in, \in \lor q)$ - fuzzy subrings and ideals defined. In [15] Jun and Song initiated the study of (α, β) -fuzzy set. In [18] Shabir, Jun et al. studied characterizations of regular semigroups by (α, β) -fuzzy ideals. In [20] Yuan, Li et al. redefined (α, β) -intuitionistic fuzzy subgroups. Davvaz and Corsini initiated the study of (α, β) -fuzzy H_v -Ideals of H_v -Rings in [13]. This paper continues this line of research.

The paper is organized as follows: in Section 2 some fundamental definitions on H_v structures and fuzzy sets are explored, in Section 3 we define intuitionistic (α, β) -fuzzy
with H_v -submodules and then establish some useful theorems.

2. Preliminaries

Let H be a nonempty set and let $\wp^*(H)$ be the set of all nonempty subsets of H. A hyperoperation on H is a map $\circ : H \times H \longrightarrow \wp^*(H)$ and the couple (H, \circ) is called a hypergroupoid (or hyperstructure).

If A and B are nonempty subsets of H, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad x \circ A = \{x\} \circ A \quad \text{and} \quad A \circ x = A \circ \{x\}.$$

A hypergroupoid (H, \circ) is called a *semihypergroup* if for all x, y, z of H, we have $(x \circ y) \circ z = x \circ (y \circ z)$, which means that

$$\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in y \circ z} x \circ v.$$

We say that a semihypergroup (H, \circ) is a *hypergroup* if for all $x \in H$, we have $x \circ H = H \circ x = H$.

A hyperstructure (H, \circ) is called an H_v -semigroup if

$$((x \circ y) \circ z) \cap (x \circ (y \circ z)) \neq \emptyset,$$

for all $x, y, z \in H$.

Definition 2.1. [19] An H_v -ring is a system (R, +, .) with two hyperoperations satisfying the following axioms:

- (i) (R, +) is an H_v -group, i.e., $((x + y) + z) \cap (x + (y + z)) \neq \emptyset$, for all $x, y, z \in R$, x + R = R + x = R, for all $x \in R$;
- (ii) (R, .) is an H_v -semigroup;
- (iii) "." is weak distributive with respect to "+", i.e., for all $x, y, z \in R$,

$$(x.(y+z)) \cap (x.y+x.z) \neq \emptyset,$$

$$(x+y).z)) \cap (x.z+y.z)) \neq \emptyset.$$

An H_v -group (R, +) is called a *weak commutative* H_v -group if $(x + y) \cap (y + x) \neq \emptyset$ for all $x, y \in R$.

Definition 2.2. [19] A nonempty set M is called an H_v -module over an H_v -ring R if (M, +) is a weak commutative H_v -group and there exists a map

$$\therefore : R \times M \longrightarrow \wp^*(M), \quad (r, x) \longmapsto r.x$$

such that for all $a, b \in R$ and $x, y \in M$, we have

$$(a.(x+y)) \cap (a.x+a.y) \neq \emptyset,$$
$$(a.(x+y)) \cap (a.x+a.y) \neq \emptyset,$$
$$(a.(b.x)) \cap ((ab).x) \neq \emptyset.$$

We note that an H_v -module is a generalization of a module. For more definitions, results and applications on H_v -ring, we refer the reader to [19]. Note that by using fuzzy sets, we can consider the structure of H_v -module on any ordinary module.

Definition 2.3. [14] An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in M is called an intuitionistic fuzzy H_v -submodule of M if

(1)
$$\mu_A(x) \wedge \mu_A(y) \leq \bigwedge_{z \in x+y} \mu_A(z) \text{ for all } x, y \in M,$$

(2) for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a + y) \cap (z + a)$ and $\mu_A(x) \wedge \mu_A(a) \leq \mu_A(y) \wedge \mu_A(z)$,

(3)
$$\mu_A(y) \leq \bigwedge_{z \in x.y} \mu_A(z)$$
 for all $y \in M$ and $x \in R$,

(4)
$$\bigvee_{z \in x+y} \lambda_A(z) \leq \lambda_A(x) \lor \lambda_A(y)$$
 for all $x, y \in M$,

(5) for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a + y) \cap (z + a)$ and $\lambda_A(y) \lor \lambda_A(z) < \lambda_A(x) \lor \lambda_A(a)$,

(6) $\bigvee_{z \in x.y} \lambda_A(z) \leq \lambda_A(y)$ for all $y \in M$ and $x \in R$.

