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Abstract. The purpose of this paper is to explore the concept of regional gradient-controllability for semi linear

parabolic distributed systems. We are interested in transferring the state gradient of the system to a desired gradient

given on the subregion ω or Γ of the whole domain Ω. We give a definition and delineate some properties of this

concept, and we show that under some hypothesis, that the approximate regional controllability for the associated

linear system holds, we determine the control ensuring the transfer of the system. The approach developed is based

on an extension of the method H.U.M and the Schauder fixed point theorem. The developed method lead to an

algorithms for constructing the control ensuring the transfer of the system from a desired gradient and we finish by

numerical simulation.

Keywords: partial controllability; semilinear distributed systems; gradient controllability; minimum energy con-

trol.
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1. INTRODUCTION

The analysis of distributed systems brings together a set of concepts, we will cite the fundamental

notions of controllability, stability and stabilization, by duality the notions of observability and
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detectability. These various concepts have been the subject of several works and there is very

vast literature For an extensive list of publications, see e.g., ([4], [5], [10], [12] and [27]). They

are generally approached using two main approaches: the approach variational and the semi-

group approach. The development of the first approach, accelerated mainly towards the end of

the sixties, is marked among others by the work of [14, 15, 16]. The second approach can be

found in the works of ([1], [3], [11], [19] and [20]). This rich literature is generally focused on

three types of systems: parabolic, hyperbolic and elliptical.

The regional analysis, introduced in the early 1990s to systems distributed by El Jaı̈ and Zerrik

in the works ([7], [8], [9]). One extension which is very important in practical applications is

that of the concept of regional controllability. For the theory of analysis of distributed systems,

the term regional refers to control problems in which the target which we are interested in is not

specified on the whole domain, but only on a ω subregion of the system domain Ω. Then was

deepened by Boutoulout’s work in ([23] and [25]) for the case where the target region is part of

the boundary of Ω note that Γ⊂ ∂Ω, this is then referred to as boundary regional analysis. Thus,

Kamal was interested in the controllability regional gradient of parabolic systems and strategic

gradient actuators ([24],[26]) this controllability problems of the gradient is encountered by

researchers in the field of industrial engineering. For example, the problem of determining heat

exchanges between a plasma jet and a flat target perpendicular to the direction of flow.

The same way Ould Beinane ([13], [17] and [22]) studied the problem of regional controllabil-

ity of a class of semilinear systems, which constitute an intermediary between linear systems

widely treated in the literature and nonlinear ones very close to nature, since real systems are

often modeled by derivative equations nonlinear partials.

The objective of the work is to extend the concept of regional controllability of the gradient

developed for linear systems to the semi-linear case where the target region Γ is part of the ∂Ω

boundary of Ω. We are interested in transferring the state gradient of the system to a desired

gradient given on an boundary Γ part of the domain. We start with definitions of this concept,

then we focus on the determination of the explicit expression of such a control. The developed

approach is based on an extension of the HUM method and the Schauder fixed point theorem.
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Then we lead to algorithms that are successfully implemented numerically and illustrated by

examples and simulations.

2. PRELIMINARIES

Let Ω be a regular bounded open set of IRn (n = 1,2,3) with boundary ∂Ω and T > 0.

We denoted by W = Ω×]0,T [, Σ = ∂Ω×]0,T [ and we consider the system

(1)



∂ z
∂ t

(x, t) = Qz(x, t)+Nz(x, t)+Bv(t), W,

z(ξ , t) = 0, Σ,

z(x,0) = z0(x), Ω,

where

• Q is a second-order linear differential operator , and generates a strongly continuous semi-

group (L(t))t≥0 on the Hilbert space L2(Ω), the adjoint operator of Q is denoted by Q∗.

• N is a nonlinear operator, B ∈L (IRp,L2(Ω)) and v ∈V = L2(0,T, IRp).

It is assumed that the system (1) admits a weak solution zv(.) such that

zv(T ) ∈ H1(Ω).

• The gradient operator

∇ : H1
0 (Ω)∩H2(Ω) −→ (L2(Ω))n

z 7−→ (
∂ z
∂x1

, . . . ,
∂ z
∂xn

).

