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Abstract. Almost all natural systems have certain nonlinear properties and display ergodic and chaotic behavior 

during evolution when the set of parameters of such systems assume a critical set of values. So, while studying 

nonlinear systems with proper justification, mathematical analysis and computational skills are needed to identify 

the nature of chaos and the evolutionary property of any such system. 

In the present work, some discrete nonlinear models have been considered and computational techniques such as  

bifurcation diagrams, Lyapunov exponents, correlation dimension, topological entropy etc. have been used to 

identify regular and chaotic motion. The results obtained are displayed through various interesting graphics. The 

work also incorporates the concept of fractals and the properties of fractals. A correlation between fractals and chaos 

have also been discussed with proper justification.  
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1. Introduction: 

Appearance of chaos is now a well accepted phenomenon and is observed in numerous nonlinear 

systems. It was discovered by Poincaré (1913), while studying the motion of a particle in Sun-

Earth-Moon system. Poincaré observed the system’s sensitivity to initial condition which is now 

termed as chaos. Chaos can occur only in nonlinear systems during evolution either due to 
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sensitivity to initial conditions or due to sensitivity to a parameter of the system. Sensitivity to 

initial conditions implies two trajectories originating at nearby states diverge rapidly after a short 

amount of time. 

 

Study of chaos in nonlinear dynamical systems is a subject of applied mathematics. The chaos 

theory is now applied to several disciplines including physics, economics, atmospheric science, 

biology and medical sciences, philosophy etc. Chaos in a system is a state when the system 

shows sensitivity to the initial conditions i.e. a very small difference in the initial conditions 

produce a divergence in behavior. In such a situation, the deterministic nature of such system 

does not make them predictable. The unpredictable or chaotic behavior of the system can be 

displayed through graphics like time series graph, phase plot, Poincaré map, power spectrum etc. 

Other powerful indicators which efficiently provide the measures of regular and chaotic motion 

are Lyapunov exponents and topological entropy.   

 

The natural systems are mostly nonlinear and chaotic behavior can be observed in many of them 

viz. chaos in market, chaotic population explosion, epidemics, chaos in weather, social chaos etc. 

In the state of chaos, prediction becomes impossible, and we have fortuitous phenomenon. Since 

Poincaré, numerous articles are written on chaos and chaos control. Some of the pioneer articles 

in this direction are those of Lorenz (1963), Sharkovskii (1964), Smale (1967), May (1976), 

Feigenbaum (1978), Devany (1989 ), Chirikov (1979), Grassberger and Procaccia (1983), Moon 

(1987), Gleick (1987), Stewart (1989), Mandelbrot (1983), Hao Bai-Lin (1984), Henon (1976) 

and many others. 

The objective of the present work is to investigate the evolutional properties of certain real 

systems represented by one dimensional discrete mathematical models. The regular and chaotic 

motion observed through bifurcation phenomena by varying certain parameter of the system. The 

graphics are presented for bifurcations, Lyapunov exponents, topological entropies and plots of 

correlation integrals data for each system. Certain Mathematica codes are generated and used for 

numerical calculations.  
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2.Descriptions of Lyapunov exponents, Correlation Dimensions and Topological Entropies: 

 

(a) Lyapunov Exponents: 

 

The Lyapunov exponent, (or Lyapunov characteristic exponent LCE), provides an average 

measure of exponential divergence of two orbits initiated with infinitesimal separation. The 

largest eigenvalue of a complex dynamical system is an indicator of chaos ( Saha and 

Budhraja ,2007).   

Consider two orbits initiated at x0 and y0 with x0, y0 ∈ [0, 1], of a one dimension map   

                                                 : [0, 1] → [0,1] 

 

such that |    –    | << 1 , then assuming  |    –    | << 1, where xn =       , yn =       ,  are 

respectively the n
th

 iterations of x0 and y0 under f, by Taylor’s theorem, one can obtains                                         

|    –    |   ≈∏ |     ||     |
   
   .                           (2.1) 

Then, the exponential separation rate log |       |  of two nearby initial conditions, averaged over 

the entire trajectory, can be given by  

 

     )
0

x(λ  =      
 

 
    ∏ |     

       |,  (2.2)   

where    ∏ |     
       |          ,  for n >> 1  

and this implies     

    |     |         |     |
               (2.3)  

 

We can generalize the above one dimensional case  to higher dimensions and obtain  

                   
 

 
    ∏            

   , (2.4) 

and 

                      , 

where  X ∈   , 
 F:    →    , U0  = X0 – Y0  and J is the Jacobian matrix of map F. 

