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Abstract. We explain the concept of Suzuki type αT -admissible Z -contraction with respect to ζ in the setting

of complete metric space in this paper. We investigated the existence and uniqueness of such mappings’ common

fixed points. We used an example to exemplify the effectiveness. Several existing results in the corresponding

literature have been covered by our main conclusions.
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1. INTRODUCTION

Khojasteh et al. [4] established the notion of Z -contraction in 2015, which generalizes the

Banach contraction. The notion of Z -contraction is as follows.

Definition 1.1 ([4]). Let ζ : [0,∞)× [0,∞)→ R be a mapping, then ζ is called a simulation

function if it satisfies the following conditions:

(i) ζ (0,0) = 0;

(ii) ζ (σ ,ρ)< ρ−σ for all σ ,ρ > 0;
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(iii) if {σn},{ρn} are sequences in (0,∞) such that limn→∞ σn = limn→∞ ρn > 0 then

limsup
n→∞

ζ (σn,ρn)< 0.

We denote the set of all simulation functions by Z .

The following functions ζ : [0,∞)× [0,∞)→ R belong to Z .

Definition 1.2 ([4]). Let (X ,d) be a metric space, S : X →X a mapping and ζ ∈Z . Then

S is called a Z -contraction with respect to ζ , if the following condition is satisfied

ζ (d (S x,S y) ,d (x,y))≥ 0 for all x,y ∈X .

Theorem 1.1 ([8]). Let (X ,d) be a compact metric space and S : X →X be a mapping.

Assume that

1
2

d (x,S x)< d (x,y)⇒ d (S x,S y)< d (x,y) for all distinct x,y ∈X .

Then S has a unique fixed point in X .

In 2017, Kumam et al. [6] introduce the motion Suzuki type Z -contraction as follows.

Definition 1.3 ([6]). Let (X ,d) be a metric space, S : X →X a mapping and ζ ∈Z . Then

S is called a Suzuki type Z -contraction with respect to ζ , if the following condition is satisfied

1
2

d (x,S x)< d (x,y)⇒ ζ (d (S x,S y) ,d (x,y))≥ 0

for all distinct x,y ∈X .

Theorem 1.2 ([6]). Let (X ,d) be a metric space and S : X →X be a Suzuki type Z -

contraction with respect to ζ ∈Z . Then S has at most one fixed point.

Definition 1.4 ([12]). Let (X ,d) be a metric space and S : X →X be a mapping and ζ ∈

Z . Then S is called generalized Suzuki type Z -contraction with respect to ζ if the following

condition is satisfied

(1.1)
1
2

d (x,S x)< d (x,y)⇒ ζ (d (S x,S y) ,M (x,y))≥ 0 for all distinct x,y ∈X ,
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where

M (x,y) = max

{
d (x,y) ,d (x,S x) ,d (y,S y) ,

d (x,S y)+d (y,S x)
2

}
.

Theorem 1.3 ([12]). Let (X ,d) be a complete metric space, S is a generalized Suzuki type

Z -contraction with respect to ζ . Then S has fixed point.

The researcher can see more knowledge in [13, 14, 15, 16].

Theorem 1.4 ([17]). Let (X ,d) be a complete metric space and S : X →X a continuous

mapping satisfying α(x,y)d(S x,S y)≤ ψd(x,y) for all x,y ∈X where ψ : [0,∞)→ [0,∞) is

non-decreasing function such that ∑
∞
n=1 ψn(σ) < ∞ for all σ > 0. Assume that the following

two conditions hold:

(i) there exists x0 ∈X such that α(x0,S x0)≥ 1;

(ii) S is α-admissible, i.e.,

α(x,y)≥ 1⇒ α(S x,S y)≥ 1 for all x,y ∈X .

Then S has a fixed point.

Karapinar [18] introduce the motion αZ -contraction as follows.

Definition 1.5 ([18]). A self-mapping S on a metric space (X ,d) is said to be αZ -

contraction with respect to ζ if the following condition is satisfied:

(1.2) ζ (α(x,y)d(S x,S y),d(x,y))≥ 0, for all x,y ∈X .

