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Abstract. In this paper, we introduce the concepts of (l,r)-(φ ,σ)-derivations and (r, l)-(φ ,σ)-derivations utilizing

bi-endomorphisms on B-algebras and some related are explored. Also, using the concept of derivations in past

investigate some of its properties.
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1. INTRODUCTION

In 2002, Neggers and Kim [1] introduced a new algebraic structure, they took some properties

from BCI and BCH-algebras see ([2, 3]), called a B-algebra. In 2005, Kim and Park [4], showed

that the class of 0-commutative B-algebras is the class of semisimple BCI-algebras. In 2010,
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Al-Shehrie [5] introduced the notion of left-right (right-left) derivations of B-algebras and in-

vestigated some related properties. Also, he studied the notion of derivations of 0-commutative

B-algebras. Next, in 2014, Ardekani and Davvaz [6] introduced a generalization of deriva-

tions of B-algebras, that is, the notion of f -derivations and ( f ,g)-derivations of B-algebras and

investigated some properties of ( f ,g)-derivations of commutative B-algebras. And, in 2021,

Muangkarn et al. [7] studied some properties of a self-map d f
q is an outside and an inside fq-

derivation of B-algebras. In addition, we defined and studied some properties of (right-left) and

(left-right) fq-derivations on B-algebras.

From the interesting concept of derivations, in this paper, we introduce the concepts of (l,r)-

(φ ,σ)-derivations and (r, l)-(φ ,σ)-derivations utilizing bi-endomorphisms on B-algebras and

some related are explored. Also, using the concept of derivations in past investigate some of its

properties.

2. PRELIMINARIES

In this section, we will review the definitions, theorems and the knowledge needed to study

in our main section.

Definition 2.1. [1] A B-algebra is an algebra X = (X ,∗,0) satisfying the following axioms:

(B1) (∀x ∈ X)(x∗ x = 0),

(B2) (∀x ∈ X)(x∗0 = x),

(B3) (∀x,y,z ∈ X)((x∗ y)∗ z = x∗ (z∗ (0∗ y))).

Example 2.2. [7] Let X = {0,1,2,3} with the Cayley table as follows:

* 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Then X = (X ,∗,0) is a B-algebra.
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Definition 2.3. Let S be a non-empty subset of a B-algebra X = (X ,∗,0). Then S is called a

subalgebra of X if x∗ y ∈ S for all x,y ∈ S.

Example 2.4. In Example 2.2, let S = {0,3}. Then S is a subalgebra of X .

Theorem 2.5. [1] If X = (X ,∗,0) is a B-algebra, then:

(B4) (∀x,y ∈ X)((x∗ y)∗ (0∗ y) = x),

(B5) (∀x,y,z ∈ X)(x∗ (y∗ z) = (x∗ (0∗ z))∗ y),

(B6) (∀x,y ∈ X)(x∗ y = 0⇒ x = y),

(B7) (∀x ∈ X)(0∗ (0∗ x) = x),

(B8) (∀x,y,z ∈ X)(x∗ z = y∗ z⇒ x = y) (right cancelation law),

(B9) (∀x,y,z ∈ X)(z∗ x = z∗ y⇒ x = y) (left cancelation law).

Theorem 2.6. [1] An algebra X = (X ,∗,0) is a B-algebra if and only if it satisfies the following

axioms:

(B1) (∀x ∈ X)(x∗ x = 0),

(B7) (∀x ∈ X)(0∗ (0∗ x) = x),

(B10) (∀x,y,z ∈ X)((x∗ z)∗ (y∗ z) = x∗ y),

(B11) (∀x,y ∈ X)(0∗ (x∗ y) = y∗ x).

Definition 2.7. [4] A B-algebra X = (X ,∗,0) is said to be 0-commutative if it satisfies the

following axiom:

(∀x,y ∈ X)(x∗ (0∗ y) = y∗ (0∗ x)).

Example 2.8. In Example 2.2, we have X = (X ,∗,0) is a 0-commutative B-algebra.

