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Abstract. In this paper, we present an efficient numerical algorithm for approximate solutions of non-

linear second-order boundary value problems. We use the Laplace transform decomposition method to

develop a new method for computing an approximate solution for nonlinear second-order boundary value

problems. The Adomian decomposition method (shortly, ADM) together with the application of Laplace

transform integral operator are applied to the differential equation. The new approach provides the so-

lution in the form of a convergence series. An iterative algorithm is constructed for the determination of

the infinite series solution. Numerical results are included to demonstrate the reliability and efficiency of

the proposed scheme. Comparison between exact and approximate solutions with known results is made.
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1. Introduction

Mathematical modeling of many physical system leads to nonlinear ordinary differential

equations. An effective method is required to analyze the mathematical modeling which
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provides solutions conforming to physical reality, i.e, the real world of physics. Therefore,

we must be able to solve nonlinear ordinary differential equations, in space and time,

which maybe strongly nonlinear. Common analytic procedures linearized the system or

assume that nonlinearities are relative insignificant. Such procedures change the actual

problem to make it attractable by the conventional methods. In short, the physical prob-

lem is transformed to a purely mathematical one for which the solution is readily available.

This change, sometimes seriously, the solution. Generally the numerical methods such as

Rungs Kutta method are based on the discretization techniques, and they only permit us

to calculate the approximate solution for some values of time and space variables, which

cause us to overlook some important phenomena such as chaos and bifurcations, because

generally nonlinear dynamic systems exhibit some delicate structures in very small time

and space intervals. Also, the numerical methods require computer-intensive calculations.

The ability to solve nonlinear equations by an analytic method is important because lin-

earization change the problem, perturbation is only reasonable when nonlinear effects are

very small, and the numerical methods need a substantial amount of computation but on-

ly get limited information. Since the beginning of the 1980s, Adomian’s has presented and

developed a so-called Decomposition Method for solving linear and nonlinear problems

such as ordinary differential equations. Adomian’s Decomposition Method (ADM) consist

of splitting the given solution into linear and nonlinear parts, inverting the highest-order

derivative operator contained in the linear operator on both sides, Identifying the initial

and/or boundary conditions and the terms involving the independent variables alone as

initial approximation, decomposition the unknown function into series whose components

are to be determined, decomposing the nonlinear function in terms of special polynomi-

als called Adomian’s polynomials, and finding the successive terms of the series solution

by recurrent relation using Adomian’s polynomials. ADM is quantitative rather than

quantitative, analytic, requiring neither linearization nor perturbations, and continuous

with no resort to discretization and consequent computer-intensive calculations.ADM is

are relatively new approach to provide analytical approximation to linear and non-linear
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problems, and it is particularly valuable as a tool for Scientists and applied mathemati-

cians, because it provides immediate and visible symbolic terms of analytic solutions, as

well as numerical approximate solution to both linear and non-linear differential equations

without linearization or discretization. Over the past few years, many new alternative to

the use of traditional methods for the numerical solution of differential equations have

been proposed. Linear or nonlinear two-point boundary value problems of second order

can be readily solved by many methods. In [19] an accurate algorithm for the solution

of special fourth-order boundary value problems with two-point boundary conditions is

developed. In [10] the authors used Lindstedt-Poincare method, the Krylov-Bogoliubov

first approximate method, and the differential transform method to handle second-order

differential equations with oscillations. A combined form of the Laplace transform method

(LTM) with the differential transform method (DTM) is used to solve non-homogeneous

linear partial differential equations (PDEs) [11]. A modified form of the Adomian decom-

position method is applied to construct the numerical solutions for such problems. In [13],

the author illustrates the use of both, Laplace transform, and the decomposition method

to approximate the solution of Bratu’s boundary value problem. Numerical solutions for

boundary value problems were obtained by the shooting method, and by representing the

nonlinear differential equation as an integral equation then applying the decomposition

method [8].

In this paper, with the same analysis as in [13], we illustrates how the Laplace trans-

form integral operator and the Adomian’s decomposition method (ADM) [1, 2] can be

both efficiently manipulated for obtaining explicit and numerical solutions of the nonlinear

second-order boundary value problems.

