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Abstract. There is notably paucity of studies on least-squares estimator of diffusion process for discrete obser-

vations. This paper discusses sufficient conditions of the least-squares estimator of diffusion process for discrete

observations in order to gain an estimator that is strongly consistent of [1]. We assume that the process Y is ar-

ranged by a function such as sinusoidal signal a(θ ,Yt) = sin(2πtθ),θ ∈
[
0, 1

2

]
and function b(σ ,Yt). For a given

a sample (Y0,Yh, . . . ,Ynh), h→ 0, we demonstrate an asymptotic theory of least-squares estimator θ̂n. The results

of the study show that the least-squares estimator is strongly consistent and asymptotic normal, assuming that

nh→∞ and n3h4→∞; θ that represents the frequency of sinusoidal signal of the unity of time which has a rate of

convergence, namely
√

n3h4.
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1. INTRODUCTION

The stochastic differential equation application has been widely used in the field of industry,

economics and environment as can be seen in [2], [3], [4], [5], [6], [7]. A part from these exam-

ples, studies on nonlinear problems have been investigated by numerous researchers, examples

∗Corresponding author

E-mail addresses: pramesti.getut100@s.kyushu-u.ac.jp, getutpramesti@staff.uns.ac.id

Received June 24, 2021
6433



6434 GETUT PRAMESTI

of which can be seen in [1] and [8]. [9] exploited the nonlinear model as follows:

(1) yt = cos(2πtθ0)+ et ,

where t ∈ N, {et} are i.i.d normal random variable with mean zero and finite positive variance

σ2.

The stochastic differential equation (SDE) can be viewed as problems of nonlinear regression

model. Few published studies have examined parameter estimation of diffusion process using

the least-squares method for discrete observations (see for examples, [10] dan [11]). Hence, this

study aimed to investigate the least-squares estimator (LSE) of diffusion process for discrete

observations.

Consider Y = (Yt)t∈R+ is the solution to the SDE

(2) dYt = a(θ ,Yt)dt +b(σ ,Yt)dwt , Y0 = y0,

where

• a(θ ,Yt) = sin(2πθ t),θ ∈
[
0, 1

2

]
, a is a measurable function, a : R→ R;

• θ is unknown parameter and will be estimated;

• Y > 0 and Y0 is an initial value of Y when t = 0;

• b(σ ,Yt) = σ , σ > 0 is assumed unknown, b : R→ R×R;

• w is a one-dimensional Wiener process.

This study inspired the nonlinear models of [1], [12], [9] and [13]. These studies discussed

nonlinear model in general, i.e., yt = ft(α)+ et with {et}t∈N which are independent random

variables with mean zero and finite variance. In this paper we develop schemes, namely: first

we discretize (2), from this discretization model, we define a target function using the least-

square approach by minimizing errors of the squares between the process Y and function of

a(.). Based on the target function, a verification of the almost sure convergence of the estimator

will be performed as suggested by [1] whether it fulfills for discrete observations. With a strong

consistency of the estimator θ , we will then discuss how to determine an asymptotic normality

for θ and verify an assumption required for asymptotic normal of the estimator.
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The paper is structured as follows. The model is presented in Section 2, followed by our

theoretical results, namely asymptotic theory of the estimator in Section 3. The study of numeric

aiming to simulate the least-squares estimator is set out in Section 4.

2. PRELIMINARIES

Suppose (Yt)t∈R+ in (2) is a real-valued process that is

(3) Yt = Y0 +
∫ t

0
sin(2πθs)ds+

∫ t

0
σws,

defined on an underlying complete filtered probability space (Ω,F ,(Ft)t∈R+,P) where

• the true parameter value is denoted by θ0 ∈ Θ which does exist with the P0 assumed as

the true image measure;

• θ ∈ Θ ⊂ R, where Θ is supposed to be bounded convex domains, and the closure of Θ

is denoted by Θ which satisfies

Θ⊂
{

θ ∈
[

0,
1
2

]}
;

• Pθ for the image measure of a solution process Y associated with θ .

We assume that Y is observed at discrete sample points (Yt0,Yt1 , . . . ,Ytn) with 0 ≡ t0 < t1 <

· · ·< tn, where tn
i = ti = ih, i≤ n and h > 0 is a non-random sampling discrete of step size such

that for n→ ∞ satisfies

(4) h→ 0,

(5) Tn := nh,Tn→ ∞,

and

(6) n3h4→ ∞.

