

Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 1, 57-72

ISSN: 1927-5307

A NEW ITERATIVE ALGORITHM OF COMMON SOLUTIONS TO QUASI-VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS*

ZI-MING WANG*, AND WANDONG LOU
Department of Foundation, Shandong Yingcai University, Jinan 250104, P.R. China

Abstract

In this paper, quasi-variational inclusions and fixed point problems are considered. A general iterative algorithm is introduced for finding a common element in the zero set of the sum of two monotone operators and the fixed point set of a nonexpansive mapping. Furthermore, strong convergence results for common elements in two sets mentioned above are established in real Hilbert space.

Keywords: nonexpansive mapping; maximal monotone operator; inverse strongly monotone mapping; equilibrium problem; fixed point.

2000 AMS Subject Classification: 47H05, 47H09, 47J20, 47J25.

1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|, C$ is a nonempty closed convex subset of H. Let $A: C \rightarrow H$ be a single-valued nonlinear mapping and let $B: H \rightarrow 2^{H}$ be a multi-valued mapping. The "so-called" quasi-variational inclusion problem [1-3] is to find an $u \in H$ such that

$$
\begin{equation*}
0 \in A u+B u \tag{1.1}
\end{equation*}
$$

[^0]Received September 26, 2012

The set of solution to quasi-variational inclusion problem is denoted by $(A+B)^{-1} 0$. It is known that (1.1) provides a convenient framework for the unified study of optimal solutions in many optimization-related areas including mathematical programming, complementarity, variational inequalities, optimal control, mathematical economics, equilibria, game theory, and so on. see, for instance,[4-6].

The problem (1.1) includes many problems as special cases:
(a) If $B=\partial \phi: H \rightarrow 2^{H}$, where $\phi: H \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper convex lower semi-continuous function and $\partial \phi$ is the subdifferential of ϕ, then the variational inclusion problem (1.1) is equivalent to find $u \in H$ such that

$$
\begin{equation*}
\langle A u, y-u\rangle+\phi(y)-\phi(u) \geq 0, \quad \forall y \in H, \tag{1.2}
\end{equation*}
$$

which is called the mixed quasi-variational inequality; see Noor [7].
(b) If $B=\partial \delta_{C}$, where C is nonempty closed convex subset of H and $\delta_{C}: H \rightarrow[0, \infty]$ is the indicator function of C, that is,

$$
\delta_{C}= \begin{cases}0, & x \in C \tag{1.3}\\ +\infty, & x \notin C\end{cases}
$$

Then the variational inclusion problem (1.1) is equivalent to find $u \in C$ such that

$$
\begin{equation*}
\langle A u, v-u\rangle \geq 0, \quad \forall v \in C \tag{1.4}
\end{equation*}
$$

This problem is called Hartman-Stampacchia variational inequality; see [8].
Recently, Takahashi et al. [5] introduced a new iterative algorithm for finding a common element of the set of solutions to the inclusion problem (1.1) with set-valued maximal monotone mapping and inverse strongly monotone mappings, and the set of fixed points of a nonexpansive mapping in Hilbert spaces. Then, they prove a strong convergence theorem using their iterative algorithm. Further, they give some interesting applications. For some more related works, see $[1-3,7-9]$ and the references therein.

In this paper, inspired and motivated by Takahashi et al. [5] and Liou [6], we introduce a new iterative scheme for finding a common element of the set of solution to the inclusion
problem (1.1) and the set of fixed points of a nonexpansive mapping. The results presented in this paper improve and extend the related results announced by S. Takahashi et al. [5] and Liou [6] and others.

2. Preliminaries

Let C be a nonempty closed convex subset of H. The nearest point projection of H onto C is denoted by P_{C}, that is,

$$
\left\|x-P_{C} x\right\| \leq\|x-y\|
$$

for all $x \in H$ and $y \in C$. The operator P_{C} is called the metric projection of H onto C. It is known that the metric projection P_{C} is firmly nonexpansive, that is,

$$
\left\|P_{C} x-P_{C} y\right\|^{2} \leq\left\langle P_{C} x-P_{C} y, x-y\right\rangle
$$

for all $x, y \in H$. Further, for $x \in H$ and $z \in C$,

$$
\begin{equation*}
z=P_{C} x \Leftrightarrow\langle x-z, y-z\rangle \leq 0 \tag{2.1}
\end{equation*}
$$

for all $y \in C$; see [10]. Next, recall the following definitions:
(1) A mapping $S: C \rightarrow C$ is said to be nonexpansive iff

$$
\|S x-S y\| \leq\|x-y\|, \quad \forall x, y \in C .
$$

(2) A mapping $A: C \rightarrow H$ is said to be α-inverse strongly monotone iff there exists a constant $\alpha>0$ such that

$$
\langle A x-A y, x-y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C .
$$