• The trace operator

γ : (H1(Ω))n −→ (H
1
2 (∂Ω))n

z 7−→ γz = (γ0z1, . . . ,γ0zn).

Where γ0 : H1(Ω) −→ H
1
2 (∂Ω) the trace operator zero order, continuous linear surjective and

γ∗
0

(resp. γ∗) be the adjoint operator of γ0 (resp. γ).

• For Γ⊂ ∂Ω

χ̄
Γ

: (H
1
2 (∂Ω))n −→ (H

1
2 (Γ))n

z 7−→ χ̄
Γ
z = z|Γ.
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The restriction operator to Γ and χ̄∗
Γ

denotes the adjoint operator of χ̄
Γ
.

Definition 2.1.

The system (1) is exactly (resp. approximate) gradient controllable in Γ if for all gd a desired

gradient, there exist a control v ∈V such that χ̄
Γ
(γ∇zv(T ) = gd

(resp. ‖χ̄
Γ
(γ∇zv(T ))−gd‖ ≤ ε).

Problem

The problem of the controllability of the gradient on a boundary region Γ ⊂ ∂Ω for a

semi-linear parabolic system is formulated as follows:

(2)


For gd a desired gradient , there exist a control

v ∈V such that χ̄
Γ
(γ∇zv(T ) = gd ?

3. MAIN RESULTS

Consider the system (1) which is energized by a zone actuator (D, f ) where D is the actuator

support and f ∈ L2(D) defined its spatial distribution. Under the hypothesis that the system (1)

is approximate gradient controllable in the internal region containing Γ, a characterization of

the control solution of the problem is determined (2).

Let p > 0 an integer, Fp =
⊔
y

B(y,
1
p
) and ωp = Fp ∩Ω where B(y, 1

p) is the open ball of the

radius 1
p and the center y. Consider

Θ =
{

g ∈ (L2(Ω))n | g = 0 in Ω\ωp
}
∩{∇g | g ∈ H1

0 (Ω)}

Let ϕ0 ∈ H1
0 (Ω), we consider the system:

(3)



∂ϕ

∂ t
(x, t) =−Q∗ϕ(x, t) W

ϕ (ξ , t) = 0 Σ

ϕ(x,T ) = ϕ0(x) Ω
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this system admits a unique solution ϕ ∈ L2(0,T ;H2
0 (Ω))∩C3(Ω×]0,T [).

For ϕ0 ∈ H1
0 (Ω)∩H2(Ω), for ϕ̃0 ∈Θ such that ϕ̃0 = ∇ϕ0, we consider the system (3).

We denoted by Θ the completion of the set Θ and we consider the system

(4)



∂ϒ

∂ t
(x, t) = Qϒ(x, t)+Nϒ(x, t)+

n

∑
i=1
〈 f , ∂ϕ

∂xi
〉

L2(D)
χD f (x), W,

ϒ(ξ , t) = 0, Σ,

ϒ(x,0) = ϒ0(x), Ω,

We decomposed the ϒ = ϒ1 +ϒ2 +ϒ3

Where ϒ1 is solution of the system

(5)



∂ϒ1

∂ t
(x, t) = Qϒ1(x, t) W

ϒ1(ξ , t) = 0 Σ

ϒ1(x,0) = z0(x) Ω

ϒ2 is solution of

(6)



∂ϒ2

∂ t
(x, t) = Qϒ2(x, t)+

n

∑
i=1
〈 f , ∂ϕ

∂xi
〉

L2(D)
χD f (x) W

ϒ2(ξ , t) = 0 Σ

ϒ2(x,0) = 0 Ω

and ϒ3 is the solution of the system

(7)



∂ϒ3

∂ t
(x, t) = Qϒ3(x, t)+N(ϒ1 +ϒ2 +ϒ3) W

ϒ3(ξ , t) = 0 Σ

ϒ3(x,0) = 0, Ω
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We set the nonlinear operator µ̃ defined by:

µ̃ : Θ−→ Θ∗

ϕ̃0 −→ µ̃(ϕ̃0) = P̃(∇ϒ2(T ))+P̃(∇ϒ3(T ))

where P̃ be the projection operator and Θ∗ is the dual of Θ.