Several notations which will be used in this paper are: for a function f (θ , .), ∂
j

θ
f (θ , .) stands

for jth derivative of f with respect to θ , j = 1,2; symbol L−→ indicates the convergence in law

under P0.
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3. MAIN RESULTS

Discretization of Y (3) by deploying approximations of Euler-Maruyama we can provide:

(7) Yti
Pθ= Yti−1 +

∫ ti

ti−1

(sin(2πθs)ds+σdws) .

We also assume

(8) ∆iY
P0=
∫ ti

ti−1

sin(2πθ0s)ds+σ∆iw.

From here and the next section, we define the increased process ρi as ∆iρ := ρi(.)−ρi−1(.).

Next, we define a target function of (2) namely

(9) Hn(θ) :=
n

∑
i=1

1
h
(∆iY − sin(2πθ ti−1)h)

2 .

The definition of target function of diffusion process for discrete observations can be seen

also in [10] and [11].

From the target function (9), we define the LSE of θ as θ̂n namely a measurable function

which satisfies

(10) θ̂n := argmin
θ∈Θ

Hn(θ).

Now, let

(11) Fn(θ) :=
1

nh
[Hn(θ)−Hn(θ0)] ,

and based on the function (11), we then shall discuss the consistency of LSE θ̂n.

Theorem 3.1. The LSE of diffusion process (2) for discrete observation is strongly consistent

under (4) and (5).

Proof. We shall verify a condition of almost sure convergence of θ from Lemma 1 of [1]

whether it can be fulfilled for LSE of diffusion process for discrete observations. Verification
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can be done by showing: for C > 0, inequality

(12) lim
Tn→∞

inf
|θ−θ0|≥C

Fn(θ)> 0 a.s as Tn→ ∞

applies.

By re-calling (9) and (8), we have

(13)

Fn(θ) =
1
n

n

∑
i=1

[sin(2πθ ti−1)− sin(2πθ0ti−1)]
2− 2σ

nh

n

∑
i=1

∆iw[sin(2πθ ti−1)− sin(2πθ0ti−1)].

Let us observe the first part of the right hand-side of an equation (13),

lim
Tn→∞

inf
|θ−θ0|≥C

1
n

n

∑
i=1

[sin(2πθ ti−1)− sin(2πθ0ti−1)]
2

= lim
Tn→∞

inf
|θ−θ0|≥C

1
n

n

∑
i=1

sin2(2πθ ti−1)

+ lim
Tn→∞

inf
|θ−θ0|≥C

1
n

n

∑
i=1

sin2(2πθ0ti−1)

− lim
Tn→∞

inf
|θ−θ0|≥C

[
1
n

n

∑
i=1

sin(2πθ ti−1)sin(2πθ0, ti−1)

]
.

Since we apply the following results,

1
n

n

∑
i=1

sin2(2πθ ti) =
1
2
+o(1),

1
n

n

∑
i=1

sin(2πθ ti)cos(2πθ ti) = o(1),

then we have

(14) lim
Tn→∞

inf
|θ−θ0|≥C

1
n

n

∑
i=1

[sin(2πθ ti−1)− sin(2πθ0ti−1)]
2 =

1
4
+o(1)> 0.

Next, we need to know that the last part of the right hand-side of an equation (13). Since

lim
Tn→∞

inf
|θ−θ0|≥C

2σ

nh

n

∑
i=1

∆iw[sin(2πθ ti−1)− sin(2πθ0ti−1)]

≤ lim
Tn→∞

sup
|θ−θ0|≥C

2σ

nh

n

∑
i=1

∆iwsin(2πθ ti−1)− lim
Tn→∞

sup
|θ−θ0|≥C

2σ

nh

n

∑
i=1

∆iwsin(2πθ0ti−1)

We can complete above by adapting Lemma 4.2 of [13], namely showing that {σ∆iw}i≤n

satisfies Assumption 3.1 and 3.2 of [13].



6438 GETUT PRAMESTI

Now we focus on {σ∆iw}i≤n, where {∆iw = wi−wi−1} is the ith increment of the Wiener

process w with E[σ∆iw] = 0 and Var(σ∆iw) = σ2h<∞, h→ 0. Now, we follow Theorem 2.2.1

of [12]: assume there are the sequence of {σ1, . . . ,σi}i≤n and {σi := σ ;σ > 0}i≤n, because the

sequence of random variables {∆iw}i≤n satisfy ∑
n
i=1 |σ2

i | < ∞ and E[∆2
i w] = h < ∞ then there

exists a sequence of {σ∆iw}i≤n such that

εti =
n

∑
i=1

σ∆iw a.s as Tn→ ∞,

lim
Tn→∞

E

∣∣∣∣∣εti−
n

∑
i=1

σ∆iw

∣∣∣∣∣
2

= 0 and,E |εti|
2 < ∞.

