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1. INTRODUCTION 

Frames are generalization of bases. D. Han and D.R. Larson [4] have developed a number of 

basic aspects of operator-theoretic approach to frame theory in Hilbert space.  Peter G. Casazza 

[2] presented a tutorial on frame theory and he suggested the major directions of research in 

frame theory. The notation of K-frames has been introduced by Gavrutha [3] to study the atomic 

system with respect to a bounded linear operator K in a Separable Hilbert space H. Fahimeh 

Arabyani Neyshaburi and Ali Akber Arefijamaal [1] were characterize all duals of a given k- 

frame and given some approaches for constructing K-frames. Mitra Shamsabadi and Ali Akbar 

Arefijamaal [5] were study soe properties of K- frames and introduced the K-frame multipliers. 
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In [6] A. Rahimi, Sh. Najafzadehnad M. Nouri were developed the concept of controlled K-

frames. Some properties of K Dual frames are investigated by Vahid Reza, Mohammad Janfada 

and Rajabali Kamyabi Gol [7]. 

In this paper some results on finite k-frames in finite dimensional Hilbert space are studied. 

The properties of eigen values of k-frame operator are discussed. 

 

2. PRELIMINARIES 

Frames are generalizations of orthonormal basis in Hilbert spaces. Here we recall a few basic 

definitions and results needed in the sequel. 

Definition 2.1 A sequence  
Jjjf


of vectors in a Hilbert space H is called a frame if there exists 

two constants 0 < A ≤ B <,  such that 

HffBfffA
Jj

j 


222
,  

The above inequality is called a frame inequality. The numbers A and B are called the lower and 

upper frame bounds respectively. If A=B then  
Jjjf


is called tight frame, if A=B=1 then 

 
Jjjf


 is called normalized tight frame. A synthesis operator   T :l2→ H is defined as   Tej  = fj  

where {ej} is an orthonormal  basis for l2. The analysis operator T   : H →l2 is an adjoint of 

synthesis operator T and is defined as  HfefffT
Jj

jj =


 , . A frame operator 

HHTTS →=  : is defined as    HffffSf
j

jj = ,  

The following few theorems from [1, 5] are useful in our discussion. 

Theorem 2.2.  Suppose  
Jjjf


 is a frame for H if and only if opop BISAI   and  

Jjjf


 is 

normalized tight frame for H if and only if S  = I op , where I op  is an identity operator on H. 

Theorem 2.3.  [5] Let S  be a frame operator for the frame  
Jjjf


 with frame bounds A and B 

in the Hilbert space H. Then 1−S  exists, positive and  opop IASIB 111 −−−  . 
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We consider a sequence of M vectors {fj}  in     N-dimensional real or complex Hilbert space 

HN, where M and N are positive integers with M ≥ N. Here l2 is K where K=R or C.  For a 

frame {fj} HN, the existence of the corresponding synthesis, analysis and frame operators 

are T: K →HN,   T : HN→ K and S = TT* : HN→HN  which may be represented as N M, M

N and N N matrices respectively. With respect to orthonormal basis for HN and the 

standard basis for K , the matrix representations of the synthesis, analysis and frame operators 

are  

T =  
MXN

T

m

TT
fff ...21 , T  =

NxMmf

f

f























.

.

2

1

and S = TT   =  

NxMm

MxN

T

m

TT

f

f

f

fff























.

...

2

1

21
 

Consider 1, 2… 
N

 as the eigen values of S. Here the properties of eigen values of frame 

operator are discussed. 

Theorem 2.4[8]. Let {fj}
M

j 1= be a frame for HN,then sum of the eigen values of frame operator S 

is equal to the sum of lengths of the frame vectors. 

Proof: Let {fj}
M

j 1=  be a frame for HN. Suppose 1, 2… n be the eigen values of the frame 

operator S. 

