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Abstract. In this paper, quasi-variational inclusions and fixed point problems are considered. A general
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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner

product 〈·, ·〉 and norm ‖ · ‖, C is a nonempty closed convex subset of H. Let A : C → H

be a single-valued nonlinear mapping and let B : H → 2H be a multi-valued mapping.

The ”so-called” quasi-variational inclusion problem [1-3] is to find an u ∈ H such that

0 ∈ Au+Bu. (1.1)
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The set of solution to quasi-variational inclusion problem is denoted by (A+B)−10. It is

known that (1.1) provides a convenient framework for the unified study of optimal solu-

tions in many optimization-related areas including mathematical programming, comple-

mentarity, variational inequalities, optimal control, mathematical economics, equilibria,

game theory, and so on. see, for instance,[4-6].

The problem (1.1) includes many problems as special cases:

(a) If B = ∂φ : H → 2H , where φ : H → R ∪ {+∞} is a proper convex lower

semi-continuous function and ∂φ is the subdifferential of φ, then the variational inclusion

problem (1.1) is equivalent to find u ∈ H such that

〈Au, y − u〉+ φ(y)− φ(u) ≥ 0, ∀ y ∈ H, (1.2)

which is called the mixed quasi-variational inequality; see Noor [7].

(b) If B = ∂δC , where C is nonempty closed convex subset of H and δC : H → [0,∞]

is the indicator function of C, that is,

δC =


0, x ∈ C,

+∞, x /∈ C.
(1.3)

Then the variational inclusion problem (1.1) is equivalent to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀ v ∈ C. (1.4)

This problem is called Hartman-Stampacchia variational inequality; see [8].

Recently, Takahashi et al. [5] introduced a new iterative algorithm for finding a common

element of the set of solutions to the inclusion problem (1.1) with set-valued maximal

monotone mapping and inverse strongly monotone mappings, and the set of fixed points

of a nonexpansive mapping in Hilbert spaces. Then, they prove a strong convergence

theorem using their iterative algorithm. Further, they give some interesting applications.

For some more related works, see [1-3,7-9] and the references therein.

In this paper, inspired and motivated by Takahashi et al. [5] and Liou [6], we introduce

a new iterative scheme for finding a common element of the set of solution to the inclusion
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problem (1.1) and the set of fixed points of a nonexpansive mapping. The results presented

in this paper improve and extend the related results announced by S. Takahashi et al. [5]

and Liou [6] and others.

2. Preliminaries

Let C be a nonempty closed convex subset of H. The nearest point projection of H

onto C is denoted by PC , that is,

‖x− PCx‖ ≤ ‖x− y‖

for all x ∈ H and y ∈ C. The operator PC is called the metric projection of H onto C. It

is known that the metric projection PC is firmly nonexpansive, that is,

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉

for all x, y ∈ H. Further, for x ∈ H and z ∈ C,

z = PCx⇔ 〈x− z, y − z〉 ≤ 0 (2.1)

for all y ∈ C; see [10]. Next, recall the following definitions:

(1) A mapping S : C → C is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀ x, y ∈ C.

(2) A mapping A : C → H is said to be α−inverse strongly monotone iff there exists a

constant α > 0 such that

〈Ax− Ay, x− y〉 ≥ α‖Ax− Ay‖2, ∀ x, y ∈ C.

It is known that if A is an α−inverse strongly monotone mapping, then

‖Ax− Ay‖ ≤ 1

α
‖x− y‖, ∀ x, y ∈ C.

Let B be a mapping of H into 2H . The effective domain of B is denoted by dom(B),

that is,

dom(B) = {x ∈ H : Bx 6= ∅}.
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(3) A multi-valued mapping B is said to be a monotone operator on H iff

〈x− y, u− v〉 ≥ 0

for all x, y ∈ dom(B), u ∈ Bx and v ∈ By.

(4) A monotone operator B on H is said to be maximal iff its graph is not strictly

contained in the graph of any other monotone operator on H.

Let B be a maximal monotone operator on H and let B−10 = {x ∈ H : 0 ∈ Bx}. For

λ > 0, we may define a single-valued operator:

JBλ = (I + λB)−1 : H → dom(B),

which is called the resolvent of B for λ. It is well known that the resolvent JBλ is firmly

nonexpansive and B−10 = F (JBλ ) for all λ. It is also known that

JBλ x = JBµ (
µ

λ
x+ (1− µ

λ
)JBλ x) (2.2)

holds for all λ, µ > 0 and x ∈ H.