Therefore, {σ∆iw}i≤n can be seen as {εti}i≤n that fulfill Assumption 3.1 and 3.2 of [13],

hence, we can state the following Lemma.

Lemma 3.2.

sup
θ

∣∣∣∣∣ σ

Tn

n

∑
i=1

∆iwsin(2πθ ti)

∣∣∣∣∣→ 0 a.s as Tn→ ∞.

Corollary 3.3.

sup
θ

∣∣∣∣∣ σ

T m+1
n

n

∑
i=1

tm
i σ∆iwsin(2πθ ti)

∣∣∣∣∣→ 0 a.s as Tn→ ∞,

where m ∈ N0.

Lemma 3.2 and Corollary 3.3 are true for cosine function. Proof of 3.2 is similar to the one

provided by [13] in Lemma 4.2 in view of discrete observations.

Therefore, using Lemma 3.2 we may know that (12) is fulfilled because

(15) sup
|θ−θ0|≥C

∣∣∣∣∣2σ

nh

n

∑
i=1

∆iw[sin(2πθ ti−1)− sin(2πθ0ti−1)]

∣∣∣∣∣→ 0a.s as Tn→ ∞,

so that

(16) lim
Tn→∞

inf
|θ−θ0|≥C

2σ

nh

n

∑
i=1

∆iw[sin(2πθ ti−1)− sin(2πθ0ti−1)] = 0 a.s Tn→ ∞,

and since we have (14) and (16), the verification has been completed. �

Next, we shall discuss the asymptotic normality of θ̂n.



SINUSOIDAL SIGNAL OF DIFFUSION PROCESS FOR DISCRETE OBSERVATIONS 6439

Theorem 3.4.

(17)
√

n3h4
(
θ̂n−θ0

) L−→N (0,2σ
2
Σ
−1
2 )

where Σ2 =
4π2

3 .

Proof. Note that, from the equation (9), we have the relation

(18) 0 =
n

∑
i=1

vi−1(θ0) ji−1(θ0)+
(
θ̂n−θ0

) n

∑
i=1

[
vi−1(θ0)qi−1(θ0)−h[ ji−1]

2]
where

vi−1(θ0) = ∆iY − sin(2πθ0ti−1)h,

ji−1(θ0) = 2πti−1 cos(2πti−1θ0),

qi−1(θ0) = −4π
2t2

i−1 sin(2πti−1θ0).

To solve the equation (18), we need the following Lemma.

Lemma 3.5. Under (5) and (6), we have

1√
n3h4

n

∑
i=1

vi−1(θ0)qi−1(θ0)
p−→ 0.

Proof. Re-calling v and q, we get

E

[
1√

n3h4

n

∑
i=1

vi−1(θ0)qi−1(θ0)

]

= E

[
1√

n3h4

n

∑
i=1

[∆iY − sin(2πti−1θ0)]
[
−4π

2t2
i−1 sin(2πti−1θ0)

]]

≤ 1√
n3h4

n

∑
i=1

{
E
∣∣[∆iY − sin(2πti−1θ0)]

[
−4π

2t2
i−1 sin(2πti−1θ0)

]∣∣} 1
2

=
1√

n3h4

n

∑
i=1

{
E |σ∆iw]|2

} 1
2
{
E
∣∣−4π

2t2
i−1 sin(2πti−1θ0)

∣∣2} 1
2

= { 1
n3h4 o(1)}

1
2 =

1√
n3h4

.

�
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Remark 3.6. n3h4→∞ has to be assumed in the model setting of (2). In paper [10], he assumes

that n
1
2 h→ 0 for LSE of diffusion process, meanwhile in the maximum likelihood method, the

assumption of nh3→ 0 given by [14], whereas [15] assumes nhp, p ∈ N.

By applying Lemma 3.5, we can rewrite (18) as follows

−
n

∑
i=1

vi−1(θ0) ji−1(θ0) =

[
−h

n

∑
i=1

[ ji−1]
2

](
θ̂n−θ0

)
,

or we can write it as

−∂Hn(θ0) = ∂
2Hn(θ0)

(
θ̂n−θ0

)
.

By applying Central Limit Theorem (CLT), we shall determine Σ1 such that

− 1√
n3h4

∂Hn(θ0)
L−→N (0,Σ1) ,

where Σ1 is a variance of
[
− 1√

n3h4 ∂Hn(θ0)
]
. From (9), we can obtain:

(19) ∂Hn(θ0) =−4π

n

∑
i=1

ti−1 [∆iY − sin(2πti−1θ0)h]cos(2πti−1θ0).