Consider    
=

N

j

j

1

  = Tr(S) = Tr (T T*)  =
=

M

j

jj ff
1

*
   = 

=

M

j

jf
1

2

 

Example:  The set of vectors {(1, 0), (0, 1), (1, -1)} is a frame for R2. Here the dimension of 

space is 2 where as the number of frame vectors are 3. They are f1= (1, 0); f2 = (0,1); f3 = (1,-1).              

Let T =  
32321 x

TTT
fff    =  

32
110

101

x










−
  and T


 = 

















−11

10

01

 

Therefore S = T T

 =

22
21

12

x










−

−
, eigen values of the frame operator S are 1, 3 

M

j 1=

N

M

j 1= 

N  N


   N

iie
1=

N
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=

2

1j

j  = 1 + 2 = 4; and 
=

3

1

2

j

jf  = 1 + 1 + 2 = 4. 

Therefore we have 
=

2

1j

j  = 
=

3

1

2

j

jf .   

 

3. K-FRAMES 

Definition3.1. Let )(HBK . A sequence  
Jjjf


 in Hilbert space H is said to be a K-frame for 

H if there exist two constants   0 < A ≤ B <, such that 

HffBfffKA
Jj

j 


 ,,
222

.  

Where A and B are called lower and upper frame bounds for k-frame respectively. If K=I, then 

K-frames are just ordinary frames.  

Definition 3.2: Let {𝑓𝑗}
𝑗∈𝐽

is a K- frame for H. Obviously it is a Bessel sequence, so we can 

define the following operator 𝑇: 𝑙2 → 𝐻  by 𝑇(𝑐𝑗) = ∑ 𝑐𝑗𝑓𝑗   ∀𝑗∈𝐽 {𝑐𝑗} ∈ 𝑙2  is called Synthesis 

operator for K- frame{𝑓𝑗}
𝑗∈𝐽

. Also we have 

𝑇∗: 𝐻 → 𝑙2by𝑇∗𝑓 = {< 𝑓, 𝑓𝑗 >}𝑗∈𝐽 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐻 is called Analysis operator for K- frame{𝑓𝑗}
𝑗∈𝐽

.  

The frame operator is given by S k : H →H is defined as S k f = j

Jj

j fff


,  , for all f H. 

K-frames are more general than ordinary frames in the sense that the lower frame bound only 

holds for the elements in the range of K Because of the higher generality of K-frames many 

properties for ordinary frames may not hold for K-frames such as the corresponding synthesis 

operator for K-frames is not surjective. 

 

The different types of k-frames are given below. 
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The fallowing examples illustrates that a sequence {𝑓𝑗} is a K-frame. 

Example 3.3: Let {𝑒𝑛}𝑛=1
∞  be an orthonormal basis for H and define 𝐾 ∈ 𝐵(𝐻) as fallows 

𝐾𝑒2𝑛 = 𝑒2𝑛 + 𝑒2𝑛−1,𝐾𝑒2𝑛−1 = 0 𝑛 = 1,2, … 

Then for each 𝑓 ∈ 𝐻 we have  

𝐾𝑓 = 𝐾(∑ < 𝑓, 𝑒𝑛 > 𝑒𝑛) =

∞

𝑛=1

 𝐾(∑ < 𝑓, 𝑒2𝑛 > 𝑒2𝑛) + ∑ < 𝑓, 𝑒2𝑛−1 > 𝑒2𝑛−1)

∞

𝑛=1

∞

𝑛=1

 

= ∑ < 𝑓, 𝑒2𝑛 > (𝑒2𝑛 + 𝑒2𝑛−1)

∞

𝑛=1

 

It is easy to check that the adjoint operator 𝐾∗: 𝐻 → 𝐻 is given by 

𝐾∗𝑓 = ∑ < 𝑓, 𝑒2𝑛 + 𝑒2𝑛−1 > 𝑒2𝑛 ∀𝑓 ∈ 𝐻   

∞

𝑛=1

 

S.No Description Type of frame {𝑓𝑗} 

1 HffBfffKA
Jj

j 


 ,,
222

 
K-frame for H  

2 If  𝐴‖𝐾∗𝑓‖2 = ∑ |< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽 ∀𝑓 ∈ 𝐻 A-tight K- frame for H 

3 If ‖𝐾∗𝑓‖2 = ∑ |< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽 ∀𝑓 ∈ 𝐻 normalized K- frame or Parseval K-

frame for H. 