In order to prove our main results, we need the following lemmas:

Lemma 2.1 (see [11]) Let B be a uniformly convex Banach space, C be a nonempty closed

convex subset of B and S : C → B be a nonexpansive mapping with a fixed point, then

I − T is demi-closed in the sense that if {xn} is a sequence in C such that xn ⇀ x and

(I − T )xn → 0, then (I − T )x = 0.

Lemma 2.2 (see [12]) Let C be a nonempty closed convex subset of a real Hilbert space

H. Let the mapping A : C → H be α−inverse strongly monotone and let λ > 0 be a

constant. Then, the following inequality

‖(I − λA)x− (I − λA)y‖2 ≤ ‖x− y‖2 + λ(λ− 2α)‖Ax− Ay‖2

holds for all x, y ∈ C. In particular, if 0 ≤ λ ≤ 2α, then I − λA is nonexpansive.
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Lemma 2.3 (see [13]) Let {xn} and {yn} be bounded sequences in a Banach space B and

let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that

xn+1 = (1− βn)yn + βnxn

for all n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.4 (see [14]) Assume that {an} is a sequence of nonnegative real numbers such

that

an+1 ≤ (1− bn)an + bncn,

where {bn} is a sequence in (0,1) and {cn} is a sequence such that

(1)
∑∞

n=1 bn =∞;

(2) lim supn→∞ cn ≤ 0 or
∑∞

n=1 |bncn| <∞.

Then limn→∞ an = 0.

3. Main results

Now, we will give our main result in this paper.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H.

Let A be an α−inverse strongly monotone mapping of C into H and let B be a maximal

monotone operator on H, such that the domain of B is included in C. Let JBλ = (I+λB)−1

be the resolvent of B for λ > 0 and let S be a nonexpansive mapping of C into itself, such

that z = F (S)∩(A+B)−10 6= ∅. For u ∈ C and given x0 ∈ C, let {xn} ⊂ C be a sequence

generated by

xn+1 = βnxn + (1− βn)SJBλn(αnu+ (1− αn)(xn − λnAxn)) (3.1)

for all n ≥ 0, where {λn} ⊂ (0, 2α), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy
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(i) limn→∞ αn = 0 and
∑∞

n=0 αn =∞;

(ii) 0 < lim infn→∞ βn ≤ lim infn→∞ βn < 1;

(iii) a ≤ λn ≤ b where [a, b] ⊂ (0, 2α) and limn→∞(λn+1 − λn) = 0.

Then the sequence {xn} converges strongly to a point Πz(u), where Πz is the generalized

projection from C onto z.

Proof. First, we show that the sequence {xn} is bounded. We choose any z ∈ (A +

B)−10 ∩ F (S). Note that

z = JBλn(z − λn(1− αn)Az) = JBλn(αnz + (1− αn)(z − λnAz)) (3.2)

for all n ≥ 0. Since JBλ is nonexpansive for all λ > 0, we have

‖JBλn(αnu+ (1− αn)(xn − λnAxn))− z‖2

= ‖JBλn(αnu+ (1− αn)(xn − λnAxn))− JBλn(αnz + (1− αn)(z − λnAz))‖2

≤ ‖(αnu+ (1− αn)(xn − λnAxn))− (αnz + (1− αn)(z − λnAz))‖2

= ‖(1− αn)((xn − λnAxn)− (z − λnAz)) + αn(u− z)‖2.