(1)
d2y

dx2
= λ(x)eµy, y(0) = y(1) = 0

where µ > 0 is a constant and the function λ(x) > 0 may be a polynomial or a rational

function, or exponential. Due to the large different possibilities, we will assume λ(x) to

be any analytic function of x which has a power series expansion. Equation (1) occurs

frequently in diffusion theory, Celestial Machines, for example in mechanical problems
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without dissipation. A good number of research papers which deals with the study of

approximate solutions of these kind of equation are available in the literature.

In recent years a lot of attention has been developed to the study of the decomposition

method to investigate various scientific models [14, 15, 18, 6, 7].

2. Laplace transform algorithm

In this section, the Laplace transform decomposition method is introduced, and the

scheme is implemented for the solution of special nonlinear second-order boundary value

problem of the form

(2)
d2y

dx2
= λ(x)eµy, 0 < x < 1

with boundary conditions

(3) y(0) = y(1) = 0

The exact solution of (2)-(3) is given by [12]

(4) y(x) =
2

µ
ln
[ √

2(
√
λ1 ∓

√
λ0)√

µλ(x)(
√
λ1(1− x)±

√
λ0x)

]
provided that

(
√
λ1 ∓

√
λ0)

2

λ1λ0
=
µ

2

. The technique consists of applying Laplace transform integral operator (denoted by `)

to both sides of equation (2). Hence

`[
d2y

dx2
] = `[λ(x)eµy]

Applying the formulas on Laplace transform, we obtain

(5) s2`[y]− sy(0)− y′(0) = `[λ(x)eµy]

Using the initial condition y(0) = 0 in equation (3), and setting A = y′(0), it follows that

(6) s2`[y]− A = `[λ(x)eµy]
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The constant A will be determined later by using the boundary condition at x = 1.

Rewrite equation (6) as

(7) `[y] =
A

s2
+

1

s2
`[λ(x)eµy]

The Laplace transform decomposition introduces the solution y(x) by a decomposition

series of the form

(8) y(x) =
∞∑
n=0

yn(x)

and the nonlinear function eµy is decomposed as

(9) eµy = f(y) =
∞∑
n=0

An(y0, y1, ..., yn)

where the components yn(x) of the solution y(x) will be determined recursively, and

An(y0, y1, ..., yn) are the Adomian polynomials that can be constructed for various classes

of nonlinearity according to specific algorithms set by Adomian [1, 2] and Wazwaz [18].

The first few polynomials are given by

A0 = f(y0),

A1 = y1f
′(y0),

A2 = f ′′(y0)
y21
2!

+ f ′(y0)y2,

A3 = 1
3!
f ′′′(y0)y

3
1 + f ′′(y0)y1y2 + f ′(y0)y3

A4 = 1
4!
f (4)(y0)y

4
1 + 1

2
f (3)(y0)y

2
1y2 + 1

2
f ′′(y0)y

2
2 + f ′(y0)y4

...

Substituting equations (8) and (9) into equation (7) yields

(10) `[
∞∑
n=0

yn] =
A

s2
+

1

s2
`[
∞∑
n=0

λ(x)An]

The decomposition method [18] identifies the zeroth component y0(x) by all terms that

arise from the boundary conditions at x = 0 and from the Laplace transform of the source
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term (if any). Based on this identification, matching both sides of equation (10) yields

the following iterative algorithm:

(11) `[y0(x)] =
A

s2

(12) `[y1(x)] =
1

s2
`[λ(x)A0]

(13) `[y2(x)] =
1

s2
`[λ(x)A1]

In general,

(14) `[yk+1(x)] =
1

s2
`[λ(x)Ak], k ≥ 0

For the determination of the components yn(x) of y(x). Applying the inverse Laplace

transform to equation (11) we obtain

(15) y0(x) = Ax

Next, substituting this value of y0(x) and that of A0 into equation (12) gives

(16) `[y1(x)] =
1

s2
`[λ(x)f(y0)]

Applying the inverse Laplace transform to equation (16) we obtain the value of y1(x).