The concept of a fuzzy set in a non-empty set was introduced by Zadeh [21] in 1965. Let H be a non-empty set. A mapping $\mu : H \longrightarrow [0; 1]$ is called a *fuzzy set* in H. The *complement* of μ , denoted by μ^c , is the fuzzy set in H given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in H$.

Definition 2.4. An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \lambda_A(x)) | x \in X\}$, where the functions $\mu_A : X \longrightarrow [0; 1]$ and $\lambda_A : X \longrightarrow [0; 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\lambda_A(x)$) of each element $x \in X$ with respect to the set A, respectively, and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \lambda_A)$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \lambda_A(x)) | x \in X\}$.

Definition 2.5. [2] Let $A = (\mu_A, \lambda_A)$ and $B = (\mu_B, \lambda_B)$ be intuitionistic fuzzy sets in X. Then

 $\begin{array}{l} (1) \ A \subseteq B \ iff \ \mu_{A}(x) \leq \mu_{B}(x) \ and \ \lambda_{A}(x) \geq \lambda_{B}(x) \ for \ all \ x \in X, \\ (2) \ A^{c} = \{(x, \lambda_{A}(x), \mu_{A}(x)) | x \in X\}, \\ (3) \ A \cap B = \{(x, \min\{\mu_{A}(x), \mu_{B}(x)\}, \max\{\lambda_{A}(x), \lambda_{B}(x)\}) | x \in X\}, \\ (4) \ A \cup B = \{(x, \max\{\mu_{A}(x), \mu_{B}(x)\}, \min\{\lambda_{A}(x), \lambda_{B}(x)\}) | x \in X\}, \\ (5) \ \Diamond A = \{(x, \lambda_{A}^{c}(x), \lambda_{A}(x)) | x \in X\}. \end{array}$

3. Intuitionistic (α, β) -Fuzzy H_v -Submodules

Definition 3.1. [6] Let μ be a fuzzy subset of R. If there exist a $t \in (0, 1]$ and an $x \in R$ such that

$$\mu(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{otherwise.} \end{cases}$$

Then μ is called a fuzzy point with support x and value t and is denoted by x_t .

Definition 3.2. [6] Let μ be a fuzzy subset of R and x_t be a fuzzy point.

- (1) If $\mu(x) \ge t$, then we say x_t belongs to μ , and write $x_t \in \mu$.
- (2) If $\mu(x) + t > 1$, then we say x_t is quasi-coincident with μ , and write $x_t q \mu$.
- (3) $x_t \in \lor q\mu \iff x_t \in \mu \text{ or } x_t q\mu.$
- (4) $x_t \in \land q\mu \iff x_t \in \mu \text{ and } x_t q\mu.$

In what follows, unless otherwise specified, α and β will denote any one of $\in, q, \in \lor q$ or $\in \land q$ with $\alpha \neq \in \land q$, which was introduced by Bhakat and Das [7].

Definition 3.3. [13] Let R be an H_v -ring. A fuzzy subset A of R is said to be an (α, β) -fuzzy left (right) H_v -ideals of R if for all $t, r \in (0, 1]$,

- (1) $x_t \alpha A$, $y_r \alpha A$ implies $z_{t \wedge r} \beta A$ for all $z \in x + y$,
- (2) $x_t \alpha A$, $a_r \alpha A$ implies $y_{t \wedge r} \beta A$ for some $y \in R$ with $x \in a + y$,
- (3) $x_t \alpha A$, $a_r \alpha A$ implies $z_{t \wedge r} \beta A$ for some $z \in R$ with $x \in z + a$,
- (4) $y_t \alpha A$ and $x \in R$ imply $z_t \beta A$ for all $z \in x.y$

 $(x_t \alpha A \text{ and } y \in R \text{ imply } z_t \beta A \text{ for all } z \in x.y).$

In what follows, let M denote an H_v -module over an H_v -Ring R unless other wise specified. We start by defining the notion of intuitionistic (α, β) -fuzzy H_v -submodules.