4 If 𝐴‖𝐾∗𝑓‖2 = ∑ |< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽 ∀𝑓 ∈ 𝐻   and 

‖𝑓𝑗‖ = 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

equal norm A-tight K- frame for H. 

5 If ‖𝐾∗𝑓‖2 = ∑ |< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽 ∀𝑓 ∈ 𝐻   and 

‖𝑓𝑗‖ = 𝑎𝑓𝑜𝑟𝑎𝑙𝑙𝑗 

equal norm normalized K- frame for H. 

6 If 𝐴‖𝐾∗𝑓‖2 = ∑ |< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽 ∀𝑓 ∈ 𝐻   and 

‖𝑓𝑗‖ = 1 𝑓𝑜𝑟𝑎𝑙𝑙𝑗 

unit norm A-tight  K- frame for H. 

7 If ‖𝐾∗𝑓‖2 = ∑ |< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽 ∀𝑓 ∈ 𝐻   and 

‖𝑓𝑗‖ = 1 𝑓𝑜𝑟𝑎𝑙𝑙𝑗 

unit norm normalized   K- frame for H. 
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But since, for all 𝑓 ∈ 𝐻    

‖𝐾∗𝑓‖2 = ‖∑ < 𝑓, 𝑒2𝑛 + 𝑒2𝑛−1 > 𝑒2𝑛 ∀𝑓 ∈ 𝐻   

∞

𝑛=1

‖

2

 

= ∑|< 𝑓, 𝑒2𝑛 + 𝑒2𝑛−1 >|2

∞

𝑛=1

 

≤ 2 ∑|< 𝑓, 𝑒2𝑛 >|2   + 2 ∑|< 𝑓, 𝑒2𝑛−1 >|2

∞

𝑛=1

∞

𝑛=1

≤ 4‖𝑓‖2 

⟹ ‖𝐾∗𝑓‖2 = ∑|< 𝑓, 𝑒2𝑛 + 𝑒2𝑛−1 >|2

∞

𝑛=1

≤ 4‖𝑓‖2 

It follows that {𝑓𝑛}𝑛=1
∞ = {𝑒2𝑛 + 𝑒2𝑛−1}𝑛=1

∞  is a K-frame for H. here frame bounds A=1 and B= 4 

Example 3.4: Let 𝐻 = ℂ3 and {𝑒1, 𝑒2, 𝑒3} be an orthonormal basis for H. Define 𝐾: 𝐻 → 𝐻 by 

𝐾𝑒1 = 𝑒1, 𝐾𝑒2 = 𝑒1, 𝐾𝑒3 = 𝑒2. Then {𝑓𝑖}𝑖=1
3 = {𝐾𝑒1, 𝐾𝑒2, 𝐾𝑒3}𝑖=1

3  is a K-frame for H. 

And 𝑆𝐾 = [
2 0 0
0 1 0
0 0 0

] is a K- frame operator for H. 

Also let T= [
2 0 0
0 1 0
0 1 1

] and 𝑓 = 𝑒3 ∈ 𝐻. then ∑ |< 𝑓, 𝑓𝑖 >|2 = 03
𝑖=1  and ‖𝑇∗𝑓‖2 = 4. Hence 

{𝑓𝑖}𝑖=1
3  is not a T-frame for H 

Example 3.5: Let {𝑒𝑖}𝑖=1
∞  be an orthonormal basis in 𝑙2. Define T and K on 𝑙2by 𝑇𝑒𝑖 =

𝑒𝑖−1 𝑓𝑜𝑟 𝑖 > 1 

And 𝑇𝑒1 = 0. And 𝐾𝑒𝑖 = 𝑒𝑖+1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 respectively then it is clear that {𝐾𝑒𝑖}𝑖=1
∞  is K-frame for 

𝑙2 but it not a T-frame for 𝑙2. 