It is known that if A is an α-inverse strongly monotone mapping, then

$$
\|A x-A y\| \leq \frac{1}{\alpha}\|x-y\|, \quad \forall x, y \in C
$$

Let B be a mapping of H into 2^{H}. The effective domain of B is denoted by $\operatorname{dom}(B)$, that is,

$$
\operatorname{dom}(B)=\{x \in H: B x \neq \emptyset\}
$$

(3) A multi-valued mapping B is said to be a monotone operator on H iff

$$
\langle x-y, u-v\rangle \geq 0
$$

for all $x, y \in \operatorname{dom}(B), u \in B x$ and $v \in B y$.
(4) A monotone operator B on H is said to be maximal iff its graph is not strictly contained in the graph of any other monotone operator on H.

Let B be a maximal monotone operator on H and let $B^{-1} 0=\{x \in H: 0 \in B x\}$. For $\lambda>0$, we may define a single-valued operator:

$$
J_{\lambda}^{B}=(I+\lambda B)^{-1}: H \rightarrow \operatorname{dom}(B)
$$

which is called the resolvent of B for λ. It is well known that the resolvent J_{λ}^{B} is firmly nonexpansive and $B^{-1} 0=F\left(J_{\lambda}^{B}\right)$ for all λ. It is also known that

$$
\begin{equation*}
J_{\lambda}^{B} x=J_{\mu}^{B}\left(\frac{\mu}{\lambda} x+\left(1-\frac{\mu}{\lambda}\right) J_{\lambda}^{B} x\right) \tag{2.2}
\end{equation*}
$$

holds for all $\lambda, \mu>0$ and $x \in H$.
In order to prove our main results, we need the following lemmas:
Lemma 2.1 (see [11]) Let B be a uniformly convex Banach space, C be a nonempty closed convex subset of B and $S: C \rightarrow B$ be a nonexpansive mapping with a fixed point, then $I-T$ is demi-closed in the sense that if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup x$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) x=0$.

Lemma 2.2 (see [12]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let the mapping $A: C \rightarrow H$ be α-inverse strongly monotone and let $\lambda>0$ be a constant. Then, the following inequality

$$
\|(I-\lambda A) x-(I-\lambda A) y\|^{2} \leq\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2}
$$

holds for all $x, y \in C$. In particular, if $0 \leq \lambda \leq 2 \alpha$, then $I-\lambda A$ is nonexpansive.

Lemma 2.3 (see [13]) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space B and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with

$$
0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1
$$

Suppose that

$$
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}
$$

for all $n \geq 0$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma 2.4 (see [14]) Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-b_{n}\right) a_{n}+b_{n} c_{n}
$$

where $\left\{b_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{c_{n}\right\}$ is a sequence such that
(1) $\sum_{n=1}^{\infty} b_{n}=\infty$;
(2) $\lim \sup _{n \rightarrow \infty} c_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|b_{n} c_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3. Main results

Now, we will give our main result in this paper.
Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H, such that the domain of B is included in C. Let $J_{\lambda}^{B}=(I+\lambda B)^{-1}$ be the resolvent of B for $\lambda>0$ and let S be a nonexpansive mapping of C into itself, such that $\digamma=F(S) \cap(A+B)^{-1} 0 \neq \emptyset$. For $u \in C$ and given $x_{0} \in C$, let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right) \tag{3.1}
\end{equation*}
$$

for all $n \geq 0$, where $\left\{\lambda_{n}\right\} \subset(0,2 \alpha),\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\beta_{n}\right\} \subset(0,1)$ satisfy
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \liminf _{n \rightarrow \infty} \beta_{n}<1$;
(iii) $a \leq \lambda_{n} \leq b$ where $[a, b] \subset(0,2 \alpha)$ and $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point $\Pi_{\digamma}(u)$, where Π_{\digamma} is the generalized projection from C onto \digamma.