 

Quantitatively, two trajectories in phase space with initial separation δx(0) diverges as: 
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    (0)δx
tλ

e(t)δx              (2.5)                             

,where λ > 0 is the Lyapunov exponent.   

The system described by the map    be regular as long as  ≤ 0 and chaotic when  > 0. 

 

(b) Topological Entropy: 

 

The usefulness of Lyapunov exponents are limited because of the following important 

features, Gribble (1995): 

 Lyapunov exponents are local in nature and are not necessarily constant 

throughout the evolution and so ergodicity is also required to characterize chaos. 

  As per their definitions, Lyapunov exponents are time dependent and this leads to 

a serious drawback for systems arising from relativistic considerations.  

 

 A chaotic attractor is composed of a complex pattern. To investigate chaotic behavior in a wide 

variety of systems evolving with time, an alternate replacement of Lyapunov exponents which 

could be more reliable and acceptable as indicator is the topological entropy (Balmforth et. Al., 

(1964), Adler et. Al., (1965), Bowen (1970), Boyarsky et. Al., (1991) and Iwai (1998)). 

Topological entropy describes the rate of mixing of a dynamical system. It has a relationship to 

both Lyapunov exponents, through the dependence of rate, and to the ergodicity, because of the 

association of mixing. For a system having non-zero topological entropy, the rate of mixing must 

be exponential which is reminiscent of  Lyapunov exponent. But such exponentiality of mixing 

is not relative to time, but rather to the number of discrete steps through which the system has 

evolved. Positivity of Lyapunov exponent and topological entropy are characteristic of chaos. A 

mathematical definition of topological entropy can be obtained from the book by Nagashima and 

Baba, (2005). 

Topological entropy      for a map   defined in a  close interval I = [a, b], is closely related to 

Li - Yorke chaos[ Nagashima and Baba (2005)], and measures the complexity of the map  . 
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If   be a continuous map from І to І and if α be an open initial cover of І, then the topological 

entropy      can be described by the supremum,            , for all the covers of interval І 

such that 

          =       
 

 
     ⋁        

     .  (2.6) 

The topological entropy      is thus given by 

         = sup         .      (2.7) 

When the map   is piecewise-monotonic over I, the topological entropy can be determined by 

the lap number, lap( n
)  of the iterated map  n

 as follows : 

        =       
 

 
               (2.8) 

The lap number of   grows with n in general. If the growth obeys the power law,  

                              

then by (2.8), 

             
 

 
               

 

 
         (2.9) 

However, if it grow exponentially,            , (  > 1), then 

             
 

 
                  (2.10) 

This shows that       is determined by the way          increases. 

In case of superstable periodic orbits, the method of structure matrix can be employed. For take 

the case of logistic map              when µ   3.960270, one can obtain the structure 

matrix M (cf.Nagashima and Baba,2005) and then find out the largest eigenvalue, max of M. 

Then, the topological entropy can be obtained as  

                                                             (2.11)  
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(c) Correlation Dimensions: 

As stated, chaos may exist in nonlinear systems during evolution and  that can be seen easily by 

observing the bifurcation diagrams. A chaotic set, an strange attractor, has fractal structure. 

Correlation dimension gives a measure of dimensionality of the chaotic set. Being one of the 

characteristic invariants of nonlinear system dynamics, the correlation dimension actually gives a 

measure of complexity for the underlying attractor of the system. To determine correlation 

dimension we use statistical method. It is a very practical and efficient method then other 

methods, like box counting etc. The procedure to obtain correlation dimension follows the 

following steps, Martelli (1999): 

Consider an orbit O(x1) = {x1, x2, x3, x4, . . ….}, of a map f: U → U, where U is an open bounded 

set in n
. To compute correlation dimension of O(x1), for a given positive real number r, we 

form the correlation integral, Grassberger and Procaccia (1983), 
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where   

   









0x1,
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)(xH , 

is the unit-step function, (Heaviside function). The summation indicates the the number of pairs 

of vectors closer to r when 1 ≤ i, j ≤ n and i ≠ j. C(r) measures the density of pair of distinct 

vectors xi and xj that are closer to r.  