Definition 3.4. An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in M is said to be an intuitionistic (α, β) -fuzzy left (right) H_v -submodule of M if for all $t, r \in (0, 1]$,

- (1) For all $x, y \in M$, $x_t, y_r \alpha \mu_A$ implies $z_{t \wedge r} \beta \mu_A$ for all $z \in x + y$,
- (2) For all $x, a \in M$, $x_t, a_r \alpha \mu_A$ implies $(y \wedge z)_{t \wedge r} \beta \mu_A$ for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$,
- (3) For all $y \in M$, $x \in R$, $y_t \alpha \mu_A$ implies $z_t \beta \mu_A$ for all $z \in x.y$ (For all $y \in M$, $x \in R$, $y_t \alpha \mu_A$ implies $z_t \beta \mu_A$ for all $z \in y.x$),
- (4) For all $x, y \in M$, $x_t, y_r \overline{\alpha} \lambda_A$ implies $z_{t \wedge r} \overline{\beta} \lambda_A$ for all $z \in x + y$,
- (5) For all $x, a \in M$, $x_t, a_r \overline{\alpha} \lambda_A$ implies $(y \wedge z)_{t \wedge r} \overline{\beta} \lambda_A$ for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$,
- (6) For all $y \in M$, $x \in R$, $y_t \overline{\alpha} \lambda_A$ implies $z_t \overline{\beta} \lambda_A$ for all $z \in x.y$ (For all $y \in M$, $x \in R$, $y_t \overline{\alpha} \lambda_A$ implies $z_t \overline{\beta} \lambda_A$ for all $z \in y.x$),

where $(y \wedge z)_{t \wedge r} \alpha \mu_A$ $((y \wedge z)_{t \wedge r} \overline{\beta} \lambda_A)$, i.e., $y_{t \wedge r} \alpha \mu_A$ and $z_{t \wedge r} \alpha \mu_A$ $(y_{t \wedge r} \overline{\beta} \lambda_A)$ and $z_{t \wedge r} \overline{\beta} \lambda_A)$. And, the symbol $\overline{\beta}$ means β does not hold for all $\beta \in \{\in, q, \in \lor q, \in \land q\}$.

Let R be an H_v -ring. Then a fuzzy subset λ_A of M is said to be an *anti* (α, β) -fuzzy left (right) H_v -submodule of M if it satisfies the conditions (4)-(6) of Definition 3.4 for all $t, r \in (0, 1]$.

In this paper we present all the proofs for left H_v -submodules. Similar results hold for right H_v -submodules.

Example 3.5. Let $M = \{a, b, c, d\}$ and $R = \{a, b, c\}$. Let operation "." and hyperoperation "+" and defied by the following tables

	a	b	c	d		+	a	b	С	d
a	a	a	a	a		a	a	b	С	d
b	a	b	b	b	and	b	b	$\{a,b\}$	d	С
с	a	с	с	С		С	c	d	$\{a,c\}$	b
d	a	d	d	d		d	d	С	b	$\{a,d\}$

Let μ and λ be two fuzzy subset of M such that $\mu(a) = 0.6$, $\mu(b) = \mu(c) = \mu(d) = 0.8$ and $\lambda(a) = \lambda(b) = \lambda(c) = \lambda(d) = 0.3$. Then (μ, λ) is an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -submodule of M.

Proof. μ is an $(\in, \in \lor q)$ -fuzzy H_v -ideal of M (see [13]). So, it is easy to see that λ satisfies the conditions (4)-(6) of Definition 3.4.