Proof. First, we show that the sequence $\left\{x_{n}\right\}$ is bounded. We choose any $z \in(A+$ $B)^{-1} 0 \cap F(S)$. Note that

$$
\begin{equation*}
z=J_{\lambda_{n}}^{B}\left(z-\lambda_{n}\left(1-\alpha_{n}\right) A z\right)=J_{\lambda_{n}}^{B}\left(\alpha_{n} z+\left(1-\alpha_{n}\right)\left(z-\lambda_{n} A z\right)\right) \tag{3.2}
\end{equation*}
$$

for all $n \geq 0$. Since J_{λ}^{B} is nonexpansive for all $\lambda>0$, we have

$$
\begin{align*}
\| J_{\lambda_{n}}^{B} & \left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-z \|^{2} \\
& =\left\|J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-J_{\lambda_{n}}^{B}\left(\alpha_{n} z+\left(1-\alpha_{n}\right)\left(z-\lambda_{n} A z\right)\right)\right\|^{2} \tag{3.3}\\
& \leq\left\|\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-\left(\alpha_{n} z+\left(1-\alpha_{n}\right)\left(z-\lambda_{n} A z\right)\right)\right\|^{2} \\
& =\left\|\left(1-\alpha_{n}\right)\left(\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(z-\lambda_{n} A z\right)\right)+\alpha_{n}(u-z)\right\|^{2} .
\end{align*}
$$

And since A is α-inverse strongly monotone, we get

$$
\begin{align*}
& \left\|\left(1-\alpha_{n}\right)\left(\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(z-\lambda_{n} A z\right)\right)+\alpha_{n}(u-z)\right\|^{2} \\
& \left.\quad \leq\left(1-\alpha_{n}\right)\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(z-\lambda_{n} A z\right)\right\|^{2}+\alpha_{n} \| u-z\right) \|^{2} \\
& \left.\quad=\left(1-\alpha_{n}\right)\left\|\left(x_{n}-z\right)-\lambda_{n}\left(A x_{n}-A z\right)\right\|^{2}+\alpha_{n} \| u-z\right) \|^{2} \\
& \left.\quad=\left(1-\alpha_{n}\right)\left(\left\|x_{n}-z\right\|^{2}-2 \lambda_{n}\left\langle A x_{n}-A z, x_{n}-z\right\rangle+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}\right)+\alpha_{n} \| u-z\right) \|^{2} \\
& \left.\quad \leq\left(1-\alpha_{n}\right)\left(\left\|x_{n}-z\right\|^{2}-2 \alpha \lambda_{n}\left\|A x_{n}-A z\right\|^{2}+\lambda_{n}^{2}\left\|A x_{n}-A z\right\|^{2}\right)+\alpha_{n} \| u-z\right) \|^{2} \\
& \left.\quad=\left(1-\alpha_{n}\right)\left(\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2}\right)+\alpha_{n} \| u-z\right) \|^{2} . \tag{3.4}
\end{align*}
$$

By (3.3) and (3.4), we obtain

$$
\begin{align*}
& \left\|J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-z\right\|^{2} \\
& \left.\quad \leq\left(1-\alpha_{n}\right)\left(\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2}\right)+\alpha_{n} \| u-z\right) \|^{2} \tag{3.5}\\
& \left.\quad \leq\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|^{2}+\alpha_{n} \| u-z\right) \|^{2} .
\end{align*}
$$

It follows from (3.1) and (3.5) that

$$
\begin{align*}
\left\|x_{n+1}-z\right\|^{2} & =\left\|\beta_{n}\left(x_{n}-z\right)+\left(1-\beta_{n}\right)\left(S J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-z\right)\right\|^{2} \\
& \leq \beta_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\beta_{n}\right)\left\|S J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-S z\right\|^{2} \\
& \leq \beta_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\beta_{n}\right)\left\|J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-z\right\|^{2} \\
& \left.\leq \beta_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\beta_{n}\right)\left(\left(1-\alpha_{n}\right)\left\|x_{n}-z\right\|^{2}+\alpha_{n} \| u-z\right) \|^{2}\right) \\
& =\left[1-\left(1-\beta_{n}\right) \alpha_{n}\right]\left\|x_{n}-z\right\|^{2}+\left(1-\beta_{n}\right) \alpha_{n}\|u-z\|^{2} \\
& \leq \max \left\{\left\|x_{n}-z\right\|^{2},\|u-z\|^{2}\right\} . \tag{3.6}
\end{align*}
$$

By mathematical induction, we have

$$
\begin{equation*}
\left\|x_{n+1}-z\right\| \leq \max \left\{\left\|x_{0}-z\right\|,\|u-z\|\right\} \tag{3.7}
\end{equation*}
$$

Therefore, the sequence $\left\{x_{n}\right\}$ is bounded. We deduce immediately that $\left\{A x_{n}\right\}$ is also bounded. Set $u_{n}=\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)$ and $v_{n}=J_{\lambda_{n}}^{B} u_{n}$ for all $n \geq 0$. Then $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are also bounded.