The correlation dimension Dc  of O(x1) is defined as 

   
rlog

)r(Clog
lim

0r
c

D


      (2.13) 

To obtain Dc, log C(r) is plotted against log r and then we find a straight line fitted to this curve. 

The y- intercept of this straight line provides the value of the correlation dimension Dc. 
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3.Investigations of Some Discrete Dynamical systems: 

In this section, analysis have been carried out on some discrete one dimensional mathematical 

models for their regular and chaotic evolution. Maps considered are of interesting character and 

have extensive applications in various fields. By varying certain control parameter of these 

models, bifurcation diagrams are obtained for each of them. This provides a clear picture of 

regular, (periodic), and chaotic motion. In the process, one may observe certain chaotic set, 

strange attractor, which is dense and having fractal properties. For some cases, we  observe 

periodic windows within chaos. Chaotic and non-chaotic nature of evolutions are identified 

easily by observing the bifurcation and calculating the Lyapunov exponents as well as 

topological entropy.  Results of numerical computation of Lyapunov exponents, topological 

entropy and correlation dimension are displayed through graphics. Correlation dimension could 

be  obtained as an intercept to y-axis of the straight line fitted by the method of least square in 

the plot of      [    ]         . Detailed explanation and mathematical analysis of the maps 

considered here are avoided as these can be obtained in suitable books and articles on dynamical 

systems, (viz. Smale (1967), May (1976), Feigenbaum (1978), Devany (1989 ), Hao Bai-Lin 

(1984) etc). Therefore, investigations here are confined mainly to their dynamical properties and 

numerical studies. 

In the present work, following one dimensional discrete maps are considered:  

(1) Logistic Map:   xn + 1  =   xn (1 – xn)  or  f(x)  =  x (1 – x), 0 <  ≤ 4   (3.1) 

This map has been discussed in numerous articles and has large applications in various fields of 

studies. It has two fixed points, x1
*
 = 0 and x2

*
 = ( - 1) /. The fixed point 0 is a fixed point of f 

for 0 <  ≤ 1, but  when  > 1 it is unstable while ( - 1) / is a fixed point of f for 1 <  < 3. 

Stability of fixed point changes to different interval for  during different cycles of evolution and 

finally we reach to a value of , where this evolve chaotically.   

Fig.1 shows bifurcation diagrams of this system for two different ranges of values of . 

Appearance of typical periodic windows within chaos are shown in the second diagram. 
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Fig.1: Bifurcations of Logistic map: The second figure clearly shows the appearance of 

periodic windows within chaos.  

Lyapunov exponents for map (3.1) are calculated and drown for two ranges of values of , 

2.5 ≤  ≤ 4.0 and 3.5 ≤  ≤ 4.0 and represented by Fig. 2. The negative value of Lyapunov 

exponents in the figure,Fig.2 (b),  shows clearly the existence of periodic orbits within chaos. 

The same is indicated in the topological entropy plots, Fig. 3. Fig. 3(c), provides similarity in 

results obtained by Lyapunov exponents and topological entropy.  

 

 

Fig. 2: Lyapunov exponents of the logistic map respectively for ranges 2.5 ≤  ≤ 4.0 and 3.5 

≤  ≤ 4.0   
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         Fig.3: Plots for chaotic in logistic map: (a) Lyapunov exponents, (b)topological   

                 Entropy and (c) Comparison of these two, upper curve is for topological  

                 entropy. 
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 Fig.4: Plot of Correlation integrals curve for chaotic logistic map when  = 4.0  

In figure, Fig. 4, we have plotted a curve, called correlation integrals  curve for log C(r)/log r 

versus r, and then by applied the least square fit method to obtain the equation of the straight line 

 

   Y = 0.758645 – 0.00767199 x  

 

The y intercept of this st. line, 0.758645 ≈ 0.76, is then the correlation dimension of the fractal 

set obtained from the logistic map.   

(2) Salmon Map:  xn + 1  =  xn 
)

n
x1(μ

e


or  f (x)  =  x e
( 1 – x )

    (3.2) 

This map again evolve into chaos through period doubling bifurcation like that of logistic 

map and also, periodic windows appear within its chaotic zone.    