(3.3)

And since A is α−inverse strongly monotone, we get

‖(1−αn)((xn − λnAxn)− (z − λnAz)) + αn(u− z)‖2

≤ (1− αn)‖(xn − λnAxn)− (z − λnAz)‖2 + αn‖u− z)‖2

= (1− αn)‖(xn − z)− λn(Axn − Az)‖2 + αn‖u− z)‖2

= (1− αn)(‖xn − z‖2 − 2λn〈Axn − Az, xn − z〉+ λ2n‖Axn − Az‖2) + αn‖u− z)‖2

≤ (1− αn)(‖xn − z‖2 − 2αλn‖Axn − Az‖2 + λ2n‖Axn − Az‖2) + αn‖u− z)‖2

= (1− αn)(‖xn − z‖2 + λn(λn − 2α)‖Axn − Az‖2) + αn‖u− z)‖2.
(3.4)

By (3.3) and (3.4), we obtain

‖JBλn(αnu+ (1− αn)(xn − λnAxn))− z‖2

≤ (1− αn)(‖xn − z‖2 + λn(λn − 2α)‖Axn − Az‖2) + αn‖u− z)‖2

≤ (1− αn)‖xn − z‖2 + αn‖u− z)‖2.

(3.5)
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It follows from (3.1) and (3.5) that

‖xn+1 − z‖2 = ‖βn(xn − z) + (1− βn)(SJBλn(αnu+ (1− αn)(xn − λnAxn))− z)‖2

≤ βn‖xn − z‖2 + (1− βn)‖SJBλn(αnu+ (1− αn)(xn − λnAxn))− Sz‖2

≤ βn‖xn − z‖2 + (1− βn)‖JBλn(αnu+ (1− αn)(xn − λnAxn))− z‖2

≤ βn‖xn − z‖2 + (1− βn)((1− αn)‖xn − z‖2 + αn‖u− z)‖2)

= [1− (1− βn)αn]‖xn − z‖2 + (1− βn)αn‖u− z‖2

≤ max{‖xn − z‖2, ‖u− z‖2}.
(3.6)

By mathematical induction, we have

‖xn+1 − z‖ ≤ max{‖x0 − z‖, ‖u− z‖}. (3.7)

Therefore, the sequence {xn} is bounded. We deduce immediately that {Axn} is also

bounded. Set un = αnu+ (1−αn)(xn−λnAxn) and vn = JBλnun for all n ≥ 0. Then {un}

and {vn} are also bounded.

In the other hand, we compute that

‖Svn+1 − Svn‖ ≤ ‖vn+1 − vn‖ = ‖JBλn+1
un+1 − Jλnun‖

≤ ‖JBλn+1
(αn+1u+ (1− αn+1)(xn+1 − λn+1Axn+1))

− JBλn(αnu+ (1− αn)(xn − λnAxn))‖

≤ ‖JBλn+1
(αn+1u+ (1− αn+1)(xn+1 − λn+1Axn+1))

− JBλn+1
(αnu+ (1− αn)(xn − λnAxn))

+ ‖JBλn+1
(αnu+ (1− αn)(xn − λnAxn))

− JBλn(αnu+ (1− αn)(xn − λnAxn))‖

≤ ‖(αn+1u+ (1− αn+1)(xn+1 − λn+1Axn+1))− (αnu+ (1− αn)(xn − λnAxn))

+ ‖JBλn+1
un − JBλnun‖
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= ‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖+ |λn+1 − λn|‖Axn‖

+ αn+1(‖u‖+ ‖xn+1‖+ λn+1‖Axn+1‖) + αn(‖u‖+ ‖xn‖+ λn‖Axn‖)

+ ‖JBλn+1
un − JBλnun‖.

(3.8)

Since I − λn+1A is nonexpansive for λn+1 ∈ (0, 2α), we have

‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖ ≤ ‖xn+1 − xn‖ (3.9)

By the resolvent identity (2.2), we have

JBλn+1
un = JBλn(

λn
λn+1

un + (1− λn
λn+1

)JBλn+1
un) (3.10)

It follows from (3.10) that

‖JBλn+1
un − JBλnun‖ = ‖JBλn(

λn
λn+1

un + (1− λn
λn+1

)JBλn+1
un)− JBλnun‖

≤ ‖( λn
λn+1

un + (1− λn
λn+1

)JBλn+1
un)− un‖

≤ λn+1 − λn
λn+1

‖un − JBλn+1
un‖

(3.11)

Therefore, from (3.8), (3.9) and (3.11), we have

‖Svn+1 − Svn‖ ≤ ‖vn+1 − vn‖

≤ ‖xn+1 − xn‖+ |λn+1 − λn|‖Axn‖

+ αn+1(‖u‖+ ‖xn+1‖+ λn+1‖Axn+1‖) + αn(‖u‖+ ‖xn‖+ λn‖Axn‖)

+
λn+1 − λn
λn+1

‖un − JBλn+1
un‖.