In the other hand, we compute that

$$
\begin{aligned}
\left\|S v_{n+1}-S v_{n}\right\| \leq & \left\|v_{n+1}-v_{n}\right\|=\left\|J_{\lambda_{n+1}}^{B} u_{n+1}-J_{\lambda_{n}} u_{n}\right\| \\
\leq & \| J_{\lambda_{n+1}}^{B}\left(\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)\right) \\
& -J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right) \| \\
\leq & \| J_{\lambda_{n+1}}^{B}\left(\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)\right) \\
& -J_{\lambda_{n+1}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right) \\
& +\| J_{\lambda_{n+1}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right) \\
& -J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right) \| \\
\leq & \|\left(\alpha_{n+1} u+\left(1-\alpha_{n+1}\right)\left(x_{n+1}-\lambda_{n+1} A x_{n+1}\right)\right)-\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right) \\
& +\left\|J_{\lambda_{n+1}}^{B} u_{n}-J_{\lambda_{n}}^{B} u_{n}\right\|
\end{aligned}
$$

$$
\begin{align*}
= & \left\|\left(I-\lambda_{n+1} A\right) x_{n+1}-\left(I-\lambda_{n+1} A\right) x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
& +\alpha_{n+1}\left(\|u\|+\left\|x_{n+1}\right\|+\lambda_{n+1}\left\|A x_{n+1}\right\|\right)+\alpha_{n}\left(\|u\|+\left\|x_{n}\right\|+\lambda_{n}\left\|A x_{n}\right\|\right) \tag{3.8}\\
& +\left\|J_{\lambda_{n+1}}^{B} u_{n}-J_{\lambda_{n}}^{B} u_{n}\right\|
\end{align*}
$$

Since $I-\lambda_{n+1} A$ is nonexpansive for $\lambda_{n+1} \in(0,2 \alpha)$, we have

$$
\begin{equation*}
\left\|\left(I-\lambda_{n+1} A\right) x_{n+1}-\left(I-\lambda_{n+1} A\right) x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\| \tag{3.9}
\end{equation*}
$$

By the resolvent identity (2.2), we have

$$
\begin{equation*}
J_{\lambda_{n+1}}^{B} u_{n}=J_{\lambda_{n}}^{B}\left(\frac{\lambda_{n}}{\lambda_{n+1}} u_{n}+\left(1-\frac{\lambda_{n}}{\lambda_{n+1}}\right) J_{\lambda_{n+1}}^{B} u_{n}\right) \tag{3.10}
\end{equation*}
$$

It follows from (3.10) that

$$
\begin{align*}
\left\|J_{\lambda_{n+1}}^{B} u_{n}-J_{\lambda_{n}}^{B} u_{n}\right\| & =\left\|J_{\lambda_{n}}^{B}\left(\frac{\lambda_{n}}{\lambda_{n+1}} u_{n}+\left(1-\frac{\lambda_{n}}{\lambda_{n+1}}\right) J_{\lambda_{n+1}}^{B} u_{n}\right)-J_{\lambda_{n}}^{B} u_{n}\right\| \\
& \leq\left\|\left(\frac{\lambda_{n}}{\lambda_{n+1}} u_{n}+\left(1-\frac{\lambda_{n}}{\lambda_{n+1}}\right) J_{\lambda_{n+1}}^{B} u_{n}\right)-u_{n}\right\| \tag{3.11}\\
& \leq \frac{\lambda_{n+1}-\lambda_{n}}{\lambda_{n+1}}\left\|u_{n}-J_{\lambda_{n+1}}^{B} u_{n}\right\|
\end{align*}
$$

Therefore, from (3.8), (3.9) and (3.11), we have

$$
\begin{align*}
\left\|S v_{n+1}-S v_{n}\right\| \leq & \left\|v_{n+1}-v_{n}\right\| \\
\leq & \left\|x_{n+1}-x_{n}\right\|+\left|\lambda_{n+1}-\lambda_{n}\right|\left\|A x_{n}\right\| \\
& +\alpha_{n+1}\left(\|u\|+\left\|x_{n+1}\right\|+\lambda_{n+1}\left\|A x_{n+1}\right\|\right)+\alpha_{n}\left(\|u\|+\left\|x_{n}\right\|+\lambda_{n}\left\|A x_{n}\right\|\right) \\
& +\frac{\lambda_{n+1}-\lambda_{n}}{\lambda_{n+1}}\left\|u_{n}-J_{\lambda_{n+1}}^{B} u_{n}\right\| \tag{3.12}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|S v_{n+1}-S v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|v_{n+1}-v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 \tag{3.14}
\end{equation*}
$$

