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Abstract. The aim of this paper, we introduce the notion of new hybrid generalized weakly contractive mappings

in a complete metric spaces and prove the existence and unique common fixed point for this mappings. In addition,

an example given to illustrate the main result. Finally, we give some applications of our results to some fixed point

results.
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1. INTRODUCTION

The existence of solution for some real world problems has been checked in various branches

of mathematics, such as, differential equations, integral equations, functional analysis, etc. and

one has introduced solutions for this problems via fixed point theory. Furthermore, the applica-

tion of fixed point theory is not only limited to mathematics, but also occur in various sciences,

such as, computer science, physics, chemistry, biology, economics etc. Especially, the branch
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of economic which apply techniques of fixed point theory approaches to solve some equilibrium

problems in game theory.

The concept of weak contraction mappings in Hilbert spaces was introduced by Alber et al

[1] in 1977. Weak contraction principle states that all weak contraction mapping on a complete

Hilbert space has a unique fixed point. In 2001, Rhoades [2] studied weak contraction principle

in metric spaces. In addition, the weak contraction principle was studied by various researcher

see in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Furthermore, in 1984, Khan et al. [16] intro-

duced the concept of altering distance functions on metric spaces. Later, Choudhury et al. [17]

obtained a generalization of the weak contraction principle in metric spaces by using altering

distance functions. In 1994, Matthews [18] introduced the notion of partial metric spaces and

extended Banach’s contraction principle to partial metric spaces. In particular, Abdeljawad [19]

obtained the result of the weak contraction principle in partial metric spaces. Recently, Cho

[20] introduced the notion of generalized weakly contractive mappings in metric spaces and

prove a fixed point theorem for generalized weakly contractive mappings on complete metric

spaces. Later, in 2020, Xue [21] introduced the notion of hybrid generalized weakly contractive

mappings and proved the existence and unique common fixed point for this mappings.

Motivated and inspired by the work of Cho [20] and Xue [21], we introduce the notion of a

new hybrid generalized weakly contractive mappings in a complete metric spaces and prove the

existence and unique common fixed point for this mappings.

2. Preliminaries

In this section, we give some definitions and Lemma for use in this paper as follows. Let X

be a metric space. A function f : X→ [0,∞) is called lower semicontinuous if, for all x ∈ X and

{xn} ⊂ X with limn→∞ xn = x, we have

f (x)≤ liminfn→∞ f (xn).

We denote F the sets of functions F : [0,∞)→ [0,∞) satisfying the following hypotheses:

(1) F(0) = 0 and F(t)> 0 for each t > 0;

(2) F is continuous.
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Also, we denote Ψ and Φ the sets of functions ψ,φ : [0,∞)→ [0,∞) satisfying the following

conditions, respectively

(1) ψ(t) = φ(t) = 0 if and only if t = 0;

(2) ψ(t),φ(t)> 0 for all t > 0;

(3) liminfτ→t ψ(τ) and limsupτ→t φ(τ) exist for all t > 0.

Let

Ψ = {ψ : [0,∞)→ [0,∞) | ψ is continuous and ψ(t) = 0↔ t = 0}.

Also, we denote

Φ = {φ : [0,∞)→ [0,∞) | φ is continuous and φ(t) = 0↔ t = 0}.

Lemma 2.1. [22] If a sequence {xn} in X is not Cauchy, then there exist ε > 0 and two subse-

quence {xm(k)} and {xn(k)} of {xn} such that m(k) is smallest index for which m(k)> n(k)> k,

(2.1) d(xm(k),xn(k))≥ ε

and

(2.2) d(xm(k)−1,xn(k))< ε.

Moreover, suppose that limn→∞ d(xn,xn+1) = 0. Then we have:

(1) limk→∞ d(xm(k),xn(k)) = ε;

(2) limk→∞ d(xm(k)−1,xn(k)−1) = ε;

(3) limk→∞ d(xm(k),xn(k)−1) = ε;

(4) limk→∞ d(xm(k)−1,xn(k)) = ε .