If ∧ : Θ −→ Θ∗ and K : Θ −→ Θ∗ operators defined by

∧(ϕ̃0) = P̃ (∇ϒ2(T ))

and

K(ϕ̃0) = P̃(∇ϒ3(T )).

Hence the problem of regional controllability of the gradient (2) comes to solving the equation

µ̃(ϕ̃0) = χ̄
∗
ωp

gd−P̃(∇ϒ1(T )).

Which implies

∧(ϕ̃0) = χ̄
∗
ωp

gd−K(ϕ̃0)−P̃(∇ϒ1(T )).

Let the linear system be associated with (4)

(8)



∂ϒ

∂ t
(x, t) = Qϒ(x, t)+

n

∑
i=1
〈 f , ∂ϕ

∂xi
〉

L2(D)
χD f (x), W,

ϒ(ξ , t) = 0, Σ,

ϒ(x,0) = ϒ0(x), Ω,

we suppose that the linear system (8) is approximate gradient controllable in the region ωp, then

the operator ∧ is invertible and therefore we have

∧−1(χ̄∗ωp
gd)−∧−1K(ϕ̃0)−∧

−1P̃(ϒ1(T )) = ϕ̃0

Now, we define the nonlinear operator K̃ : Θ −→ Θ∗ by

(9) K̃(ϕ̃0) = ∧
−1(χ̄∗ωp

gd)−∧−1K(ϕ̃0)−∧
−1P̃(∇ϒ1(T ))
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Proposition 3.1.

If the linear system (8) is approximate gradient controllable in ωp, then the equation (9) admits

a fixed point ϕ̃0 ∈Θ and the control v∗p(t) = 〈F,∇ϕ(t)〉
(L2(D))n

steers the system (4) has a desired

gradient gd in the boundary region Γ, where F = ( f , ..., f ), ϕ is the solution of the system (3).

Proof.

First, we prove that K̃ is compact and we apply Schauder’s fixed point theorem, to prove that

the operator K̃ has a fixed point.

Step 1. We prove that the operator K̃ is compact.

Let r > 0, consider the closed ball Br = B(0,r) of (L2(Ω))n, we consider

K̃(Br) =
{

P̃(∇ϒ3(t)) | ϕ̃0 ∈ Br , t ∈ [0,T ]
}
.

Let us show that K̃(Br) is relatively compact, in fact:

The solution ϒ3(.) of the system (7) is written ([18]).

(10) ϒ3(t) =
∫ t

0
L(t− τ)N(ϒ1(τ)+ϒ2(τ)+ϒ3(τ))dτ

ϒ3 ∈C(0,T ;L2(Ω)) (see [18]), P̃ and ∇ are two linear operators, then there exists c1 > 0 such

that

‖P̃(∇ϒ3(t))‖Θ∗ ≤ c1‖ϒ3(t)‖L2(Ω)
.

Since L(.) is a strongly continuous semigroup in [0,T ], then there exist π > 0 such that

‖L(t)‖
L (L2(Ω))

≤ π, ∀t ∈ [0,T ]

by (10), we have

‖ϒ3(t)‖L2(Ω)
≤

∫ t

0
‖L(t− τ)(N(ϒ1(τ)+ϒ2(τ)+ϒ3(τ))‖L2(Ω)

dτ

≤ πc
(∫ t

0
‖ϒ1(τ)‖L2(Ω)

dτ +
∫ t

0
‖ϒ2(τ)‖L2(Ω)

dτ +
∫ t

0
‖ϒ3(τ)‖L2(Ω)

dτ

)
.

As ϒ1 is solution of the system (5), with ϒ1(τ) = L(τ)z0 and we have

(11)
∫ t

0
‖ϒ1(τ)‖L2(Ω)

dτ ≤ πT‖z0‖L2(Ω)
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and ϒ2 is solution of the system (6), then we have

ϒ2(τ) =
∫

τ

0
L(τ− s)

n

∑
j=1
〈 f , ∂ϕ

∂x j
(s)〉

L2(D)
χD f ds

and

‖ϒ2(τ)‖L2(Ω)
= ‖

∫
τ

0
L(τ− s)

n

∑
j=1
〈 f , ∂ϕ

∂x j
(s)〉

L2(D)
χD f ds‖

≤ πn‖ f‖2
L2(D)

∫
τ

0
‖∇ϕ(s)‖

(L2(Ω))n
ds

by the continuity of the gradient there exists c2 such that

‖ϒ2(τ)‖L2(Ω)
≤ c2πn‖ f‖2

L2(D)

∫
τ

0
‖ϕ(s)‖

L2(Ω)
ds

where ϕ(s) = L(s)ϕ0 is solution of the system (3).