From Lemma 2.3, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S v_{n}-x_{n}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|v_{n}-x_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

Then, from (3.1), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|S v_{n}-x_{n}\right\|=0 \tag{3.16}
\end{equation*}
$$

And from (3.15), we also learn that

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\| & \leq \lim _{n \rightarrow \infty}\left(\left\|S x_{n}-S v_{n}\right\|+\left\|S v_{n}-x_{n}\right\|\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\left\|x_{n}-v_{n}\right\|+\left\|S v_{n}-x_{n}\right\|\right) \tag{3.17}\\
& \leq \lim _{n \rightarrow \infty}\left\|x_{n}-v_{n}\right\|+\lim _{n \rightarrow \infty}\left\|S v_{n}-x_{n}\right\|=0
\end{align*}
$$

Since $\left\{x_{n}\right\}$ is bounded. we see that there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ which converges weakly to some point \bar{x}. By virtue of Lemma 1.2, it follows that $\bar{x} \in F(S)$. Further we show that $\bar{x} \in(A+B)^{-1} 0$. In fact, notice that

$$
v_{n}=J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right),
$$

we have that

$$
\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right) \in v_{n}+\lambda_{n} B v_{n} .
$$

Let $\xi \in B \eta$. Since B is monotone, we get

$$
\left\langle\frac{\alpha_{n} u+\left(1-\alpha_{n}\right) x_{n}-v_{n}}{\lambda_{n}}-\left(1-\alpha_{n}\right) A x_{n}-\xi, v_{n}-\eta\right\rangle \geq 0 .
$$

In view of (i), (iii) and (3.15), we obtain

$$
\langle-A \bar{x}-\xi, \bar{x}-\eta\rangle \geq 0
$$

It follows that $-A \bar{x} \in B \bar{x}$, that is, $\bar{x} \in(A+B)^{-1} 0$.

On the other hand, from (3.5) and (3.6), we have

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} \leq & \beta_{n}\left\|x_{n}-z\right\|^{2}+\left(1-\beta_{n}\right)\left\|S J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-z\right\|^{2} \\
\leq & \left(1-\beta_{n}\right)\left\|J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)-z\right\|^{2}+\beta_{n}\left\|x_{n}-z\right\|^{2} \\
\leq & \left(1-\beta_{n}\right)\left\{\left(1-\alpha_{n}\right)\left(\left\|x_{n}-z\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2}\right)+\alpha_{n}\|u-z\|^{2}\right\} \\
& +\beta_{n}\left\|x_{n}-z\right\|^{2} \\
= & {\left[1-\left(1-\beta_{n}\right) \alpha_{n}\right]\left\|x_{n}-z\right\|^{2}+\left(1-\beta_{n}\right) \lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2} } \\
& +\left(1-\beta_{n}\right) \alpha_{n}\|u-z\|^{2} \\
\leq & \left\|x_{n}-z\right\|^{2}+\left(1-\beta_{n}\right) \lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A x_{n}-A z\right\|^{2}+\left(1-\beta_{n}\right) \alpha_{n}\|u-z\|^{2} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left(1-\beta_{n}\right) \lambda_{n}\left(2 \alpha-\lambda_{n}\right)\left\|A x_{n}-A z\right\|^{2} & \leq\left\|x_{n}-z\right\|^{2}-\left\|x_{n+1}-z\right\|^{2}+\left(1-\beta_{n}\right) \alpha_{n}\|u-z\|^{2} \\
& \leq\left(\left\|x_{n}-z\right\|-\left\|x_{n+1}-z\right\|\right)\left\|x_{n+1}-x_{n}\right\|+\left(1-\beta_{n}\right) \alpha_{n}\|u-z\|^{2} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{n}=0, \liminf _{n \rightarrow \infty}\left(1-\beta_{n}\right) \lambda_{n}\left(2 \alpha-\lambda_{n}\right)>0$ and (3.16), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}-A z\right\|=0 \tag{3.18}
\end{equation*}
$$

Put $p=P_{\digamma} u$. Set $y_{n}=x_{n}-\lambda_{n}\left(A x_{n}-A p\right)$ for all $n \geq 0$. Next, we show that

$$
\limsup _{n \rightarrow \infty}\left\langle u-p, y_{n}-p\right\rangle \leq 0
$$