Lemma 3.6. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy set in M. Then for all $x \in M$ and $r \in (0, 1]$, we have

(1)
$$x_t q \mu_A \iff x_t \overline{\in} \mu_A^c$$
;
(2) $x_t \in \lor q \mu_A \iff x_t \overline{\in} \land \overline{q} \mu_A^c$.
Proof. (1) Let $x \in M$ and $r \in (0, 1]$. Then, we have
 $x_t q \mu_A \iff \mu_A(x) + t > 1$
 $\iff 1 - \mu_A(x) < t$
 $\iff x_t \overline{\in} \mu_A^c$.

(2) Let $x \in M$ and $r \in (0, 1]$. Then, we have

$$\begin{split} x_t &\in \forall q \mu_A \iff x_t {\in} \mu_A \quad \text{or} \quad x_t q \mu_A \\ & \Longleftrightarrow \mu_A(x) \geq t \quad \text{or} \quad \mu_A(x) + t > 1 \\ & \Longleftrightarrow 1 - \mu_A^c(x) \geq t \quad \text{or} \quad 1 - \mu_A^c(x) + t > 1 \\ & \Longleftrightarrow x_t \overline{q} \mu_A^c \quad \text{or} \quad x_t \overline{\in} \mu_A^c \\ & \Longleftrightarrow x_t \overline{\in} \overline{\wedge} \overline{q} \mu_A^c. \end{split}$$

If $A = (\mu_A, \lambda_A)$ is an intuitionistic (α, β) -fuzzy H_v -submodule of M. Since $\alpha \neq \in \land q$, by Lemma 3.6(2) and the Definition 3.4, we have $\alpha \neq \in \lor q$.

Let $\beta = \in, q, \in \land q, \in \lor q$. We write $\beta' = q, \in, \in \lor q, \in \land q$, respectively. It is obvious that $\beta'' = \beta$.

Theorem 3.7. If $A = (\mu_A, \lambda_A)$ is an intuitionistic (\in, \in) -fuzzy H_v -submodule of M, then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy H_v -submodule of M.

Proof. Condition(1). Let $x, y \in M$ and $\mu_A(x) \wedge \mu_A(y) = t$. Then $x_t, y_t \in \mu_A$. By condition (1) of Definition 3.4, we have

$$z_t \in \mu_A$$
 for all $z \in x + y$,

and so $\mu_{\scriptscriptstyle A}(z) \ge t$ for all $z \in x + y$. Consequently

$$\mu_{\scriptscriptstyle A}(x) \wedge \mu_{\scriptscriptstyle A}(y) = t \leq \bigwedge_{z \in x+y} \mu_{\scriptscriptstyle A}(z)$$

for all $x, y \in M$.

Condition(2). Now, let $x, a \in M$ and $\mu_A(x) \wedge \mu_A(a) = t$. Then $x_t, a_t \in \mu_A$. It follows from condition (2) of Definition 3.4 that

$$(y \wedge z)_t \in \mu_A$$
, for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$.

Thus

$$y_t, z_t \in \mu_A$$
 for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$.

So, for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a + y) \cap (z + a)$ and

$$\mu_A(x) \wedge \mu_A(a) = t \le \mu_A(y) \wedge \mu_A(z).$$

Condition(3). Let $y \in M$, $x \in R$ and $\mu_A(y) = t$. Thus $y_t \in \mu_A$. From condition (3) of Definition 3.4, we have

$$z_t \in \mu_A$$
 for all $z \in x.y$,

and so

$$\mu_A(z) \ge t$$
 for all $z \in x.y$.

This proves that

$$\mu_{\scriptscriptstyle A}(y) = t \le \bigwedge_{z \in x.y} \mu_{\scriptscriptstyle A}(z)$$

for all $y \in M$ and $x \in R$.