Theorem 2.9. [4] If X = (X ,∗,0) is a 0-commutative B-algebra, then:

(B12) (∀x,y ∈ X)((0∗ x)∗ (0∗ y) = y∗ x),

(B13) (∀x,y,z ∈ X)((z∗ y)∗ (z∗ x) = x∗ y),

(B14) (∀x,y,z ∈ X)((x∗ y)∗ z = (x∗ z)∗ y),

(B15) (∀x,y ∈ X)((x∗ (x∗ y))∗ y = 0),

(B16) (∀x,y,z, t ∈ X)((x∗ z)∗ (y∗ t) = (t ∗ z)∗ (y∗ x)),
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(B17) (∀x,y,z ∈ X)((x∗ y)∗ z = x∗ (y∗ z)),

(B18) (∀x,y ∈ X)(x∗ (x∗ y) = y).

For a B-algebra X = (X ,∗,0), we denote x∧ y = y∗ (y∗ x) for all x,y ∈ X .

Definition 2.10. [3] A self-map d on a B-algebra X = (X ,∗,0) is said to be regular if d(0) = 0;

otherwise, d is said to be irregular.

3. MAIN RESULTS

In this section, first of all, we introduce the notion of symmetric, bi-endomorphism. From

now on, we shall let X be a B-algebra (X ,∗,0).

Definition 3.1. A mapping φ : X×X→X is called symmetric if φ(x,y) = φ(y,x) for all x,y∈X .

Definition 3.2. A mapping φ : X×X → X is said to be a left bi-endomorphism on X if

(∀x,y,z ∈ X)(φ(x∗ y,z) = φ(x,z)∗φ(y,z)),

a right bi-endomorphism on X if

(∀x,y,z ∈ X)(φ(x,y∗ z) = φ(x,y)∗φ(x,z)),

and a bi-endomorphism on X if it is a left and a right bi-endomorphism on X .

Remark 3.3. For any B-algebra, there exists a mapping 0 : X ×X → X by 0(x,y) = 0 for all

x,y ∈ X , is a bi-endomorphism on X . Let X be a B-algebra. If a mapping φ : X ×X → X is a

symmetric left (right) bi-endomorphism on X , then it is a bi-endomorphism on X .

Example 3.4. Let X = {0,1,2} with the Cayley table as follows:

* 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0
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Then X = (X ,∗,0) is a B-algebra. We define mapping φ1 : X×X → X by

φ1(x,y) =


2 if (x,y) = (2,0)

1 if (x,y) = (1,0)

0 otherwise.

Thus φ1 is a left bi-endomorphism on X but it is not a right bi-endomorphism on X because

φ1(1,2∗0) = φ1(1,2) = 0 6= 2 = 0∗1 = φ1(1,2)∗φ1(1,0).

Example 3.5. In Example 3.4, we define a mapping φ2 : X×X → X by

φ2(x,y) =


2 if (x,y) = (1,1) or (x,y) = (2,2)

1 if (x,y) = (1,2) or (x,y) = (2,1)

0 otherwise.

Thus φ2 is a symmetric right bi-endomorphism on X . Hence, φ2 is a bi-endomorphism on X .

Proposition 3.6. Let a mapping φ : X×X → X. Then the following statements hold.

(1) If φ is a left bi-endomorphism on X, then φ(0,x) = 0 for all x ∈ X.

(2) If φ is a right bi-endomorphism on X, then φ(x,0) = 0 for all x ∈ X.

(3) If φ is a bi-endomorphism on X, then φ(0,x) = 0 = φ(x,0) for all x ∈ X.

Proof. Suppose that φ is a left bi-endomorphism on X . Let x ∈ X . Then φ(0,x) = φ(0∗0,x) =

φ(0,x)∗φ(0,x) = 0. In the same way as (1), we get (2), and (3) as a result of (1) and (2). �

Definition 3.7. Let φ be a left bi-endomorphism on X . Then the set

Fixl(φ) = {x ∈ X : φ(x,0) = x}

is called the set of fixed points of φ . Moreover, the set of

kerl(φ) = {x ∈ X : φ(x,0) = 0}

is called the kernel of φ .

From Proposition 3.6(1), Fixl(φ) 6= /0 and kerl(φ) 6= /0 because 0 ∈ Fixl(φ)∩ kerl(φ).
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Theorem 3.8. Let φ be a left bi-endomorphism on X. Then the following statements hold.

(1) Fixl(φ) is a subalgebra of X.

(2) kerl(φ) is a subalgebra of X.