In fact, take $z=p$ in (3.18) to get $\left\|A x_{n}-A p\right\| \rightarrow 0$. We easily see from y_{n} that $\left\|x_{n}-y_{n}\right\| \rightarrow$ 0 , as $n \rightarrow \infty$. Therefore, there exists a subsequence $\left\{y_{n_{i}}\right\} \subset\left\{y_{n}\right\}$ which converges weakly to $\bar{x} \in \digamma$, such that

$$
\limsup _{n \rightarrow \infty}\left\langle u-p, y_{n}-p\right\rangle=\lim _{i \rightarrow \infty}\left\langle u-p, y_{n_{i}}-p\right\rangle=\langle u-p, \bar{x}-p\rangle \leq 0
$$

Finally, we prove that $x_{n} \rightarrow p$, as $n \rightarrow \infty$. From (3.1), we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|S J_{\lambda_{n}}^{B} u_{n}-p\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|J_{\lambda_{n}}^{B} u_{n}-p\right\|^{2} \\
= & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|J_{\lambda_{n}}^{B} u_{n}-J_{\lambda_{n}}^{B}\left(p-\left(1-\alpha_{n}\right) \lambda_{n} A p\right)\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|u_{n}-\left(p-\left(1-\alpha_{n}\right) \lambda_{n} A p\right)\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\left(1-\alpha_{n}\right) \lambda_{n} A p\right)\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right)\left\|\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)+\alpha_{n}(u-p)\right\|^{2} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right) \times\left\{\left(1-\alpha_{n}\right)^{2}\left\|\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2}\right. \\
& \left.+2 \alpha_{n}\left(1-\alpha_{n}\right)\left\langle u-p,\left(x_{n}-\lambda_{n} A x_{n}\right)-\left(p-\lambda_{n} A p\right)\right\rangle+\alpha_{n}^{2}\|u-p\|^{2}\right\} \\
\leq & \beta_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right) \times\left\{\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}\right. \\
& \left.+2 \alpha_{n}\left(1-\alpha_{n}\right)\left\langle u-p, x_{n}-\lambda_{n}\left(A x_{n}-A p\right)-p\right\rangle+\alpha_{n}^{2}\|u-p\|^{2}\right\} \\
\leq & {\left[1-\left(1-\beta_{n}\right) \alpha_{n}\right]\left\|x_{n}-p\right\|^{2}+\left(1-\beta_{n}\right) \alpha_{n}\left\{2\left(1-\alpha_{n}\right)\left\langle u-p, y_{n}-p\right\rangle+\alpha_{n}\|u-p\|^{2}\right\} . }
\end{aligned}
$$

Notice that $\sum_{n=0}^{\infty}\left(1-\beta_{n}\right) \alpha_{n}=\infty$ and $\lim \sup _{n \rightarrow \infty}\left(2\left(1-\alpha_{n}\right)\left\langle u-p, y_{n}-p\right\rangle+\alpha_{n}\|u-p\|^{2}\right) \leq 0$. It follows from Lemma 2.4 that $x_{n} \rightarrow p$, as $n \rightarrow \infty$. This completes the proof.

Remark 3.2. The iterative algorithm (3.1) is different from the one in Theorem 3.1 in [5], but the two algorithms deal with the same problem in different angle.

When $S \equiv I$ in (3.1), we can get the following corollary by using Theorem 3.1:
Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H, such that the domain of B is included in C. Let $J_{\lambda}^{B}=(I+\lambda B)^{-1}$ be the resolvent of B for $\lambda>0$ such that $(A+B)^{-1} 0 \neq \emptyset$. For $u \in C$ and given $x_{0} \in C$, let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) J_{\lambda_{n}}^{B}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right) \tag{3.1}
\end{equation*}
$$

for all $n \geq 0$, where $\left\{\lambda_{n}\right\} \subset(0,2 \alpha),\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\beta_{n}\right\} \subset(0,1)$ satisfy
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \liminf _{n \rightarrow \infty} \beta_{n}<1$;
(iii) $a \leq \lambda_{n} \leq b$ where $[a, b] \subset(0,2 \alpha)$ and $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point $\Pi_{(A+B)^{-1} 0}(u)$, where $\Pi_{(A+B)^{-1} 0}$ is the generalized projection from C onto $(A+B)^{-1} 0$.

Remark 3.4. Corollary 3.3 is just the main result in Liou [6].