Definition 1.6 ([19]). A self-mapping S on X is said to be triangular α-orbital admissible if

for all x,y ∈X ,

(i) α(x,S x)≥ 1⇒ α(S x,S 2x)≥ 1;

(ii) α(x,y)≥ 1 and α(y,S y)≥ 1⇒ α(x,S y)≥ 1.

Theorem 1.5 ([18]). Let (X ,d) be a complete metric space and S : X →X an αZ -

contraction with respect to ζ . Suppose that

(i) S is triangular α-orbital admissible;
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(ii) there exists x0 ∈X such that α(x0,S x0)≥ 1;

(iii) either S is continuous or (if {xn} is a sequence in X such that α(xn,xn+1)≥ 1 for all

n and xn→ x ∈X as n→ ∞, then there exists a subsequence {xnk} of {xn} such that

α(xnk ,x)≥ 1 for all k).

Then S has a fixed point. Moreover, this fixed point is unique if α(x,y)≥ 1 for all fixed points

x and y of S .

Motivated by the above results, we establish common fixed point results for Suzuki type

αT -admissible Z -contraction.

2. PRELIMINARIES

Definition 2.1 ([20]). Let (S ,T ) be a pair of self-mappings on a set X .

(i) An element x ∈X is said to be a coincidence point of the pair if T x = S x = x̄ for

some x̄ ∈X . Here, x̄ is often termed as the point of coincidence of the pair. Moreover,

x ∈X is said to be a common fixed point if x = x̄.

(ii) The pair is said to be weakly compatible if S and T commute at their coincidence

points.

Definition 2.2 ([21]). A subset C of a metric space (X ,d) is said to be precomplete if every

Cauchy sequence {xn} in C converges to a point of X .

Definition 2.3 ([22]). A mapping S on a metric space (X ,d) is said to be T -continuous at x

if for any sequence {xn} ⊂X ,

T xn→T x⇒S xn→S x.

Moreover, S is called T -continuous if it is T -continuous at every point of X .

Lemma 2.1 ([23]). If a pair (S ,T ) of self-mappings on a set X is a weakly compatible, then

every point of coincidence of the pair remains a coincidence point.

Definition 2.4 ([24]). A self-mapping S on X is said to be triangular αT -admissible if for

all x,y and z ∈X ,
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(i) α(T x,T y)≥ 1⇒ α(S x,S y)≥ 1;

(ii) α(T x,T z)≥ 1 and α(T z,T y)≥ 1⇒ α(T x,T y)≥ 1.

Definition 2.5 ([24]). A set X is said to be αT -directed set if for every x,y ∈X there exists

z ∈X such that α(x,T z)≥ 1 and α(y,T z)≥ 1.

Definition 2.6 ([24]). A metric space (X ,d) is said to be αT -regular if for every sequence

{T xn} in X such that α(T xn,Tn+1)≥ 1 for all n and {T xn} converges to some T x∈T (X )

then there exists a subsequence {T xnk} (of T xn) such that α(T xnk ,T x)≥ 1 for all k.

3. MAIN RESULTS

Definition 3.1. Let (S ,T ) be a pair of self-mappings on a metric space (X ,d). Then, S is

said to be Suzuki type αT -admissible Z -contraction with respect to ζ if for all x,y ∈X , we

have

(3.1)
1
2

d (T x,S x)< d (T x,T y)⇒ ζ (α(T x,T y)d (S x,S y) ,M (T x,T y))≥ 0,

where

M (T x,T y)

= max

{
d (T x,T y) ,d (T x,S x) ,d (T y,S y) ,

d (T x,S y)+d (T y,S x)
4

}
.

Remark 3.1. Observe that the mapping S in Definition 3.1 satisfies the following:

(3.2)
1
2

d (T x,S x)< d (T x,T y)⇒ α(T x,T y)d (S x,S y)< M (T x,T y) .

Theorem 3.1. Let (S ,T ) be a pair of self-mappings on a metric space (X ,d) such that S is

Suzuki type αT -admissible Z -contraction with respect to ζ , where S (X ) is precomplete in

T (X ). Also, suppose that the following conditions hold:

(i) there exists x0 ∈X such that α(x0,S x0)≥ 1;

(ii) S (X )⊂T (X );

(iii) S is triangular αT -admissible;

(iv) S is T -continuous;

(v) X is αT -directed set;
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(vi) the pair (S ,T ) is weakly compatible.