Proof. (1) Let x,y ∈ Fixl(φ). Then φ(x ∗ y,0) = φ(x,0) ∗φ(y,0) = x ∗ y. Thus x ∗ y ∈ Fixl(φ).

Therefore, Fixl(φ) is a subalgebra of X .

(2) Let x,y ∈ kerl(φ). Then φ(x ∗ y,0) = φ(x,0) ∗φ(y,0) = 0 ∗ 0 = 0. Thus x ∗ y ∈ kerl(φ).

Therefore, kerl(φ) is a subalgebra of X . �

Example 3.9. In Example 3.4, we have Fixl(φ) = {0,1,2} and kerl(φ) = {0}. Thus they are

subalgebras of X .

For a right bi-endomorphism, it follows from a left bi-endomorphism.

Let x,y,z be elements in a 0-commutative B-algebra X and Sl(X) be the collection of all left

bi-endomorphisms on X . We define the operation � on Sl(X) by

(∀φ ,σ ∈ Sl(X))((φ �σ)(x,y) = φ(x,y)∗σ(x,y)).

For φ ,σ ∈ Sl(X) and let x,y,z ∈ X , we consider that

(φ �σ)(x∗ y,z) = φ(x∗ y,z)∗σ(x∗ y,z)

= (φ(x,z)∗φ(y,z))∗ (σ(x,z)∗σ(y,z))

= (0∗ (φ(y,z)∗φ(x,z)))∗ (0∗ (σ(y,z)∗σ(x,z)))(B11)

= (φ(y,z)∗φ(x,z))∗ (σ(y,z)∗σ(x,z))(B13)

= (σ(x,z)∗φ(x,z))∗ (σ(y,z)∗φ(y,z))(B16)

= (φ(x,z)∗σ(x,z))∗ (φ(y,z)∗σ(y,z))

= (φ �σ)(x,z)∗ (φ �σ)(y,z).

Then φ �σ ∈ Sl(X).

Theorem 3.10. Let X be a 0-commutative B-algebra. Then (Sl(X),�,0) is a 0-commutative

B-algebra.
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Proof. Let φ ,σ ,δ ∈ Sl(X) and x,y ∈ X .

(B1): It is obvious that (φ �φ)(x,y) = φ(x,y)∗φ(x,y) = 0 because φ(x,y) ∈ X .

(B2): Since (φ �0)(x,y) = φ(x,y)∗0(x,y) = φ(x,y)∗0 = φ(x,y), we have φ �0 = φ .

(B3): Since

((φ �σ)�δ )(x,y) = (φ(x,y)∗σ(x,y))∗δ (x,y)

= φ(x,y)∗ (δ (x,y)∗ (0∗σ(x,y)))

= φ(x,y)∗ (δ (x,y)∗ (0(x,y)∗σ(x,y)))

= (φ � (δ � (0�σ)))(x,y),

we have (φ �σ)�δ = φ � (δ � (0�σ)).

(0-commutative): Since

(φ � (0�σ))(x,y) = φ(x,y)∗ (0(x,y)∗σ(x,y))

= φ(x,y)∗ (0∗σ(x,y))

= σ(x,y)∗ (0∗φ(x,y))

= σ(x,y)∗ (0(x,y)∗φ(x,y))

= (σ � (0�φ))(x,y),

we have φ � (0�σ) = σ � (0�φ).

Hence, (Sl(X),�,0) is a 0-commutative B-algebra. �

Next, we generalize derivation on B-algebra with two mappings φ ,σ : X×X → X .

Definition 3.11. Let φ ,σ : X ×X → X be mappings on X . A mapping d : X → X is called an

(l,r)-(φ ,σ)-derivation of X if

(∀x,y ∈ X)(d(x∗ y) = (d(x)∗φ(x,y))∧ (σ(x,y)∗d(y))),

an (r, l)-(φ ,σ)-derivation of X if

(∀x,y ∈ X)(d(x∗ y) = (φ(x,y)∗d(y))∧ (d(x)∗σ(x,y))),

and a (φ ,σ)-derivation of X if it is both an (l,r)- and an (r, l)-(φ ,σ)-derivation of X .
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Example 3.12. In Example 3.4, we define d : X→ X by d(x) = 1 for all x∈ X , and σ : X×X→

X by

σ(x,y) =


2 if (x,y) ∈ {(0,0),(2,1)}

1 if (x,y) ∈ {(0,1),(1,1),(2,0),(2,2)}

0 otherwise.