4. Applications

Let H be a Hilbert space and $f: H \rightarrow(-\infty,+\infty]$ be a proper convex lower semi-continuous function. Then the subdifferential ∂f of f is defined as follows:

$$
\partial f(x)=\{y \in H: f(z) \geq f(x)+\langle z-x, y\rangle, \quad \forall z \in H\}, \quad \forall x \in H
$$

From Rockafellar [15, 16], we know that ∂f is maximal monotone. It is easy to verify that $0 \in \partial f(x)$ iff $f(x)=\min _{y \in H} f(y)$. Let δ_{C} be the indicator function of C, i.e.,

$$
\delta_{C}= \begin{cases}0, & x \in C \tag{4.1}\\ +\infty, & x \notin C\end{cases}
$$

Since δ_{C} is a proper lower semi-continuous convex function on H, we see that the subdifferential $\partial \delta_{C}$ of δ_{C} is a maximal monotone operator.

The following result is introduced by Takahashi et al [5]:
Lemma 4.1 (see [5]) Let C be a nonempty closed convex subset of a real Hilbert space H, P_{C} be the metric projection from H onto $C, \partial \delta_{C}$ be the subdifferential of δ_{C} and J_{λ} be the resolvent of $\partial \delta_{C}$ for $\lambda>0$ where δ_{C} is as defined in (4.1) and $J_{\lambda}=\left(I+\lambda \partial \delta_{C}\right)^{-1}$. Then

$$
y=J_{\lambda} x \Leftrightarrow y=P_{C} x, \quad \forall x \in H, y \in C
$$

Now, we introduce an iterative scheme for approximating a common element of the set of solutions to variation inequality (1.4) and the set of fixed points of a nonexpansive mapping:

Theorem 4.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A be an α-inverse strongly monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that $\digamma=F(S) \cap V I(C, A) \neq \emptyset$. For $u \in C$ and given $x_{0} \in C$, let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S P_{C}\left(\alpha_{n} u+\left(1-\alpha_{n}\right)\left(x_{n}-\lambda_{n} A x_{n}\right)\right)
$$

for all $n \geq 0$, where $\left\{\lambda_{n}\right\} \subset(0,2 \alpha),\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\beta_{n}\right\} \subset(0,1)$ satisfy
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \liminf _{n \rightarrow \infty} \beta_{n}<1$;
(iii) $a \leq \lambda_{n} \leq b$ where $[a, b] \subset(0,2 \alpha)$ and $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point $\Pi_{\digamma}(u)$, where Π_{\digamma} is the generalized projection from C onto \digamma.

Proof. Put $B=\partial \delta_{C}$. Next, we show that $V I(C, A)=\left(A+\partial \delta_{C}\right)^{-1} 0$. Notice that

$$
\begin{aligned}
x \in\left(A+\partial \delta_{C}\right)^{-1}(0) & \Longleftrightarrow 0 \in A x+\partial \delta_{C} x \\
& \Longleftrightarrow-A x \in \partial \delta_{C} x \\
& \Longleftrightarrow\langle A x, y-x\rangle \geq 0, \quad(\forall y \in C) \\
& \Longleftrightarrow x \in V I(C, A) .
\end{aligned}
$$

From Lemma 4.1, we know that $J_{\lambda_{n}}=P_{C}$ for all λ_{n} with $0<a \leq \lambda_{n} \leq b<2 \alpha$. So, we can obtain that the desired result by Theorem 3.1. this completes the proof.

As another application of Theorem 3.1, we consider the problem for finding a common element of the set of solutions to equilibrium problems and the set of fixed points of a nonexpansive mapping.

Let $F: C \times C \rightarrow R$ be a bifunction satisfying the following conditions:
$\left(A_{1}\right) F(x, x)=0$ for all $x \in C$;
$\left(A_{2}\right) F$ is monotone, that is, $F(x, y)+F(y, x) \leq 0$ for all $x, y \in C$;
$\left(A_{3}\right)$ for all $x, y, z \in C, \lim \sup _{t \downarrow 0} F(t z+(1-t) x, y) \leq F(x, y)$;
$\left(A_{4}\right)$ for all $x \in C, F(x, \cdot)$ is convex and lower semicontinuous.

Then, the mathematical model related to equilibrium problem (with respect to C) is to find $\hat{x} \in C$ such that

$$
\begin{equation*}
F(\hat{x}, y) \geq 0 \tag{4.2}
\end{equation*}
$$

for all $y \in C$. The set of solutions to equilibrium problem is denoted by $E P(F)$. The following lemma was introduced by Blum and Oettli [17]:
Lemma 4.3 (see [17]) Let C be a nonempty closed convex subset of a real Hilbert space H, F be a bifunction of $C \times C$ into R satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad y \in C
$$