 

Fig.5 : Bifurcations (left fig.) and Lyapunov exponents (right fig) in the Salmon map. 
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Fig.6:  Left figure shows the negativity of Lyapunov exponents where window of periodic orbits 

exist. The right plot is for correlation integrals. 

By least square linearize method, the straight line fitting this curve is  

         Y = 0.93023 +1.42204 x  

The y intercept of this line provides the correlation dimension of the chaotic attractor which is 

0.93.  

(3) Gauss Map:  xn + 1  =  exp( - a xn
2
 ) + b      (3.3) 

One can observe a very special type of bifurcation in Gauss map shown in Fig.7  by varying b 

from -1 to +1. The system started evolving chaotically when a exceeds the value 4.65. At values 

of a higher than 8.0 the system becomes highly chaotic.  

   

Fig.7: Bifurcation diagrams of Gaus map for different values of a. 



161                                                 BIFURCATION AND CHAOS MEASURE 

            

 Fig.8: Plots of Lyapunov Exponents (left fig.)  and Topological entropy of Gauss map   

           (right fig.). 

 

The correlation integrals curve for chaotic set of Gauss map when a = 8.0, b = -0.6 is shown in 

Fig. 9. 

                    

  Fig. 9: Correlation integrals curve of chaotic Gauss map. 

And by linear least square fit we obtain the appropriate straight line fitting the above curve is 

   Y = 0.781956 -2.09579 x 

The y intercept of this curve, 0.781596 ≈ 0.782, is the correlation dimension of the chaotic set of 

the Gauss map for above mentioned parameter value.  
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(4) Epidemic Model : f(x) = 1 – a x
2
,  xn + 1  =  1  - a xn

2
     (3.4 ) 

   

  Fig.10: Plots of bifurcations, Lyapunof exponents, topological entropy and correlation integrals 

curve of map (3.4).   

 

The correlation integrals data fitted to the st. line 

 y = 0.410138 +0.133082 x 

provides the correlation dimension as 0.410318 ≈ 0.41. 

(5) Sine circle map: 

f( x ) = x + Ω - 
π2

K
 sin (2 π x)  or  xn + 1  =  xn + Ω - 

π2

K
 sin(2 π xn)    (3.5) 

where 0 ≤ x ≤ 1 and Ω = 0.65. 

 

Due to presence of sine function the system is nonlinear and that nonlinearity is controlled by 

parameter K . For K  ≤ 1, the map shows periodicity and regular. However, for  K  > 1 the map 

can exhibit chaos. The figure shown below, Fig.11 , represent the bifurcation of this map. The 

bifurcation scenario display very interesting feature, within chaos appearance of certain periodic 

windows are located.  
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Fig.11 : Bifurcation diagram of sine circle map by varying K . 

Lyapunov exponents plot of sine circle map, shown in Fig.12 left, shows an interesting 

characteristic called Devil’s Staircase for 0.25 ≤ K ≤ 0.75. 

              

Fig. 12: Plots for Lyapunov exponents, topological entropies and correlation integrals curve.  

(6) Biological Model: xn + 1  =  b xn
r
 exp[- s xn]  + ( 1 – a) xn   (3.6) 

This is a very interesting biological model. Its evolutionary behavior shows some characteristic 

feature similar to the Gauss map discussed above. The bifurcation diagram reflects many 

significant motion of this model and can be seen from the diagram, Fig.13 , when b = 1.1   10
6
, 

r = 8 and s = 16, by varying a. Its plots for Lyapunov exponents and topological entropy provides 

many important information. 
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Fig.13. Shows plots bifurcations, Lyapunov exponents and topological entropies.  

The correlation dimension of its chaotic attractor at a = 0.78 is obtained as 1.264 

From the least square linear fit we obtain the st. line fitting the correlation integrals data as 

 

           Y = 1.26422 +2.17595 x  

 

4.Discussions: 

The discrete one dimensional maps used in this article have many applications in different areas 

of science. The chaotic sets emerging during evolution, strange attractors, have fractal structure 

and so self similar property. The dimensions of such sets are non-integers as shown by the 

computed correlation dimension data for each case. The studies made in this work provide 

explanations for numerous fractal structures observed in our universe.   

Higher dimensional systems may reveal more significant results. Such studies will be 

communicated in our near future work. 
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