Then σ is a right bi-endomorphism on X but it is not a left bi-endomorphism on X because σ(1∗

0,1) = σ(1,1) = 1 6= 0 = 1∗1 = σ(1,1)∗σ(0,1). Therefore, d is an (l,r)-(0,σ)-derivation of

X .

Theorem 3.13. Let d : X → X be a (l,r)-(φ ,σ)-derivation of X. Then d(0) = φ(0,0) if and

only if d is regular.

Proof. Suppose that d(0) = φ(0,0). Then

d(0) = d(0∗0)(B1)

= (d(0)∗φ(0,0))∧ (σ(0,0)∗d(0))

= (φ(0,0)∗φ(0,0))∧ (σ(0,0)∗φ(0,0))

= 0∧ (σ(0,0)∗φ(0,0))(B1)

= (σ(0,0)∗φ(0,0))∗ ((σ(0,0)∗φ(0,0))∗0)

= (σ(0,0)∗φ(0,0))∗ (σ(0,0)∗φ(0,0))(B2)

= 0.(B1)

Hence, d is regular.

Conversely, suppose that d is regular. Then d(0) = 0. Thus

0 = d(0)

= d(0∗0)(B1)

= (d(0)∗φ(0,0))∧ (σ(0,0)∗d(0))

= (0∗φ(0,0))∧ (σ(0,0)∗0)
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= (0∗φ(0,0))∧σ(0,0)(B2)

= σ(0,0)∗ (σ(0,0)∗ (0∗φ(0,0))).

By (B2) and (B6), we have σ(0,0)∗0 = σ(0,0) = σ(0,0)∗ (0∗φ(0,0)). Using (B1) and (B9),

we get 0∗0 = 0 = 0∗φ(0,0). Using (B9) again, we have φ(0,0) = 0 = d(0). �

Theorem 3.14. Let d : X → X be a ((r, l)-(φ ,σ)-derivation) of X. Then d(0) = φ(0,0) if and

only if d is regular.

Proof. We omit the proof because the proof is similar to Theorem 3.13. �

Theorem 3.15. Let d : X → X be a regular (l,r)-(φ ,σ)-derivation of X. Then the following

statements hold.

(1) If φ is a right bi-endomorphism on X, then d(x) = d(x)∧σ(x,0) for all x ∈ X.

(2) If σ is a right bi-endomorphism on X, then φ(x,0) = 0 for all x ∈ X.

(3) If φ is a left bi-endomorphism on X, then d(0∗ x) = 0 for all x ∈ X.

(4) If X is 0-commutative and σ is a left bi-endomorphism on X, then d(0∗ x) = 0∗φ(0,x)

for all x ∈ X.

Proof. (1) Suppose that φ is a right bi-endomorphism on X . Then for all x ∈ X ,

d(x) = d(x∗0)(B2)

= (d(x)∗φ(x,0))∧ (σ(x,0)∗d(0))

= (d(x)∗0)∧ (σ(x,0)∗0)Proposition 3.6(2)

= d(x)∧σ(x,0).(B2)
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(2) Suppose that σ is a right bi-endomorphism on X . Then for all x ∈ X ,

d(x)∗0 = d(x)(B2)

= d(x∗0)(B2)

= (d(x)∗φ(x,0))∧ (σ(x,0)∗d(0))

= (d(x)∗φ(x,0))∧ (0∗0)Proposition 3.6(2)

= (d(x)∗φ(x,0))∧0(B1)

= 0∗ (0∗ (d(x)∗φ(x,0)))

= d(x)∗φ(x,0).(B7)

Using (B9), we have φ(x,0) = 0.