Then the pair (S ,T ) has a common fixed point.

Proof. Firstly, we will show that the existence of a Cauchy sequence with the initial point S x0.

Choose x0 such as in (i). In view of (ii), we can define an increasing sequence {T xn} in S (X )

such that

(3.3) S xn−1 = T xn for all n.

Now, α(T x0,S x0) ≥ 1 can be written as α(T x0,T x1) which observe that that

α(S x0,S x1) ≥ 1⇒ α(T x1,T x2) ≥ 1. Continuing this process inductively and using (ii)

of Definition 2.4, we find that (for all n,m with m > n≥ 1),

(3.4) α(T xn,T xm)≥ 1.

If T xm = T xm+1 for some m ∈ N, then xm is a coincidence point. So, in the rest of the proof,

we suppose that

0 < d (T xn,T xn+1) for all n ∈ N.

Hence, we have
1
2

d (T xn,S xn)< d (T xn,T xn+1) .

Since S is a Suzuki type αT -admissible Z -contraction, we have

0≤ ζ (α(T xn,T xn+1)d (S xn,S xn+1) ,M (T xn,T xn+1))

= ζ (α(T xn,T xn+1)d (T xn+1,T xn+2) , M (T xn,T xn+1)) .

Then
M (T xn,T xn+1)

= max

{
d (T xn,T xn+1) ,d (T xn,S xn) ,d (T xn+1,S xn+1) ,

d (T xn,S xn+1)+d (T xn+1,S xn)

4

}

= max

{
d (T xn,T xn+1) ,d (T xn,T xn+1) ,d (T xn+1,T xn+2) ,

d (T xn,T xn+2)+d (T xn+1,T xn+1)

4

}

= max

{
d(T xn,T xn+1),d(T xn+1,T xn+2),

d(T xn,T xn+2)

4

}
.
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The triangle inequality yields

d (T xn,T xn+2)

4
≤max{d (T xn,T xn+1) ,d (T xn+1,T xn+2)}.

Therefore,

M (T xn,T xn+1) = max{d (T xn,T xn+1) ,d (T xn+1,T xn+2)},

from (3.1), we get that

(3.5)

0≤ ζ (α(T xn,T xn+1)d (S xn,S xn+1) ,M (T xn,T xn+1))

= ζ (α(T xn,T xn+1)d (T xn+1,T xn+2) ,M (T xn,T xn+1))

= ζ (α(T xn,T xn+1)d (T xn+1,T xn+2) ,

max{d (T xn,T xn+1) ,d (T xn+1,T xn+2)})

< max{d (T xn,T xn+1) ,d (T xn+1,T xn+2)}

−α(T xn,T xn+1)d (T xn+1,T xn+2) .

The inequality (3.5) shows that

(3.6) M (T xn,T xn+1) = d (T xn,T xn+1) for all n ∈ N,

which implies that the sequence {d (T xn,T xn+1)} is a strictly decreasing sequence of positive

real numbers. So there is some r ≥ 0 such that

lim
n→∞

d (T xn,T xn+1) = r.

If r > 0 then since S is Suzuki type αT -admissible Z -contraction with respect to ζ ∈ Z

therefore by (iii), we have

0≤ limsup
n→∞

ζ (α(T xn,T xn+1)d (T xn+1,T xn+2) ,d (T xn,T xn+1))< 0.

This is a contradiction. Then we conclude that r = 0, that is,

(3.7) lim
n→∞

d (T xn,T xn+1) = 0.
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Next, we will show that {T xn} is a bounded sequence. Suppose that {T xn} is not bounded

sequence. Then there a subsequence {T xnk} of {T xn} such that n1 = 1 and for each k ∈

N, nk+1 is the minimum integer such that

(3.8) d
(
T xnk ,T xnk+1

)
> 1

and

(3.9) d (T xnk ,T xm)≤ 1 for nk ≤ m≤ nk+1−1.

Thus, by the triangle inequality, we get

1 < d
(
T xnk ,T xnk+1

)
≤ d

(
T xnk ,T xnk+1−1

)
+d
(
T xnk+1−1,T xnk+1

)
≤ 1+d

(
T xnk+1−1,T xnk+1

)
.