(3.12)

Thus,

lim sup
n→∞

(‖Svn+1 − Svn‖ − ‖xn+1 − xn‖) ≤ 0 (3.13)

and

lim sup
n→∞

(‖vn+1 − vn‖ − ‖xn+1 − xn‖) ≤ 0. (3.14)

From Lemma 2.3, we obtain

lim
n→∞

‖Svn − xn‖ = 0 and lim
n→∞

‖vn − xn‖ = 0. (3.15)
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Then, from (3.1), we get

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖Svn − xn‖ = 0. (3.16)

And from (3.15), we also learn that

lim
n→∞

‖Sxn − xn‖ ≤ lim
n→∞

(‖Sxn − Svn‖+ ‖Svn − xn‖)

≤ lim
n→∞

(‖xn − vn‖+ ‖Svn − xn‖)

≤ lim
n→∞

‖xn − vn‖+ lim
n→∞

‖Svn − xn‖ = 0

(3.17)

Since {xn} is bounded. we see that there exists a subsequence {xni
} of {xn} which

converges weakly to some point x̄. By virtue of Lemma 1.2, it follows that x̄ ∈ F (S).

Further we show that x̄ ∈ (A+B)−10. In fact, notice that

vn = JBλn(αnu+ (1− αn)(xn − λnAxn)),

we have that

αnu+ (1− αn)(xn − λnAxn) ∈ vn + λnBvn.

Let ξ ∈ Bη. Since B is monotone, we get

〈αnu+ (1− αn)xn − vn
λn

− (1− αn)Axn − ξ, vn − η〉 ≥ 0.

In view of (i), (iii) and (3.15), we obtain

〈−Ax̄− ξ, x̄− η〉 ≥ 0.

It follows that −Ax̄ ∈ Bx̄, that is, x̄ ∈ (A+B)−10.
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On the other hand, from (3.5) and (3.6), we have

‖xn+1 − z‖2 ≤ βn‖xn − z‖2 + (1− βn)‖SJBλn(αnu+ (1− αn)(xn − λnAxn))− z‖2

≤ (1− βn)‖JBλn(αnu+ (1− αn)(xn − λnAxn))− z‖2 + βn‖xn − z‖2

≤ (1− βn){(1− αn)(‖xn − z‖2 + λn(λn − 2α)‖Axn − Az‖2) + αn‖u− z‖2}

+ βn‖xn − z‖2

= [1− (1− βn)αn]‖xn − z‖2 + (1− βn)λn(λn − 2α)‖Axn − Az‖2

+ (1− βn)αn‖u− z‖2

≤ ‖xn − z‖2 + (1− βn)λn(λn − 2α)‖Axn − Az‖2 + (1− βn)αn‖u− z‖2.

It follows that

(1− βn)λn(2α− λn)‖Axn − Az‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + (1− βn)αn‖u− z‖2

≤ (‖xn − z‖ − ‖xn+1 − z‖)‖xn+1 − xn‖+ (1− βn)αn‖u− z‖2.

Since limn→∞ αn = 0, lim infn→∞(1− βn)λn(2α− λn) > 0 and (3.16), we have

lim
n→∞

‖Axn − Az‖ = 0. (3.18)

Put p = Pzu. Set yn = xn − λn(Axn − Ap) for all n ≥ 0. Next, we show that

lim sup
n→∞

〈u− p, yn − p〉 ≤ 0.

In fact, take z = p in (3.18) to get ‖Axn−Ap‖ → 0. We easily see from yn that ‖xn−yn‖ →

0, as n→∞. Therefore, there exists a subsequence {yni
} ⊂ {yn} which converges weakly

to x̄ ∈ z, such that

lim sup
n→∞

〈u− p, yn − p〉 = lim
i→∞
〈u− p, yni

− p〉 = 〈u− p, x̄− p〉 ≤ 0.
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Finally, we prove that xn → p, as n→∞. From (3.1), we have