3. MAIN RESULTS

From the work of Cho [20], let X be a metric space with metric d, let T : X → X and let

ϕ : X → [0,∞) be a lower semicontinuous function. Then T is called a generalized weakly

contractive mapping if it satisfies the following condition:

(3.1) ψ(d(T x,Ty)+ϕ(T x)+ϕ(Ty))≤ ψ(m(x,y,d,T,ϕ))−φ(l(x,y,d,T,ϕ)),
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where ψ ∈Ψ,φ ∈Φ,

m(x,y,d,T,ϕ) = max{d(x,y)+ϕ(x)+ϕ(y),d(x,T x)+ϕ(x)+ϕ(T x),

d(y,Ty)+ϕ(y)+ϕ(Ty),
1
2
[d(x,Ty)+ϕ(x)+ϕ(Ty)

+d(y,T x)+ϕ(y)+ϕ(T x)]}

and

l(x,y,d,T,ϕ) = max{d(x,y)+ϕ(x)+ϕ(y),d(y,Ty)+ϕ(y)+ϕ(Ty)}.

Also, from the work of Xue [21], let (X ,d) be a complete metric space and S,T : X→ X be two

self-mappings satisfying

(3.2) ϕ(F(d(Sx,Ty)))≤ ψ(F(M(x,y))),

for all x,y ∈ X , where

(1) M(x,y) = max{d(x,y),d(x,Sx),d(y,Ty), 1
2 [d(x,Ty)+d(y,Sx)]};

(2) F ∈F ,ψ ∈Ψ,ϕ ∈Φ with ϕ(t)> ψ(t) for t > 0;

(3) liminfτ→t ϕ(t)> limsupτ→t ψ(t) for t > 0.

Motivated and inspired by (3.1) and (3.2), we introduce the notion of new hybrid generalized

weakly contractive mappings in a complete metric spaces and prove the existence and unique

common fixed point for this mappings as follows. Let (X ,d) be a complete metric space and

let ψ,φ : X → [0,∞) be a lower semicontinuous function. Then S,T : X → X are called a new

hybrid generalized weakly contractive mappings if it satisfies following condition:

ψ(F(d(Sx,Ty)+ϕ(Sx)+ϕ(Ty))) ≤ ψ(F(mS,T (x,y,ϕ)))−φ(F(lS,T (x,y,ϕ))),(3.3)

where F ∈F ,ψ ∈Ψ,ϕ ∈Φ,

mS,T (x,y,ϕ) = max{d(x,y)+ϕ(x)+ϕ(y),d(x,Sx)+ϕ(x)+ϕ(Sx),(3.4)

d(y,Ty)+ϕ(y)+ϕ(Ty),
1
2
[d(x,Ty)+ϕ(x)+ϕ(Ty)

+d(y,Sx)+ϕ(y)+ϕ(Sx)]}
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and

lS,T (x,y,ϕ) = max{d(x,y)+ϕ(x)+ϕ(y),d(x,Sx)+ϕ(x)+ϕ(Sx),(3.5)

d(y,Ty)+ϕ(y)+ϕ(Ty)}.

Theorem 3.1. Let (X ,d) be a complete metric space and S,T be two new hybrid generalized

weakly contractive mappings (3.3) satisfying,

(i) F ∈F ,ψ ∈Ψ,ϕ ∈Φ with ϕ(t)> ψ(t) for t > 0;

(iii) liminfτ→t ϕ(t)> limsupτ→t ψ(t) for t > 0.

Then there exists a unique common fixed point of S and T .

Proof. Let x0 ∈ X be a fixed point and define a sequence {xn} as follows x2n+2 = T x2n+1 and

x2n+1 = Sx2n for all n≥ 0. If there exists N such that x2N+1 = Sx2N = x2N and x2N+2 = T x2N+1 =

x2N+1. The proof is finished. Now, we assume that x2n 6= x2n+1 for all n = 0,1,2, .... From (3.4)

with x = x2n−1 and y = x2n we have

mS,T (x2n−1,x2n,ϕ)

= max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),d(x2n−1,Sx2n−1)+ϕ(x2n−1)+ϕ(Sx2n−1),

d(x2n,T x2n)+ϕ(x2n)+ϕ(T x2n),
1
2
[d(x2n−1,T x2n)+ϕ(x2n−1)+ϕ(T x2n)

+d(x2n,Sx2n−1)+ϕ(x2n)+ϕ(Sx2n−1)]}.