Substituting the values of y0, y1 and A1 into equation (13), and then applying the Laplace

inverse yields the value of y2(x). Continue this way and note that the efficiency of this

approach can be dramatically enhanced by determining more components of y(x) as far

as we wish. To determine the constant A, we define the n−term approximate solution by

φn =
n−1∑
i=0

yi(x;A) = y0(x;A) + y1(x;A) + y2(x;A) + ...

This solution has yet to satisfy the remaining boundary condition at x = 1 in equation

(3). Setting φn(1) = 0, then solving the resulting algebraic equation in A, will determine

the unknown constant A and eventually the numerical solution of our nonlinear second-

order boundary value problem. Finally the solution y(x) is given by y(x) = limn→∞ φn.

The existence and uniqueness of the solution is guaranteed by a result in [12]. To give a
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clear overview of the content of this work, in the next section, an illustrative example has

been selected to demonstrate the efficiency of the method.

3. Numerical Results

In this section we provide a numerical example which verify the convergence of the

Laplace decomposition algorithm, described in section 2.

The example included here illustrate various features of the method, demonstrating the

ease of implementation and assembly of the iterative technique in using the ADM.

Example 3.1. Consider the nonlinear boundary value problem

(17) y′′(x) = πey(x), 0 < x < 1

with the boundary conditions

(18) y(0) = 0, y(1) = 0,

The exact solution for this problem is y(x) = − ln[1 + sin(πx)]. In this example the

nonlinear operator f(y) = πey(x), and the first three Adomian polynomials are given by

A0 = −6e−4y0 ,

A1 = 24y1e
−4y0 ,

A2 = −48e−4y0y21 + 24e−4y0y2,

A3 = 64e−4y0y31 − 96e−4y0y1y2 + 24e−4y0y3,

...

and so on for the other polynomials. In order to avoid evaluating the Laplace transform of

some difficult terms, in matching both sides of equation (10) and upon using the modified
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decomposition method [19] we introduce the recursive relation

y0(x) = x,

y1 = x+ A
2
x2 + `−1

[
1
s2
`(g(x))

]
+ `−1

[
1
s2
`(f(y0))

]
,

yk+1(x) = `−1
[

1
s2
`(Ak)

]
, k ≥ 1

where `−1 is to denote the inverse Laplace transform. The first four components of the

solution y(x) are given by

y0(x) = Ax,

y1(x) = 3(1−e−4Ax−4Ax)
8A2 ,

y2(x) = −9e−8Ax(1+4e4Ax(1+4Ax)+e8Ax(−5+8Ax))
64A4

The approximate solution is φ4 =
∑3

i=0 yi(x;A), which has yet to satisfy the remaining

two boundary conditions. Imposing the boundary conditions y(1) = 0,, on the 4−term

approximation φ4 gives an algebraic system for the unknown A. Upon solving this system

(using Mathematica) we get A = −0.136357, and eventually the numerical solution is

obtained. Table 1 show results for the two example. The error between the numerical

approximation yi and the true solutions y(xi) is determined and reported as |yi − y(xi)|.

All results are tabulated in the form a.aa−Eγ which represent a.aa× 10−γ. The error of

our method is displayed in the third column of each Table. For comparison the error of

the method taken from [19] are recorded in the second column, this comparison indicated

that Laplace decomposition method is better than the modified decomposition method.

4. Conclusions

In this paper, the Laplace transform decomposition method produced a reliable com-

putational method for handling boundary value problems. The results in this paper indi-

cates that our procedure can be used to obtain accurate numerical solutions of nonlinear

boundary value problems with very little computational effort.
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xi Wazwaz Error [19] Our Error

0 0.000000 0.000000

0.1 6.9E-09 8.88E-16

0.2 1.3E-08 1.33E-15

0.3 1.6E-08 1.55E-15

0.4 2.3E-08 0.000000

0.5 2.5E-08 4.44E-16

0.6 2.4E-08 2.22E-15

0.7 2.2E-08 3.10E-15

0.8 1.7E-08 1.77E-15

0.9 1.2E-08 1.59E-14

1.0 2.0E-09 5.41E-14

Table 1. Numerical Values for Example 3.1
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