The following lemma was given by Combettes and Hirstoaga [18]:
Lemma 4.4 (see [18]) Assume that $F: C \times C \rightarrow R$ satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
\begin{equation*}
T_{r}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, y \in C\right\} \tag{4.3}
\end{equation*}
$$

for all $x \in H$. Then, the following holds:
$\left(B_{1}\right) T_{r}$ is single valued;
$\left(B_{2}\right) T_{r}$ is a firmly nonexpansive mapping, that is, for all $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle ;
$$

$\left(B_{3}\right) F\left(T_{r}\right)=E P(F) ;$
$\left(B_{4}\right) E P(F)$ is closed and convex.
The following lemma appears in Takahashi et al.[5]:
Lemma 4.5 (see [5]) Let C be a nonempty closed convex subset of a real Hilbert space H, F be a bifunction of $C \times C$ into R satisfying $\left(A_{1}\right)-\left(A_{4}\right)$. And A_{F} be a set-valued mapping of H into itself defined by

$$
A_{F} x= \begin{cases}\{z \in H: F(x, y) \geq\langle y-x, z\rangle, & \forall y \in C\}, \\ \emptyset, & x \in C \\ \emptyset, & x \notin C\end{cases}
$$

Then A_{F} is a maximal monotone operator with the domain $D\left(A_{F}\right) \subset C, E P(F)=A_{F}^{-1}(0)$ and

$$
T_{r} x=\left(I+r A_{F}\right)^{-1} x, \quad \forall x \in H, r>0,
$$

where T_{r} is defined as in (4.3).
Applying Lemma 4.5 and Theorem 3.1, we can obtain the following result immediately.
Theorem 4.6. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C \rightarrow R$ satisfying $\left(A_{1}\right)-\left(A_{4}\right)$ and let T_{r} be the resolvent of F for $r>0$. Suppose that $\digamma=F(S) \cap E P(F) \neq \emptyset$. For $u \in C$ and given $x_{0} \in C$, let $\left\{x_{n}\right\} \subset C$ be a sequence generated by

$$
x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S T_{r_{n}}\left(\alpha_{n} u+\left(1-\alpha_{n}\right) x_{n}\right)
$$

for all $n \geq 0$, where $\left\{r_{n}\right\} \subset(0,2 \alpha),\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\beta_{n}\right\} \subset(0,1)$ satisfy
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \liminf _{n \rightarrow \infty} \beta_{n}<1$;
(iii) $a \leq r_{n} \leq b$ where $[a, b] \subset(0,2 \alpha)$ and $\lim _{n \rightarrow \infty}\left(r_{n+1}-r_{n}\right)=0$.

Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point $\Pi_{\digamma}(u)$, where Π_{\digamma} is the generalized projection from C onto \digamma.

5. Acknowledgments

This project is supported by the Foundation of Shandong Yingcai University under grant(12YCZDZR03).

References

[1] M. A. Noor and K. I. Noor, Sensitivity analysis for quasi-variational inclusions, J. Math. Anal. Appl. 236 (1999), 290-299.
[2] S. S. Chang, Set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 248 (2000), 438-454.
[3] S. S. Chang, Existence and approximation of solutions for set-valued variational inclusions in Banach space, Nonlinear Anal. 47 (2001), 583-594.
[4] V. F. Demyanov, G. E. Stavroulakis, L. N. Polyakova, and P. D. Panagiotopoulos, Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, vol. 10, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[5] S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl. 147 (2010), 27-41.
[6] H.S. Abdel-Salam, K. Al-Khaled, Variational iteration method for solving optimization problems, J. Math. Comput. Sci. 2 (2012) 1457-1497.
[7] M. A. Noor, Generalized set-valued variational inclusions and resolvent equations, J. Math. Anal. Appl. 228 (1998), 206-220.
[8] P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math. 115(1966), 271-310.
[9] H. Zegeye, N. Shahzad, Strong convergence theorem for a common point of solution of variational inequality and fixed point problem, Adv. Fixed Point Theory 2 (2012) 374-397.
[10] Z.M. Wang, Y.F. Su, S.Y. Cho, W.D.Lou, A new iterative algorithm for equilibrium and fixed point problems of nonexpansive mapping, J. Glob. Optim. 50 (2011),457-472.
[11] R. E. Bruck, On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert spaces. J. Math. Anal. Appl. (61)1977, 159-164.
[12] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.
[13] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory App. 2005 (2005), 103-123.
[14] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2001), 240-256.
[15] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877-898.
[16] R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510.
[17] E. Blum, W. Oettli, Fromoptimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145.
[18] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.

[^0]: *Corresponding author
 \star This project is supported by the Foundation of Shandong Yingcai University under grant(12YCZDZR03)