Letting k→ ∞ and by using (3.7), we obtain

lim
k→∞

d
(
T xnk ,T xnk+1

)
= 1.

By (3.2), we have

1
2

d
(
T xnk−1,T xnk

)
< d

(
T xnk−1,T xnk+1−1

)
⇒ α(T xnk−1,T xnk+1−1)d

(
T xnk ,T xnk+1

)
< M

(
T xnk−1,T xnk+1−1

)
.

Now,

1 < α(T xnk−1,T xnk+1−1)d
(
T xnk ,T xnk+1

)
< M

(
T xnk−1,T xnk+1−1

)
= max


d
(
T xnk−1,T xnk+1−1

)
,d
(
T xnk−1,T xnk

)
,d
(
T xnk+1−1,T xnk+1

)
,

d(T xnk−1,T xnk+1)+d(T xnk+1−1,T xnk)

4


≤max


d
(
T xnk−1,T xnk

)
+d
(
T xnk ,T xnk+1−1

)
,d
(
T xnk−1,T xnk

)
,

d
(
T xnk+1−1,T xnk+1

)
,
d
(
T xnk−1,T xnk+1

)
+d
(
T xnk+1−1,T xnk

)
4
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≤max

{
1+d

(
T xnk−1,T xnk

)
,d
(
T xnk−1,T xnk

)
,d
(
T xnk+1−1,T xnk+1

)
,

1+d
(
T xnk−1,T xnk+1

)
4

}

≤max


1+d

(
T xnk−1,T xnk

)
,d
(
T xnk−1,T xnk

)
,d
(
T xnk+1−1,T xnk+1

)
,

1+d
(
T xnk−1,T xnk

)
+d
(
T xnk ,T xnk+1

)
4

 .

Letting k→ ∞, we obtain

1≤ lim
k→∞

M
(
T xnk−1,T xnk+1−1

)
≤ 1,

that is,

lim
k→∞

M
(
T xnk−1,T xnk+1−1

)
= lim

k→∞
α
(
T xnk−1,T xnk+1−1

)
= 1.

Further, since 1
2d
(
T xnk−1,T xnk

)
< d

(
T xnk−1,T xnk+1−1

)
. Therefore, S is Suzuki type αT -

admissible Z -contraction with respect to ζ ∈Z therefore by (iii), we have

0≤ ζ
(
α(T xnk−1,T xnk+1−1)d

(
T xnk ,T xnk+1,

)
,M

(
T xnk−1,T xnk+1−1

))
≤ limsup

k→∞

ζ
(
α(T xnk−1,T xnk+1−1)d

(
T xnk ,T xnk+1,

)
,M

(
T xnk−1,T xnk+1−1

))
< 0.

This is a contradiction. Hence, {T xn} is bounded.

Let Cn = sup{d
(
xi,x j

)
: i, j ≥ n}, n ∈ N. From above, we know that Cn < ∞ for every n ∈

N. Since Cn is a positive monotonically decreasing sequence, there exists C ≥ 0 such that

limn→∞ Cn = C . We will show that C = 0. If C > 0 then by the definition of Cn, for every

k ∈ N, there exists nk,mk such that mk > nk ≥ k and

Ck−
1
k
< d (T xmk ,T xnk)≤ Ck.

Therefore,

(3.10) lim
k→∞

d (T xmk ,T xnk) = C .

Moreover, by

d (xmk ,xnk)≤ d
(
xmk ,xmk−1

)
+d
(
xmk−1,xnk−1

)
+d
(
xnk−1,xnk

)
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and

d
(
xmk−1,xnk−1

)
≤ d

(
xmk−1,xmk

)
+d (xmk ,xnk)+d

(
xnk ,xnk−1

)
Letting k→ ∞, using (3.7) and (3.10), we get

(3.11) lim
k→∞

d
(
xmk−1,xnk−1

)
= C .