We have

(12) ‖ϒ2(τ)‖L2(Ω)
≤ c2nT π

2‖ f‖2‖ϕ0‖H1
0 (Ω)

ϕ0 ∈H1
0 (Ω) and Ω is a regular open, we apply the Poincare inequality in the equation (12), then

there exist c3 > 0 such that∫ t

0
‖ϒ2(τ)‖L2(Ω)

dτ ≤ c2c3nT 2
π

2‖ f‖2‖∇ϕ0‖
(L2(Ω))n

where ϕ̃0 = ∇ϕ0 , then we have

(13)
∫ t

0
‖ϒ2(τ)‖L2(Ω)

dτ ≤ c2c3nT 2
π

2‖ f‖2‖ϕ̃0‖Θ

according to (11) and (13), we have

‖ϒ3(t)‖L2(Ω)
≤ πc

(
πT‖z0‖L2(Ω)

+ c2c3nT 2
π

2‖ f‖2‖ϕ̃0‖Θ
+
∫ t

0
‖ϒ3(τ)‖L2(Ω)

dτ

)
applying the Gronwall Lemma, we get

‖ϒ3(t)‖L2(Ω)
≤
(

π
2cT‖z0‖L2(Ω)

+ c2c3nT 2
π

3c‖ f‖2‖ϕ̃0‖Θ

)
eπcT .

From

(14) ‖P̃(∇ϒ3(t))‖Θ
≤ c1

(
π

2cT‖z0‖L2(Ω)
+ c2c3nT 2

π
3c‖ f‖2r

)
eπcT , ∀ ϕ̃0 ∈ Br.
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Then, K̃(Br) is bounded.

On the other hand, for 0 < t1 < T and h > 0, we have

ϒ3(t1 +h)−ϒ3(t1) =
∫ t1

0
(L(t1 +h− τ)−L(t1− τ))N(ϒ1(τ)+ϒ2(τ)+ϒ3(τ))dτ

+
∫ t1+h

t1
L(t1 +h− τ)N(ϒ1(τ)+ϒ2(τ)+ϒ3(τ))dτ

= J1 +J2

where

J1 =
∫ t1

0
(L(t1 +h− τ)−L(t1− τ))N(ϒ1(τ)+ϒ2(τ)+ϒ3(τ))dτ

and

J2 =
∫ t1+h

t1
L(t1 +h− τ)N(ϒ1(τ)+ϒ2(τ)+ϒ3(τ))dτ.

For all ε1 > 0, there exist α > 0 such that |h|< α , we have

‖L(t1 +h− τ)−L(t1− τ)‖
L (L2(Ω),L2(Ω))

≤ ε1, ∀τ ∈ [0,T ].

Which give

‖J1‖L2(Ω)
≤

∫ t1

0
‖L(t1 +h− τ)−L(t1− τ)‖

L2(Ω)
‖N(ϒ1(τ)+ϒ2(τ)+ϒ3(τ))‖L2(Ω)

dτ

≤ ε1c
(∫ t1

0
‖ϒ1(τ)‖L2(Ω)

dτ +
∫ t1

0
‖ϒ2(τ)‖L2(Ω)

dτ +
∫ t1

0
‖ϒ3(τ)‖L2(Ω)

dτ

)
.