Condition(4). Let $x, y \in M$ and $\lambda_A(x) \vee \lambda_A(y) = s$. If s = 1, then $\lambda_A(z) \leq 1 = s$ for all $z \in x + y$. It is easy to see that

$$\bigvee_{z \in x+y} \lambda_A(z) \le \lambda_A(x) \lor \lambda_A(y) \text{ for all } x, y \in M.$$

If s < 1, there exists a $t \in (0, 1]$ such that

$$\lambda_A(x) \lor \lambda_A(y) = s < t.$$

Then $x_t, y_t \in \lambda_A$. By condition (4) of Definition 3.4, we have

$$z_t \overline{\in} \lambda_A$$
, for all $z \in x + y$,

and so $\lambda_{\scriptscriptstyle A}(z) < t$. Consequently

$$\bigvee_{z \in x+y} \lambda_{\scriptscriptstyle A}(z) \leq \lambda_{\scriptscriptstyle A}(x) \lor \lambda_{\scriptscriptstyle A}(y)$$

for all $x, y \in M$.

Condition(5). Let $x, a \in M$ and $\lambda_A(x) \vee \lambda_A(a) = s$. If s < 1, there exists a $t \in (0, 1]$ such that $\lambda_A(x) \vee \lambda_A(a) = s < t$. Then $x_t, a_t \in \lambda_A$. By condition (5) of Definition 3.4, we have

$$(y \wedge z)_t \overline{\in} \lambda_A$$
 for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$.

Hence,

$$\lambda_A(y) < t \text{ and } \lambda_A(z) < t.$$

Thus

 $\lambda_{A}(y) \lor \lambda_{A}(z) < t.$

This implies that, for all $x, a \in M$, there exist $y, z \in M$ such that $x \in (a + y) \cap (z + a)$ and

$$\lambda_{\scriptscriptstyle A}(y) \lor \lambda_{\scriptscriptstyle A}(z) \leq \lambda_{\scriptscriptstyle A}(x) \lor \lambda_{\scriptscriptstyle A}(a).$$

If s = 1, the proof is obvious.

Condition(6). Let $y \in M$, $x \in R$ and $\lambda_A(y) = s$. If s < 1, there exists a $t \in (0, 1]$ such that $\lambda_A(y) = s < t$. Thus $y_t \in \lambda_A$. From condition (6) of Definition 3.4, we have

$$z_t \overline{\in} \lambda_A$$
 for all $z \in x.y$,

and so

$$\lambda_{A}(z) < t$$
 for all $z \in x.y$.

Then $\lambda_{\scriptscriptstyle A}(z) \leq \lambda_{\scriptscriptstyle A}(y)$. This proves that

$$\bigvee_{z \in x.y} \lambda_A(z) \le \lambda_A(y),$$

for all $y \in M$ and $x \in R$. If s = 1, the proof is obvious.

Theorem 3.8. If $A = (\mu_A, \lambda_A)$ is an intuitionistic $(\in, \in \lor q)$ and $(\in, \in \land q)$ -fuzzy H_v -submodule of M, then $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy H_v -submodule of M.

Proof. The proof is similar to the proof of Theorem 3.7.

Theorem 3.9. $\Box A = (\mu_A, \ \mu_A^c)$ is an intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if $\Box A = (\mu_A, \ \mu_A^c)$ is an intuitionistic (α', β') -fuzzy H_v -submodule of M, where $\alpha \in \{\in, q\}, \ \beta \in \{\in, q, \in \lor q, \in \land q\}.$

Proof. (\Longrightarrow) We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. Let $\Box A = (\mu_A, \ \mu_A^c)$ is an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -submodule of M.

Condition(1). Let $x, y \in M$, $t, r \in (0, 1]$ be such that $x_t, y_r q \mu_A$. It follows from Lemma 3.6 that $x_t, y_r \in \mu_A^c$. Since μ_A^c is an anti $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus, by condition (4) of Definition 3.4, we have

$$z_{t \wedge r} \overline{\in \forall q} \mu_{A}^{c}$$
 for all $z \in x + y$.

10

By Lemma 3.6, this is equivalence with

$$z_{t \wedge r} \in \langle q \mu_A \text{ for all } z \in x + y.$$

Thus condition (1) of Definition 3.4 is valid.