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)‖SJBλnun − p‖
2

≤ βn‖xn − p‖2 + (1− βn)‖JBλnun − p‖
2

= βn‖xn − p‖2 + (1− βn)‖JBλnun − J
B
λn(p− (1− αn)λnAp)‖2

≤ βn‖xn − p‖2 + (1− βn)‖un − (p− (1− αn)λnAp)‖2

≤ βn‖xn − p‖2 + (1− βn)‖αnu+ (1− αn)(xn − λnAxn)− (p− (1− αn)λnAp)‖2

≤ βn‖xn − p‖2 + (1− βn)‖(1− αn)(xn − λnAxn)− (p− λnAp) + αn(u− p)‖2

≤ βn‖xn − p‖2 + (1− βn)× {(1− αn)2‖(xn − λnAxn)− (p− λnAp)‖2

+ 2αn(1− αn)〈u− p, (xn − λnAxn)− (p− λnAp)〉+ α2
n‖u− p‖2}

≤ βn‖xn − p‖2 + (1− βn)× {(1− αn)2‖xn − p‖2

+ 2αn(1− αn)〈u− p, xn − λn(Axn − Ap)− p〉+ α2
n‖u− p‖2}

≤ [1− (1− βn)αn]‖xn − p‖2 + (1− βn)αn{2(1− αn)〈u− p, yn − p〉+ αn‖u− p‖2}.

Notice that
∑∞

n=0(1−βn)αn =∞ and lim supn→∞(2(1−αn)〈u−p, yn−p〉+αn‖u−p‖2) ≤ 0.

It follows from Lemma 2.4 that xn → p, as n→∞. This completes the proof. �

Remark 3.2. The iterative algorithm (3.1) is different from the one in Theorem 3.1 in

[5], but the two algorithms deal with the same problem in different angle.

When S ≡ I in (3.1), we can get the following corollary by using Theorem 3.1:

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H.

Let A be an α−inverse strongly monotone mapping of C into H and let B be a maximal

monotone operator on H, such that the domain of B is included in C. Let JBλ = (I+λB)−1

be the resolvent of B for λ > 0 such that (A + B)−10 6= ∅. For u ∈ C and given x0 ∈ C,

let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)JBλn(αnu+ (1− αn)(xn − λnAxn)) (3.1)

for all n ≥ 0, where {λn} ⊂ (0, 2α), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑∞

n=0 αn =∞;
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(ii) 0 < lim infn→∞ βn ≤ lim infn→∞ βn < 1;

(iii) a ≤ λn ≤ b where [a, b] ⊂ (0, 2α) and limn→∞(λn+1 − λn) = 0.

Then the sequence {xn} converges strongly to a point Π(A+B)−10(u), where Π(A+B)−10 is

the generalized projection from C onto (A+B)−10.

Remark 3.4. Corollary 3.3 is just the main result in Liou [6].

4. Applications

LetH be a Hilbert space and f : H → (−∞,+∞] be a proper convex lower semi−continuous

function. Then the subdifferential ∂f of f is defined as follows:

∂f(x) = {y ∈ H : f(z) ≥ f(x) + 〈z − x, y〉, ∀ z ∈ H}, ∀ x ∈ H.

From Rockafellar [15, 16], we know that ∂f is maximal monotone. It is easy to verify

that 0 ∈ ∂f(x) iff f(x) = miny∈H f(y). Let δC be the indicator function of C, i.e.,

δC =


0, x ∈ C,

+∞, x /∈ C.
(4.1)

Since δC is a proper lower semi-continuous convex function on H, we see that the subdif-

ferential ∂δC of δC is a maximal monotone operator.

The following result is introduced by Takahashi et al [5]:

Lemma 4.1 (see [5]) Let C be a nonempty closed convex subset of a real Hilbert space H,

PC be the metric projection from H onto C, ∂δC be the subdifferential of δC and Jλ be the

resolvent of ∂δC for λ > 0 where δC is as defined in (4.1) and Jλ = (I + λ∂δC)−1. Then

y = Jλx⇔ y = PCx, ∀ x ∈ H, y ∈ C.