Example 3.6: 𝐹 = {(
−1

√2
,

1

√2
) , (

−1

√2
,

1

√2
) , (

1

√2
,

1

√2
)} in 𝐻 = ℂ2 and K be an orthogonal projection 

onto the subspace spanned be 𝑒1 where {𝑒1, 𝑒2} is the orthonormal basis of ℂ2. Now for all 

𝑓 = (𝑎, 𝑏) ∈  ℂ2 we obtain  

‖𝐾∗𝑓‖2 ≤ ∑|< 𝑓, 𝑓𝑖 >|2

𝑖∈𝐼

=
3

2
(𝑎2 + 𝑏2) − 𝑎𝑏 ≤ 2‖𝑓‖2 
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Then F is a K-frame for 𝐻 = ℂ2. 

Theorem 3.7[6]: Suppose {𝑓𝑗} is a K- frame for H iff  𝐴𝐾𝐾∗ ≤ KS ≤ 𝐵𝐼 and Suppose{𝑓𝑗} is 

called normalized K- frame for H iff KS  =   𝐾𝐾∗𝐼. 

Proof:   By using the definition of K-frame operator we have 

< KS 𝑓, 𝑓 > = < ∑ < 𝑓, 𝑓𝑗 > 𝑓𝑗

𝑗∈𝐽

, 𝑓 > =  ∑ < 𝑓, 𝑓𝑗 >< 𝑓𝑗,𝑓 >

𝑗∈𝐽

=  ∑|< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽

∀𝑓 ∈ 𝐻 

 

⟹< KS 𝑓, 𝑓 >=  ∑|< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽

∀𝑓 ∈  𝐻                      … (1) 

 

Consider  𝐴‖𝐾∗𝑓‖2 = 𝐴 < 𝐾∗𝑓, 𝐾∗𝑓 > = < 𝐴𝐾𝐾∗𝑓, 𝑓 >.                                 ... (2) 

Suppose {𝑓𝑗} is a K- frame for H⇔ 𝐴‖𝐾∗𝑓‖2 ≤ ∑ |< 𝑓, 𝑓𝑗 >|
2

≤𝑗∈𝐽 𝐵‖𝑓‖2∀𝑓 ∈ 𝐻 

⇔ 𝐴‖𝐾∗𝑓‖2 ≤      < KS 𝑓, 𝑓 >     ≤ 𝐵‖𝑓‖2     ∀𝑓 ∈ 𝐻by    (1) 

⇔< 𝐴𝐾𝐾∗𝑓, 𝑓 >≤< KS 𝑓, 𝑓 >≤< 𝐵𝐼𝑓, 𝑓 > ∀𝑓 ∈ 𝐻 

⇔ 𝐴𝐾𝐾∗ ≤ KS ≤ 𝐵𝐼             ……..(3) 

⟹ {𝑓𝑗}is a K- frame for H       ⇔ 𝐴𝐾𝐾∗ ≤ KS ≤ 𝐵𝐼. 

Suppose {𝑓𝑗} is called normalized K- frame for H 

⇔ ‖𝐾∗𝑓‖2 = ∑|< 𝑓, 𝑓𝑗 >|
2

𝑗∈𝐽

∀𝑓 ∈ 𝐻 

⇔< KS 𝑓, 𝑓 > =  < 𝐾𝐾∗𝑓, 𝑓 > ∀𝑓 ∈ 𝐻   ……by (1) 

⇔ KS  =   𝐾𝐾∗𝐼. 