Condition(2). Suppose that $x, a \in M$ and $t, r \in (0, 1]$ be such that $x_t, a_r q \mu_A$. By Lemma 3.6, we have $x_t, a_r q \mu_A$ if and only if $x_t, a_r \in \mu_A^c$. By hypotheses, μ_A^c is an anti $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. Thus, from condition (5) of Definition 3.4, we have

$$(y \wedge z)_{t \wedge r} \overline{\in \lor q} \mu^c_A,$$

for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$. This is equivalence with

$$y_{t\wedge r}\overline{\in \lor q}\mu_A^c$$
 and $z_{t\wedge r}\overline{\in \lor q}\mu_A^c$,

for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$. By Lemma 3.6, it is easy to see that

$$y_{t\wedge r} \in \wedge q\mu_A$$
 and $z_{t\wedge r} \in \wedge q\mu_A$,

for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$ if and only if

$$(y \wedge z)_{t \wedge r} \in \wedge q\mu_A,$$

for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Thus condition (2) of Definition 3.4 is valid.

Condition(3). Let $y \in M, x \in R$ and $t \in (0, 1]$ be such that $y_t q \mu_A$. It follows from Lemma 3.6 that $y_t \overline{\in} \mu_A^c$. Since $\Box A = (\mu_A, \mu_A^c)$ is an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v submodule of M. From condition (6) of Definition 3.4, we have

$$z_t \overline{\in \lor q} \mu^c_{\scriptscriptstyle A}$$
 for all $z \in x.y$.

It is equivalence with

$$z_t \in \wedge q\mu_A$$
 for all $z \in x.y$.

Which verify conditions (3) of Definition 3.4.

Condition(4). Suppose that $x, y \in M$ and $t, r \in (0, 1]$ be such that $x_t, y_r \overline{q} \mu_A^c$. It follows from Lemma 3.6 that $x_t, y_r \overline{q} \mu_A^c$ if and only if $x_t, y_r \in \mu_A$. Since $\Box A = (\mu_A, \mu_A^c)$ is an intuitionistic ($\in, \in \lor q$)-fuzzy H_v -submodule of M. By condition (1) of Definition 3.4, we have

$$z_{t \wedge r} \in \lor q \mu_A$$
 for all $z \in x + y$.

This is equivalence with

$$z_{t \wedge r} \overline{\in \wedge q} \mu_{A}^{c}$$
 for all $z \in x + y$

Thus condition (4) of Definition 3.4 is valid.

Condition(5). Suppose that $x, a \in M$ and $t, r \in (0, 1]$ be such that $x_t, a_r \overline{q} \mu_A^c$. This is equivalence with $x_t, a_r \in \mu_A$. By hypotheses, μ_A is an $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. From condition (2) of Definition 3.4, we have

$$(y \wedge z)_{t \wedge r} \in \lor q \mu_A,$$

for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$, and so

$$y_{t\wedge r} \in \lor q\mu_A$$
 and $z_{t\wedge r} \in \lor q\mu_A$,

for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$. It follows from Lemma 3.6 that

$$y_{t\wedge r}\overline{\in \wedge q}\mu_A^c$$
 and $z_{t\wedge r}\overline{\in \wedge q}\mu_A^c$,

for some $y, z \in M$ with $x \in (a + y) \cap (z + a)$ if and only if

$$(y \wedge z)_{t \wedge r} \overline{\in \wedge q} \mu_A^c,$$

for some $y, z \in M$ with $x \in (a+y) \cap (z+a)$. Thus condition (5) of Definition 3.4 is valid.

Condition(6). Let $y \in M, x \in R$ and $t \in (0,1]$ be such that $y_t \overline{q} \mu_A^c$. Then, we have $y_t \in \mu_A$. Since $\Box A = (\mu_A, \mu_A^c)$ is an intuitionistic $(\in, \in \lor q)$ -fuzzy H_v -submodule of M, by condition (3) of Definition 3.4, we have

$$z_t \in \lor q\mu_A$$
 for all $z \in x.y$.

It is equivalence with

$$z_t \overline{\in \wedge q} \mu_A^c$$
 for all $z \in x.y$.

Which verify conditions (6) of Definition 3.4.

 (\Leftarrow) The proof is similar to the proof of above.