Use (8) and (19) for expectation and variance of
[
− 1√

n3h4 ∂Hn(θ0)
]
. Note that,

E
[
− 1√

n3h4
∂Hn(θ0)

]
= E

[
4π√
n3h4

n

∑
i=1

ti−1 [∆iY − sin(2πti−1θ0)h]cos(2πti−1θ0)

]

= 4π
2√nE

[
1

T 2
n

n

∑
i=1

ti−1σ∆iwcos(2πti−1θ0)

]
,

by using Corrolary 3.3 it is obvious that

E
[
− 1√

n3h4
∂Hn(θ0)

]
= 0.

and

Σ1 =
16π2σ2

n3h4 E

[
n

∑
i=1

ti−1∆iwcos(2πti−1θ0)

]2

= 16π
2
σ

2E

[
1

T 3
n

n

∑
i=1

t2
i−1 cos2(2πti−1θ0)

]
,

by using the result of trigonometry of identity:

1
T 3

n

n

∑
i=1

t2
i cos2(2πtiθ) =

1
6
+o(1),



SINUSOIDAL SIGNAL OF DIFFUSION PROCESS FOR DISCRETE OBSERVATIONS 6441

we obtain Σ1 =
8π2σ2

3 +o(1). So we can make a claim that

(20) − 1√
n3h4

∂Hn(θ0)
L−→N

(
0,

8π2σ2

3

)
Next, using Law of Large Number (LLN), we find Σ2 such that

(21)
1√

n3h4
∂

2Hn(θ0)
1√

n3h4

p−→ Σ2.

Note that

1
n3h4 ∂

2Hn(θ0) =
8π2

n3h4

n

∑
i=1

t2
i−1
[
σ∆iwsin(2πti−1θ0)−hcos2(2πti−1θ0)

]
,

and we get

Σ2 = 8π
2

(
E

[
1

n3h4

n

∑
i=1

t2
i−1σ∆iwsin(2πti−1θ0)

]
+E

[
1

T 3
n

n

∑
i=1

t2
i−1 cos2(2πti−1θ0)

])
.

By using Corollary 3.3 and the result of trigonometry identity, we obtain Σ2 =
4π2

3 .

Now let us say 1√
n3h4 ∂ 2Hn(θ0)

1√
n3h4 as Hn(θ0),

E [Hn(θ0)]
2 = E

[
8π2

n3h4

n

∑
i=1

(
t2
i−1σ∆iwsin(2πti−1θ0)+hcos2(2πti−1θ0)

)]2

= 64π
4E

 1
h2

[
1

T 3
n

n

∑
i=1

t2
i−1σ∆iwsin(2πti−1θ0)

]2


+ 64π
4E

 1
T 4

n

[
1
Tn

n

∑
i=1

cos2(2πti−1θ0)

]2


+ 64π
4E

[
1

n3h4
1

T 3
n

n

∑
i=1

t2
i−1σ∆iwsin(2πti−1θ0)

]
,

By using Corollary 3.3, we obtain the first and third parts of the right hand-side of an equation

seen above as 0. The second part of the right hand-side of an equation also generate 0 because

T 4
n → ∞.Hence, we can conclude that

E [Hn(θ0)]
2 = 0.

�
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4. SIMULATION

The simulation is done through the use of software R. In the first simulation, we choose

θ0 = 0.25, with replications 10000 and h remains 0.08. Estimator θn at different N (indicated

by the parentheses) obtained through: 0.19 (7500); 0.191 (8500); 0.216 (9000); and 0.2532

(10000). In the second simulation, we choose θ0 = 0.35, with the amount of N remains 10000

at different h (indicated by the parentheses). Estimator θn is obtained in the second simulation,

i.e.,: 0.428 (0.905); 0.4264 (0.805); 0.436 (0.705); 0.383 (0.605); and 0.346 (0.505).

5. CONCLUSION

Based on the above discussion, we can conclude that: the LSE θ̂n of diffusion process (2) at

discrete observations is strongly consistent according to Wu [1] under (4), (5) and (6) with rate

of convergence is
√

n3h4.

ACKNOWLEDGEMENTS

This research was supported by kementrian pendidikan dan kebudayaan under Lembaga Peneli-

tian dan Pengabdian Kepada Masyarakat Universitas Sebelas Maret Indonesia scheme PDD-

UNS Grant 260/UN27.22/HK.07.00/2021.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] C.-F. Wu, Asymptotic theory of nonlinear least squares estimation, Ann. Stat. (1981) 501–513.

[2] R. Gibson, E. S. Schwartz, Stochastic convenience yield and the pricing of oil contingent claims, J. Finance

45 (3) (1990) 959–976.
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