∴ {𝑓𝑗}is called normalized K- frame for H         ⇔ KS  =   𝐾𝐾∗𝐼. 
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4. FINITE K-FRAMES IN FINITE DIMENSIONAL HILBERT SPACES 

Definition4.1:  Let )(HBK . A sequence {𝑓𝑗}in Hilbert space H is said to be a finite K-frame 

for𝐻𝑁  if there exist two constants   0 < A ≤ B <, such that 

𝐴‖𝐾∗𝑓‖2 ≤ ∑ |< 𝑓, 𝑓𝑗 >|
2

≤𝑚
𝑗=1 𝐵‖𝑓‖2∀𝑓 ∈ 𝐻𝑁. Here 𝐻𝑁 is an N-dimensional Hilbert space. 

In the fallowing propositions, we express inequalities for different types of K-frames. 

Proposition4.2:   If  {𝑓𝑗}
𝑗=1

𝑚
 is a A- tight K-frame for Hilbert space 𝐻𝑁 then for every j=1,2,…m 

we have   ‖𝑓𝑗‖ ≤ √‖𝐴𝐾𝐾∗‖. 

Proof:  We have   {𝑓𝑗}
𝑗=1

𝑚
 is a A- tight K-frame for Hilbert space 𝐻𝑁 then 

𝐴‖𝐾∗𝑓‖2 = ∑|< 𝑓, 𝑓𝑗 >|
2

𝑚

𝑗=1

 

        Now for any1 ≤ 𝑖 ≤ 𝑚,    𝐴‖𝐾∗𝑓𝑖‖
2 = ∑ |< 𝑓𝑖 , 𝑓𝑗 >|

2𝑚
𝑗=1  

= ‖𝑓𝑖‖4 + ∑ |< 𝑓𝑖 , 𝑓𝑗 >|
2

𝑚

𝑖≠𝑗=1

 

⟹ ‖𝑓𝑖‖4 − 𝐴‖𝐾∗𝑓𝑖‖2 = − ∑ |< 𝑓𝑖 , 𝑓𝑗 >|
2

𝑚

𝑖≠𝑗=1

≤ 0 

⟹ ‖𝑓𝑖‖
4 − 𝐴‖𝐾∗𝑓𝑖‖2 ≤ 0 

⟹ ‖𝑓𝑖‖4 ≤ 𝐴‖𝐾∗𝑓𝑖‖2 

⟹ ‖𝑓𝑖‖4𝐼 − 𝐴𝐾𝐾∗‖𝑓𝑖‖2 ≤ 0 

⟹ 𝐼‖𝑓𝑖‖
2 − 𝐴𝐾𝐾∗ ≤ 0 ⟹ ‖𝑓𝑖‖ ≤ √‖𝐴𝐾𝐾∗‖  For i=1,2…m 

Corollary 4.3: If  {𝑓𝑗}
𝑗=1

𝑚
 is a normalised K-frame for Hilbert space 𝐻𝑁 then for every j=1,2,…m 

we have  ‖𝑓𝑗‖ ≤ √‖𝐾𝐾∗‖. 

Proof: From the Proposition 4.2 we have ‖𝑓𝑖‖ ≤ √‖𝐴𝐾𝐾∗‖ when {𝑓𝑗}
𝑗=1

𝑚
 is a A- tight K-frame 

for Hilbert space 𝐻𝑁. Given that {𝑓𝑗}
𝑗=1

𝑚
 is a normalised K-frame for Hilbert space 𝐻𝑁. Then 

A=1 
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Hence ‖𝑓𝑗‖ ≤ √‖𝐾𝐾∗‖. 