Now, we introduce an iterative scheme for approximating a common element of the set

of solutions to variation inequality (1.4) and the set of fixed points of a nonexpansive

mapping:
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Theorem 4.2. Let C be a nonempty, closed and convex subset of a real Hilbert space

H. Let A be an α−inverse strongly monotone mapping of C into H and let S be a

nonexpansive mapping of C into itself such that z = F (S) ∩ V I(C,A) 6= ∅. For u ∈ C

and given x0 ∈ C, let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)SPC(αnu+ (1− αn)(xn − λnAxn))

for all n ≥ 0, where {λn} ⊂ (0, 2α), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑∞

n=0 αn =∞;

(ii) 0 < lim infn→∞ βn ≤ lim infn→∞ βn < 1;

(iii) a ≤ λn ≤ b where [a, b] ⊂ (0, 2α) and limn→∞(λn+1 − λn) = 0.

Then the sequence {xn} converges strongly to a point Πz(u), where Πz is the generalized

projection from C onto z.

Proof. Put B = ∂δC . Next, we show that V I(C,A) = (A+ ∂δC)−10. Notice that

x ∈ (A+ ∂δC)−1(0)⇐⇒ 0 ∈ Ax+ ∂δCx

⇐⇒ −Ax ∈ ∂δCx

⇐⇒ 〈Ax, y − x〉 ≥ 0, (∀ y ∈ C)

⇐⇒ x ∈ V I(C,A).

From Lemma 4.1, we know that Jλn = PC for all λn with 0 < a ≤ λn ≤ b < 2α. So, we

can obtain that the desired result by Theorem 3.1. this completes the proof. �

As another application of Theorem 3.1, we consider the problem for finding a common

element of the set of solutions to equilibrium problems and the set of fixed points of a

nonexpansive mapping.

Let F : C × C → R be a bifunction satisfying the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for all x ∈ C, F (x, ·) is convex and lower semicontinuous.
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Then, the mathematical model related to equilibrium problem (with respect to C) is

to find x̂ ∈ C such that

F (x̂, y) ≥ 0 (4.2)

for all y ∈ C. The set of solutions to equilibrium problem is denoted by EP (F ). The

following lemma was introduced by Blum and Oettli [17]:

Lemma 4.3 (see [17]) Let C be a nonempty closed convex subset of a real Hilbert space

H, F be a bifunction of C×C into R satisfying (A1)− (A4). Let r > 0 and x ∈ H. Then,

there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, y ∈ C.

The following lemma was given by Combettes and Hirstoaga [18]:

Lemma 4.4 (see [18]) Assume that F : C × C → R satisfying (A1) − (A4) and x ∈ H,

define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, y ∈ C} (4.3)

for all x ∈ H. Then, the following holds:

(B1) Tr is single valued;

(B2) Tr is a firmly nonexpansive mapping, that is, for all x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(B3) F (Tr) = EP (F );

(B4) EP (F ) is closed and convex.

The following lemma appears in Takahashi et al.[5]:

Lemma 4.5 (see [5]) Let C be a nonempty closed convex subset of a real Hilbert space

H, F be a bifunction of C × C into R satisfying (A1) − (A4). And AF be a set-valued

mapping of H into itself defined by

AFx =


{z ∈ H : F (x, y) ≥ 〈y − x, z〉, ∀ y ∈ C}, x ∈ C,

∅, x /∈ C.
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Then AF is a maximal monotone operator with the domain D(AF ) ⊂ C, EP (F ) = A−1F (0)

and

Trx = (I + rAF )−1x, ∀ x ∈ H, r > 0,

where Tr is defined as in (4.3).

Applying Lemma 4.5 and Theorem 3.1, we can obtain the following result immediately.

Theorem 4.6. Let C be a nonempty, closed and convex subset of a real Hilbert space H.

Let F be a bifunction from C × C → R satisfying (A1)− (A4) and let Tr be the resolvent

of F for r > 0. Suppose that z = F (S) ∩ EP (F ) 6= ∅. For u ∈ C and given x0 ∈ C, let

{xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1− βn)STrn(αnu+ (1− αn)xn)

for all n ≥ 0, where {rn} ⊂ (0, 2α), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

(i) limn→∞ αn = 0 and
∑∞

n=0 αn =∞;

(ii) 0 < lim infn→∞ βn ≤ lim infn→∞ βn < 1;

(iii) a ≤ rn ≤ b where [a, b] ⊂ (0, 2α) and limn→∞(rn+1 − rn) = 0.

Then the sequence {xn} converges strongly to a point Πz(u), where Πz is the generalized

projection from C onto z.
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