Theorem 3.10. $\diamondsuit A = (\lambda_A^c, \lambda_A)$ is an intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if $\diamondsuit A = (\lambda_A^c, \lambda_A)$ is an intuitionistic (α', β') -fuzzy H_v -submodule of M, where $\alpha \in \{\in, q\}, \beta \in \{\in, q, \in \lor q, \in \land q\}.$

Proof. The proof is similar to the proof of Theorem 3.9.

Theorem 3.11. $A = (\mu_A, \lambda_A)$ is an intuitionistic (α, β) -fuzzy H_v -submodule of M if and only if μ_A is an (α, β) -fuzzy H_v -submodule of M and λ_A^c is an (α', β') -fuzzy H_v -submodule of M, where $\alpha \in \{\in, q\}, \beta \in \{\in, q, \in \lor q, \in \land q\}$.

Proof. We only prove the case of $(\alpha, \beta) = (\in, \in \lor q)$. The others are analogous. It is sufficient to show that, λ_A^c is an $(q, \in \land q)$ -fuzzy H_v -submodule of M if and only if λ_A is an anti $(\in, \in \lor q)$ -fuzzy H_v -submodule of M. This is true, because

$$x_t q \lambda_A \iff x_t \overline{\in} \lambda_A^c$$

and

$$x_t \in \wedge q\lambda_A \Longleftrightarrow x_t \overline{\in \vee q}\lambda_A^c,$$

for all $x \in M$ and $t \in (0, 1]$.

References

- M. Asghari-Larimi, Some Properties of Intuitionistic Nil Radicals of Intuitionistic Fuzzy Ideals, International Mathematical Forum, 5 (32) (2010) 1551-1558.
- [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- [3] K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications, Physica-Verlag, Heidelberg, 1999.
- [4] R. Biswas, Intuitionistic fuzzy subgroups, Math. Forum, 10 (1989) 37-46.
- [5] S.K. Bhakat, $(\in \lor q)$ -level subset, Fuzzy Sets and Systems, 103 (1999) 529-533.
- [6] S. K. Bhakat, P. Das, On the definition of a fuzzy subgroup, Fuzzy Sets and Systems, 51 (1992) 235-241.
- [7] S. K. Bhakat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy Sets and Systems, 80 (1996) 359-368.
- [8] S.K. Bhakat, P. Das, Fuzzy subrings and ideals redefined, Fuzzy Sets and Systems, 81 (1996) 383-393.

M. ASGHARI-LARIMI*

- [9] P. Burillo, H. Bustince, Construction theorems for intuitionistic fuzzy sets, Fuzzy Sets and Systems, 84 (1996) 271-281.
- [10] H. Bustince, P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, 78 (1996) 293-303.
- [11] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, 1993.
- [12] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
- [13] B. Davvaz, P. Corsini, (α, β) -Fuzzy H_v -Ideals of H_v -Rings, Iranian Journal of Fuzzy Systems, 5 (2) (2008) 35-47.
- [14] B. Davvaz, W.A. Dudek, and Y.B. Jun, Intuitionistic fuzzy H_v -submodules, Information Sciences, 176 (2006) 285-300.
- [15] Y.B. Jun, S.Z. Song, Generalized fuzzy interior ideals in semigroups, Information Sciences, 176 (2006) 3079-3093.
- [16] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, (1934) 45-49.
- [17] P. M. Pu and Y. M. Liu, Fuzzy topology I: Neighourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980) 571-599.
- [18] M. Shabir, Y. B. Jun and Y. Nawaz, Characterizations of regular semigroups by (α, β) -fuzzy ideals, Computers and Mathematics with Applications, 59 (2010) 161-175.
- [19] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc, 115, Palm Harber, USA, (1994).
- [20] X.H. Yuan, H.X. Li and E.S. Lee, On the definition of the intuitionistic fuzzy subgroups, Computers and Mathematics with Applications, 59 (2010) 3117-3129.
- [21] L.A. Zadeh, Fuzzy Sets, Inform and Control, 8 (1965) 338-353.