Proposition 4.4: Let {ei}i=1
N be an orthonormal basis for𝐻𝑁. If  {𝑓𝑗}

𝑗=1

𝑚
 be a K-frame for 𝐻𝑁 with 

frame bounds A and B then 𝐴𝐾𝐾∗𝑁 ≤ ∑ ‖𝑓𝑗‖
2

≤ 𝐵𝑁𝑚
𝑗=1  

Proof: Suppose {ei}i=1
N be an orthonormal basis for 𝐻𝑁. By the parsevals identy we have 

‖𝑓‖2 ≤ ∑|< 𝑓, 𝑒𝑖 >|2∀𝑓 ∈ 𝐻𝑁

𝑛

𝑖=1

 

⇒ ‖𝑓𝑗‖
2

≤ ∑|< 𝑓𝑗 , 𝑒𝑖 >|
2

∀𝑓 ∈ 𝐻𝑁

𝑛

𝑖=1

∀j =  1,2, … m 

⇒ ∑‖𝑓𝑗‖
2

𝑚

𝑗=1

≤ ∑ ∑|< 𝑓𝑗 , 𝑒𝑖 >|
2

𝑛

𝑖=1

𝑚

𝑗=1

 

… (3) 

Given that {𝑓𝑗}
𝑗=1

𝑚
 is a K-frame for 𝐻𝑁 with frame bounds A and B then we have  

𝐴‖𝐾∗𝑓‖2 ≤ ∑|< 𝑓, 𝑓𝑗 >|
2

≤

𝑚

𝑗=1

𝐵‖𝑓‖2∀𝑓 ∈ 𝐻𝑁 

Replacing f by 𝑒𝑖 in above  

𝐴‖𝐾∗𝑒𝑖‖
2 ≤ ∑|< 𝑒𝑖, 𝑓𝑗 >|

2
≤

𝑚

𝑗=1

𝐵‖𝑒𝑖‖
2∀𝑖 = 1,2, … 𝑛. 

𝐴𝐾𝐾∗ ∑‖𝑒𝑖‖
2

𝑁

𝑖=1

≤ ∑ ∑|< 𝑒𝑖, 𝑓𝑗 >|
2

≤ 𝐵 ∑‖𝑒𝑖‖
2

𝑁

𝑖=1

𝑚

𝑗=1

𝑛

𝑖=1

 

𝐴𝐾𝐾∗𝑁 ≤ ∑ ‖𝑓𝑗‖
2

≤ 𝐵𝑁𝑚
𝑗=1 by (3) 

In the fallowing propositions, we express two equalities for K-frames by using eigen values 

of frame operator. 

Proposition 4.5: Suppose that {𝑓𝑗}
𝑗=1

𝑚
 is a K-frame for 𝑅(𝐾) ⊆ 𝐻𝑁 and {𝜆𝑗}

𝑗=1

𝑁
denote the 

eigen 

values for frame operator KS  then ∑ 𝜆𝑗 = ∑ ‖𝑓𝑗‖
2𝑚

𝑗=1
𝑁
𝑗=1 . 
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Proof: Consider 

∑ 𝜆𝑗 = 𝑇𝑟( KS ) = 𝑇𝑟(𝑇𝑇∗) = ∑ 𝑓𝑗𝑓𝑗
∗

𝑚

𝑗=1

= ∑‖𝑓𝑗‖
2

𝑚

𝑗=1

𝑁

𝑗=1

 

Proposition 4.6: Let  {𝑓𝑗}
𝑗=1

𝑚
 be a normalized K-frame for𝐻𝑁.Then ∑ 𝜆𝑗 = 𝑁𝑇𝑟(𝐾)2𝑁

𝑗=1  and 

𝑁𝑇𝑟(𝐾)2 = ∑‖𝑓𝐽‖
2

𝑁

𝑗=1

. 

Proof: ∑ 𝜆𝑗 = 𝑇𝑟( KS ) = 𝑇𝑟(𝐾𝐾∗𝐼) = 𝑇𝑟(𝐾)𝑇𝑟(𝐾∗)𝑇𝑟(𝐼) = 𝑇𝑟(𝐾)2𝑁
𝑗=1 𝑁. 