(3) Suppose that φ is a left bi-endomorphism on X . Then for all x ∈ X ,

d(0∗ x) = (d(0)∗φ(0,x))∧ (σ(0,x)∗d(x))

= (0∗0)∧ (σ(0,x)∗d(x))Proposition 3.6(1)

= 0∧ (σ(0,x)∗d(x))(B1)

= (σ(0,x)∗d(x))∗ ((σ(0,x)∗d(x))∗0)

= (σ(0,x)∗d(x))∗ (σ(0,x)∗d(x))(B2)

= 0.(B1)

(4) Suppose that X is 0-commutative and σ is a left bi-endomorphism on X . Then for all

x ∈ X ,

d(0∗ x) = (d(0)∗φ(0,x))∧ (σ(0,x)∗d(x))

= (0∗φ(0,x))∧ (0∗d(x))Proposition 3.6(1)

= (0∗d(x))∗ ((0∗d(x))∗ (0∗φ(0,x)))

= (0∗d(x))∗ (φ(0,x)∗d(x))(B12)

= 0∗φ(0,x).(B10)
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�

Theorem 3.16. Let d : X → X be a regular (r, l)-(φ ,σ)-derivation of X. Then the following

statements hold.

(1) If φ is a right bi-endomorphism on X, then d(x) = 0 for all x ∈ X.

(2) If σ is a right bi-endomorphism on X, then d(x) = φ(x,0) for all x ∈ X.

(3) If X is 0-commutative and φ is a left bi-endomorphism on X, then d(0∗x) = 0∗d(x) for

all x ∈ X.

(4) If X is 0-commutative and σ is a left bi-endomorphism on X, then d(0 ∗ x) = φ(0,x) ∗

d(x) for all x ∈ X.

Proof. (1) Suppose that φ is a right bi-endomorphism on X . Then for all x ∈ X ,

d(x) = d(x∗0)(B2)

= (φ(x,0)∗d(0))∧ (d(x)∗ (σ(x,0))

= (0∗0)∧ (d(x)∗ (σ(x,0))Proposition 3.6(2)

= 0∧ (d(x)∗ (σ(x,0)))(B1)

= (d(x)∗ (σ(x,0)))∗ ((d(x)∗ (σ(x,0)))∗0)

= (d(x)∗ (σ(x,0)))∗ (d(x)∗ (σ(x,0)))(B2)

= 0.(B1)

(2) Suppose that σ is a right bi-endomorphism on X . Then for all x ∈ X ,

d(x)∗0 = d(x)(B2)

= d(x∗0)(B2)

= (φ(x,0)∗d(0))∧ (d(x)∗σ(x,0))

= (φ(x,0)∗0)∧ (d(x)∗0)Proposition 3.6(2)

= φ(x,0)∧d(x)(B2)

= d(x)∗ (d(x)∗φ(x,0))



NEW DERIVATIONS UTILIZING BI-ENDOMORPHISMS ON B-ALGEBRAS 6431

Using (B9), we have d(x)∗φ(x,0) = 0. By (B6), we have d(x) = φ(x,0).

(3) Suppose that X is 0-commutative and φ is a left bi-endomorphism on X . Then for all

x ∈ X ,

d(0∗ x) = (φ(0,x)∗d(x))∧ (d(0)∗σ(0,x))

= (0∗d(x))∧ (0∗σ(0,x))Proposition 3.6(1)

= (0∗σ(0,x))∗ ((0∗σ(0,x))∗ (0∗d(x)))

= (0∗σ(0,x))∗ (d(x)∗σ(0,x))(B12)

= 0∗d(x).(B10)

(4) Suppose that σ is a left bi-endomorphism on X . Then for all x ∈ X ,

d(0∗ x) = (φ(0,x)∗d(x))∧ (d(0)∗σ(0,x))

= (φ(0,x)∗d(x))∧ (0∗0)Proposition 3.6(1)

= (φ(0,x)∗d(x))∧0(B1)

= 0∗ (0∗ (φ(0,x)∗d(x)))

= φ(0,x)∗d(x).(B7)

�

4. CONCLUSION AND DISCUSSION

In this paper, we have introduced the concepts of left and right bi-endomorphisms on B-

algebras. Next, we have defined the binary operation � of those left bi-endomorphisms and

obtained that (Sl(X),�,0) is a 0-commutative B-algebra where Sl(X) is the set of all left bi-

endomorphisms on a B-algebra X . Moreover, we have generalized derivations on B-algebras

with two mappings φ ,σ : X ×X → X and obtained some properties as Theorem 3.15 and The-

orem 3.16. In extending research, we offer an interesting algebra that is d/BH/BF/BG-algebras.
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