By using (3.2) and (3.4), we have

1
2

d
(
T xmk−1,T xmk

)
< d

(
T xmk−1,T xnk−1

)
⇒ α(T xmk−1,T xnk−1)d (T xmk ,T xnk)< M

(
T xmk−1,T xnk−1

)
,

where

M
(
T xmk−1,T xnk−1

)
= max


d
(
T xmk−1,T xnk−1

)
,d
(
T xmk−1,T xmk

)
,d
(
T xnk−1,T xnk

)
,

d
(
T xmk−1,T xnk

)
+d
(
T xnk−1,T xmk

)
4



≤max


d
(
T xmk−1,T xnk−1

)
,d
(
T xmk−1,T xmk

)
,d
(
T xnk−1,T xnk

)
,

d
(
T xmk−1,T xmk

)
+d
(
T xnk−1,T xnk

)
4

+
d (T xmk ,T xnk)+d (T xnk ,T xmk)

4

 .

Letting k→ ∞, using (3.7), (3.10) and (3.11), we get

lim
k→∞

M
(
T xmk−1,T xnk−1

)
= C and lim

k→∞
α(T xmk−1,T xnk−1) = 1.

As S is Suzuki type αT -admissible Z -contraction with respect to ζ ∈Z therefore by (iii),

we have

0≤ limsup
k→∞

ζ
(
α(T xmk−1,T xnk−1)d (T xmk ,T xnk) ,M

(
T xmk−1,T xnk−1

))
< 0.

This is a contradiction. Hence, C = 0. This is {T xn} is a Cauchy sequence in S (X ). The

precompleteness of S (X ) in T (X ) ensures the existence of some x̄ ∈X with

(3.12) lim
n→∞

T xn = T x̄.
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Secondly, we will show that the existence of a common fixed point of the pair (S ,T ). If S is

T -continuous, then limn→∞ S xn =S x̄ which (in view of (3.3) and the uniqueness of the limit)

implies that T x̄ = S x̄. Let x∗ be such that x∗ = S x̄ = T x̄. From condition (vi), we have

(3.13) S x∗ = S (T x̄) = T (S x̄) = T x∗.

Suppose that d(T x∗,x∗)> 0. As S is Suzuki type αT -admissible Z -contraction with respect

to ζ ∈Z . Since 0 = 1
2d (T x̄,S x̄)< d (T x̄,T x∗) , then by applying (3.1), we obtain that

(3.14) 0≤ ζ (α(T x̄,T x∗)d (S x̄,S x∗) ,M (T x̄,T x∗)) ,

where

M (T x̄,T x∗) = max

{
d (T x̄,T x∗) ,d (T x̄,S x̄) ,d (T x∗,S x∗) ,

d (T x̄,S x∗)+d (T x∗,S x̄)
4

}

= max

{
d (x∗,T x∗) ,d (x∗,x∗) ,d (T x∗,T x∗) ,

d (x∗,T x∗)+d (T x∗,x∗)
4

}

= d (T x∗,x∗) .

This together with (3.14) shows that

0≤ ζ (α(T x̄,T x∗)d (S x̄,S x∗) ,M (T x̄,T x∗))

= ζ (α(x∗,T x∗)d (x∗,T x∗) ,d (x∗,T x∗))

< d (x∗,T x∗)−α(x∗,T x∗)d (x∗,T x∗) .

This is a contradiction. Thus, we have x∗ = S x∗ = T x∗ and x∗ is a common fixed point of

the pair (S ,T ). If x′ is another such point with d(x∗,x′) > 0, then 0 =
1
2

d (T x∗,S x∗) <

d (T x∗,T x′) and

(3.15) 0≤ ζ
(
α(T x∗,T x′)d

(
S x∗,S x′

)
,M

(
T x∗,T x′

))
,
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where

M
(
T x∗,T x′

)
= max

{
d (T x∗,T x′) ,d (T x∗,S x∗) ,d (T x′,S x′) ,

d (T x∗,S x′)+d (T x′,S x∗)
4

}

= max

{
d (x∗,x′) ,d (x∗,x∗) ,d (x′,x′) ,

d (x∗,x′)+d (x′,x∗)
4

}

= d
(
x∗,x′

)
.