Also, we have 𝑇𝑟( KS ) = ∑ ‖𝑓𝑗‖
2𝑁

𝑗=1 , which implies      ∑ 𝜆𝑗 = 𝑁𝑇𝑟(𝐾)2 =𝑁
𝑗=1

∑ ‖𝑓𝑗‖
2𝑁

𝑗=1 . 

Proposition 4.7[7]: Let 0 ≠ 𝐾 ∈ 𝐵(𝐻𝑁). Let ∅ = {𝑓𝑗}
𝑗=1

𝑚
 be a K-frame for R(K) witj K-frame 

operator KS  with eigen values 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁 > 0  then 𝜆1  is the optimal upper K-frame 

bound and if 𝜆𝑁 ≠ 0 𝑡ℎ𝑒𝑛
𝜆𝑁

‖𝐾‖2 is the optimal lower K-frame bound. 

Proof: Suppose that {ei}i=1
N  is an orthonormal eigen basis of the frame operator KS  with 

associated eigenvalues  {𝜆i}i=1
N  given in decreasing order. We can write  

𝑓 = ∑ < 𝑓,

𝑁

𝑗=1

ej > ej for all fϵ𝐻𝑁 

We have for fϵ𝐻𝑁 

𝑆𝐾𝑥 = KS (∑ < 𝑓,

𝑁

𝑗=1

ej > ej) = ∑ < 𝑓,

𝑁

𝑗=1

ej > KS ej 

= ∑ < 𝑓,

𝑁

𝑗=1

ej > 𝜆jej 

= ∑ 𝜆j < 𝑓,𝑁
𝑗=1 ej > ej……. (4) 
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Now  

∑|< 𝑓, fj >|
2

=< KS 𝑓, 𝑓 >=

𝑁

𝑗=1

< ∑ 𝜆j < 𝑓,

𝑁

𝑗=1

ej > ej, f > 

= ∑ 𝜆j|< 𝑓, ej >|
2

𝑁

𝑗=1

 

≤ ∑ 𝜆1|< 𝑓, ej >|
2𝑁

𝑗=1    since  𝜆j ≤ 𝜆1 for j = 1,2, … n. 

= 𝜆1 ∑ |< 𝑓, ej >|
2𝑁

𝑗=1 = 𝜆1‖𝑓‖2….(5) 

Now 

𝜆𝑁

‖𝐾‖2
‖𝐾𝑓‖2 ≤ 𝜆𝑁‖𝑓‖2 = 𝜆𝑁 ∑|< 𝑓, ej >|

2
𝑁

𝑗=1

 

≤ 𝜆j ∑|< 𝑓, ej >|
2

𝑁

𝑗=1

= ∑ 𝜆j|< 𝑓, ej >|
2

𝑁

𝑗=1

=< KS 𝑓, 𝑓 > 

                                                                                                                            ……(6) 

From (5) and (6) we have  

𝜆𝑁

‖𝐾‖2
≤< KS 𝑓, 𝑓 >≤ 𝜆1‖𝑓‖2 

Proposition 4.8: If  𝑓 = {𝑓𝑗}
𝑗=1

𝑚
 is an A-tight K-frame for 𝐻𝑁then Max

𝑗=1,2,…𝑚
‖𝑓𝑗‖

2
≤ 𝐴‖𝐾‖2. 

Proof: For any j=1, 2,….  m   we have 

‖𝑓𝑗‖
4

≤ |< 𝑓𝑗 , 𝑓𝑗 >|
2

≤ ∑|< 𝑓𝑗 , 𝑓𝑗 >|
2

𝑚

𝑗=1

= 𝐴‖𝐾∗𝑓𝑗‖
2
 

≤ 𝐴‖𝐾∗‖2‖𝑓𝑗‖
2

≤ 𝐴‖𝐾‖2‖𝑓𝑗‖
2
since‖𝐾∗‖ = ‖𝐾‖ 

⟹ ‖𝑓𝑗‖
4

≤ 𝐴‖𝐾‖2‖𝑓𝑗‖
2
 

Hence, we have 

‖𝑥𝑗‖
2

≤ 𝐴‖𝐾‖2𝑓𝑜𝑟𝑎𝑙𝑙𝑗 = 1,2, … 𝑚 

⟹         Max
𝑗=1,2,…𝑚

‖𝑓𝑗‖
2

≤ 𝐴‖𝐾‖2. 