According to (11), (13) and (14), we obtain

‖J1‖L2(Ω)
≤ ε1c

[
(πT‖z0‖L2(Ω)

+ c2c3nT 2
π

2‖ f‖2
L2(D)
‖ϕ̃0‖Θ

)(1+πcTeπcT )
]

and

‖J2‖L2(Ω)
≤ απc

[
(π‖z0‖L2(Ω)

+ c2c3nT 2
π

2‖ f‖2
L2(D)
‖ϕ̃0‖Θ

)(1+πcTeπcT )
]

then

‖P̃(∇ϒ3(t1 +h))−P̃(∇ϒ3(t1))‖Θ∗ ≤ c1‖(ϒ3(t1 +h))− (ϒ3(t1))‖L2(Ω)

≤ ε1J3 +αJ4
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where

J3 = c1c
[
(πT‖z0‖L2(Ω)

+ c2c3nT 2
π

2‖ f‖2
L2(D)
‖ϕ̃0‖Θ

)(1+πcTeπcT )
]

and

J4 = c1πc
[
(π‖z0‖L2(Ω)

+ c2c3nT 2
π

2‖ f‖2
L2(D)
‖ϕ̃0‖Θ

)(1+πcTeπcT )
]
.

For ε1 ≤
ε

2J3
and α ≤ Inf

(
dist(Br ,CΩ);

ε

2J4

)
, we obtain

‖P̃(∇ϒ3(t1 +h))−P̃(∇ϒ3(t1))‖Θ
≤ ε.

Then, according to (14) K̃(Br) is bounded and ∀ε > 0, ∃ α > 0 and h > 0 such that |h|< α

‖P̃(∇ϒ3(t1 +h))−P̃(∇ϒ3(t1))‖Θ
≤ ε.

Finally, by the Kolmogorov-Riesz-Freshet theorem [2, 21], K̃ : Θ−→Θ∗ is a compact operator.

Step 2. According to (9) and (14), we have

‖K̃(ϕ̃0)‖Θ
≤ ‖∧−1 (χ̄∗

ω
gd)−∧−1P̃(∇ϒ1(T ))‖Θ

+‖∧−1 K(ϕ̃0)‖Θ

≤ J5 +‖∧−1 ‖
L (Θ∗,Θ)

c1c2c3nπ3cT 2‖ f‖2
L2(D)

eπcT‖ϕ̃0‖Θ

where

J5 = ‖∧−1 (χ̄∗
ω

gd)−∧−1P̃(∇ϒ1(T ))‖Θ
+‖∧−1 ‖

L (Θ∗,Θ)
c1π

2cT‖z0‖L2(Ω)
eπcT

and c a constant, such that

‖∧−1 ‖
L (Θ∗,Θ)

c1c2c3nπ
3cT 2‖ f‖2

L2(D)
eπcT ≤ 1

2
.

Let 0 < s≤ r, such that s≥ 2J5, then we have

‖K̃(ϕ̃0)‖Θ
≤ s ∀ϕ̃0 ∈Θ such that ‖ϕ̃0‖Θ

≤ s

and by application of Schauder’s fixed point theorem [21], the operator K̃ admits a fixed point.

�
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4. EXAMPLE

Consider the two-dimensional diffusion system

(15)

∂ z
∂ t

(x,y, t) = β (
∂ 2z
∂x2 (x,y, t)+

∂ 2z
∂y2 (x,y, t))+

∞

∑
i, j=1
|〈z,ϕi j〉|〈z,ϕi j〉ϕi j +Bv(t) Ω×]0,T [

z(ξ ,η , t) = 0 ∂Ω×]0,T [

z(x,y,0) = 0 Ω

Where

•: T = 2 and the actuator b = (b1,b2) with b1 = 0.68,b2 = 0.42.

•: ω = ]0,0.25[×]0,1[ : the internal region.

•: Γ = {0}×]0,1[ : the boundary region.

•: gd = (y(y−1),0) : the desired gradient on Γ.

•: ḡd = [(2x− 1)y(y− 1),(2y− 1)x(x− 1)] : the extension of the desired gradient gd on

ω .

We obtain the following figures:

Fig. 1 Desired gradient on ωr .
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Fig. 2 Final gradient on ωr .

Fig. 3 Desired and final gradient on ωr .

Fig. 4 The trace on Γ.
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The desired gradient gd is reached with an error

‖χ̄
Γ
γ∇zu∗(T )−gd‖= 6.89∗10−3 and a transfer cost ‖u∗‖= 5.37∗10−4.
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