This together with (3.16) shows that

0≤ ζ
(
α(T x∗,T x′)d

(
S x∗,S x′

)
,M

(
T x∗,T x′

))
= ζ

(
α(x∗,x′)d

(
x∗,x′

)
,d
(
x∗,x′

))
< d

(
x∗,x′

)
−α(x∗,x′)d

(
x∗,x′

)
.

This is a contradiction. Hence, the pair (S ,T ) has a unique common fixed point. �

Theorem 3.2. Theorem 3.1 remains true if assumption (iv) is replaced by the following:

(iv∗) T (X ) is αT -regular.

Proof. Firstly, it’s following proof of Theorem 3.1, we can deduce a sequence {T xn} with

initial point S x0 such that (3.13) holds.

Secondly, the αT -regularity of T (X ) implies that there exists a subsequence {T xnk}

of {T xn} with α(T xnk ,T x̄) ≥ 1 for all k. Now, applying (3.1), for all k, we have
1
2d (T xnk ,S xnk)< d (T xnk ,T x̄) and

(3.16) 0≤ ζ (α(T xnk ,T x̄)d (S xnk ,S x̄) ,M (T xnk ,T x̄)) ,

where

M (T xnk ,T x̄) = max

{
d (T xnk ,T x̄) ,d (T xnk ,S xnk) ,d (T x̄,S x̄) ,

d (T xnk ,S x̄)+d (T x̄,S xnk)

4

}

= max

{
d (T xnk ,T x̄) ,d

(
T xnk ,T xnk+1

)
,d (T x̄,S x̄) ,

d (T xnk ,S x̄)+d
(
T x̄,T xnk+1

)
4

}
.
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This together with (3.16) shows that

0≤ ζ (α(T xnk ,T x̄)d (S xnk ,S x̄) ,M (T xnk ,T x̄))

= ζ
(
α(T xnk ,T x̄)d

(
T xnk+1 ,S x̄

)
,M (T xnk ,T x̄)

)
< M (T xnk ,T x̄)−α(T xnk ,T x̄)d

(
T xnk+1,S x̄

)
,

which is equivalent to

d
(
T xnk+1,S x̄

)
≤ α(T xnk ,T x̄)d

(
T xnk+1,S x̄

)
< M (T xnk ,T x̄) .

Taking k→ ∞, we get d(T x̄,S x̄) ≤ 0 implying thereby S x̄ = T x̄. The rest of the proof can

be completed on the following proof of Theorem 3.1. �

Remark 3.2. The hypotheses of Theorems 3.1 and 3.2 up to assumption (iv) are enough to

ensure the existence of the coincidence point of the underlying pair.

Corollary 3.1. Let (S ,T ) be a pair of self-mappings on a metric space (X ,d). Suppose that

(3.17)
1
2

d (T x,S x)< d (T x,T y)⇒ α(T x,T y)d (S x,S y)≤ ψ(M (T x,T y))

where

M (T x,T y)

= max

{
d (T x,T y) ,d (T x,S x) ,d (T y,S y) ,

d (T x,S y)+d (T y,S x)
4

}
for all x,y ∈X , and ψ is as in Theorem 1.4. If conditions (i)− (vi) of Theorem 3.1 (resp.

Theorem 3.2) are satisfied, then the pair (S ,T ) has a unique common fixed point.

Proof. It follows proof of Theorem 3.1 (resp. Theorem 3.2). �

Corollary 3.2. Let (S ,T ) be a pair of self-mappings on a metric space (X ,d). Suppose that

(3.18)
1
2

d (T x,S x)< d (T x,T y)⇒ φ(α(T x,T y)d (S x,S y))≤ ψ(M (T x,T y))

where

M (T x,T y)

= max

{
d (T x,T y) ,d (T x,S x) ,d (T y,S y) ,

d (T x,S y)+d (T y,S x)
4

}
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for all x,y ∈X , and φ ,ψ : [0,∞)→ [0,∞) are two continuous mappings such that ψ(σ) =

φ(σ) = 0⇔ σ = 0 and ψ(σ) < σ ≤ φ(σ), for all σ > 0. If conditions (i)− (vi) of Theorem

3.1 (resp. Theorem 3.2) are satisfied, then the pair (S ,T ) has a unique common fixed point.

Proof. It follows proof of Theorem 3.1 (resp. Theorem 3.2). �
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