6479 

FINITE K- FRAMES IN HILBERT SPACES 

Proposition 4.9: If  ∅ = {𝑓𝑗}
𝑗=1

𝑚
 is a unit norm A-tight K-frame for  𝐻𝑁, then 𝐴‖𝐾‖2𝑁 ≥ 𝑚. 

Proof: Since {ej}j=1

N
 is an orthonormal basis for 𝐻𝑁 then for any   f we have 

𝑓 = ∑ < 𝑓, 𝑒𝑖 >

𝑁

𝑖=1

𝑒𝑖 ⇒ ‖𝑓‖2 = ∑|< 𝑓, 𝑒𝑖 >|2

𝑁

𝑖=1

 

⟹ ‖𝑓𝑗‖
2

= ∑|< 𝑓𝑗 , 𝑒𝑖 >|
2

𝑁

𝑖=1

 

Now 

𝑚 = ∑‖𝑓𝑗‖
2

= ∑ ∑|< 𝑒𝑖 , 𝑓𝑗 >|
2

𝑁

𝑖=1

𝑚

𝑗=1

𝑚

𝑗=1

 

= ∑ ∑|< 𝑒𝑖, 𝑓𝑗 >|
2

𝑚

𝑖=1

𝑁

𝑗=1

= ∑ 𝐴‖𝐾∗𝑒𝑗‖
2

𝑁

𝑗=1

 

since{𝑓𝑗}
𝑗=1

𝑚
 is a unit norm A-tight K-frame for  𝐻𝑁 

≤ ∑ 𝐴‖𝐾∗‖2‖𝑒𝑗‖
2

𝑁

𝑗=1

= ∑ 𝐴‖𝐾‖2‖𝑒𝑗‖
2

𝑁

𝑗=1

= 𝐴‖𝐾‖2 ∑‖𝑒𝑗‖
2

𝑁

𝑗=1

 

 

= 𝐴‖𝐾‖2𝑁 

Hence 𝑚 ≤ 𝐴‖𝐾‖2𝑁. 

 

CONFLICT OF INTERESTS 

The author(s) declare that there is no conflict of interests 

 

REFERENCES 

[1] F.A. Neyshaburi, A.A. Arefijamaal, Constructions For K-Frames And Their Duals In Hilbert Spaces, 

https://www.sid.ir/FileServer/SE/397E20160422 

[2] P.G. Casazza, The art of Frame Theory, Taiwan. J. Math. 4(2) (2000), 129-201. 

[3] L. gavrutha, Frames for Operators, Appl. Comp. Harm. Anal. 32 (2012), 139-144. 



6480 

G. UPENDERREDDY, N. KIRAN KUMAR 

[4] D. Han, D.R. Larson, Frames, bases and group representations, American Mathematical Society, Providence, 

R.I, 2000. 

[5] M. Shamsabadi, A.A. Arefijamaal, Some results of K-frames and their multipliers, Turk. J. Math. 44(2) (2020), 

538-552. 

[6] A. Rahimi, S. Najafzadeh, M. Nouri, Controlled K-frames in Hilbert Spaces, ArXiv:1602.03984 [Math]. 

(2016). 

[7] M. Janfada, V.R. Morshedi, R. Kamyabi Gol, Frame for operators in finite dimensional hilbert space, Tamkang 

J. Math. 49 (2018), 35–48. 

[8] G.U. Reddy, N.G. Reddy, A Note on Frame Potential in Finite Dimensional Hilbert Space, J. Indian Acad. 

Math. 32 (2010), 350-366. 

 