Since

1
2
[d(x2n−1,T x2n)+ϕ(x2n−1)+ϕ(T x2n)+d(x2n,T x2n−1)+ϕ(x2n)+ϕ(T x2n−1)]

=
1
2
[d(x2n−1,x2n+1)+ϕ(x2n−1)+ϕ(x2n+1)+d(x2n,x2n)+ϕ(x2n)+ϕ(x2n)]

≤ 1
2
[d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n)+d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)]

≤ max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n)+d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)},
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we get

mS,T (x2n−1,x2n,ϕ)(3.6)

= max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),d(x2n−1,Sx2n−1)+ϕ(x2n−1)+ϕ(Sx2n−1),

d(x2n,T x2n)+ϕ(x2n)+ϕ(T x2n)}

= max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),

d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)}

= max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)}.

For the term of lS,T (x,y,ϕ) in (3.5), we have

lS,T (x,y,ϕ)(3.7)

= max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),d(x2n−1,Sx2n−1)+ϕ(x2n−1)+ϕ(Sx2n−1),

d(x2n,T x2n)+ϕ(x2n)+ϕ(T x2n)}

= max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),

d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)}

= max{d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)}.

It follows from (3.3) that

ψ(F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)))(3.8)

= ψ(F(d(T x2n−1,Sx2n)+ϕ(T x2n−1)+ϕ(Sx2n)))

≤ ψ(F(mS,T (x2n−1,x2n,ϕ)))−φ(F(lS,T (x2n−1,x2n,ϕ))).

If d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n)< d(x2n,x2n+)+ϕ(x2n)+ϕ(x2n+1) for some positive inte-

ger n, then

F(d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n))

< F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1))
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and by (3.8), we get

ψ(F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)))

≤ ψ(F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)))

−φ(F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1))),

which implies

φ(F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1))) = 0,

so

F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)) = 0,

and

d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1) = 0.

Hence, x2n = x2n+1 and ϕ(x2n) = ϕ(x2n+1) = 0 which is contraction.

Thus, we have

d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)(3.9)

≤ d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),

for all n = 1,2,3, ... and by (3.6) and (3.7), we obtain

(3.10) mS,T (x2n−1,x2n,ϕ) = d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n)

and

(3.11) lS,T (x2n−1,x2n,ϕ) = d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n),

for all n = 1,2,3, ....

It follows from (3.8) that

ψ(F(d(x2n,x2n+1)+ϕ(x2n)+ϕ(x2n+1)))(3.12)

≤ ψ(F(d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n)))

−φ(F(d(x2n−1,x2n)+ϕ(x2n−1)+ϕ(x2n))).
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It follows from (3.9) that the sequence {d(xn,xn+1)+ϕ(xn)+ϕ(xn+1)} is a monotone nonin-

creasing. So there exists r ≥ 0 such that

(3.13) lim
n→∞

[d(xn,xn+1)+ϕ(xn)+ϕ(xn+1)] = r.

We claim that r = 0. Otherwise, r > 0. By (3.12) we have

ψ(F(d(xn,xn+1)+ϕ(xn)+ϕ(xn+1)))(3.14)

≤ ψ(F(d(xn−1,xn)+ϕ(xn−1)+ϕ(xn)))

−φ(F(d(xn−1,xn)+ϕ(xn−1)+ϕ(xn))),

which implies that

sup
i≥n

(ψ(F(d(xi,xi+1)+ϕ(xi)+ϕ(xi+1))))(3.15)

≤ sup
i≥n

(ψ(F(d(xi−1,xi)+ϕ(xi−1)+ϕ(xi))))

− inf
i≥n

(φ(F(d(xi−1,xi)+ϕ(xi−1)+ϕ(xi)))).

Then taking limit as n→ ∞ on (3.15), by the continuity of ψ and the lower semicontinuity of φ

it follows that

0 < limsupt→r ψ(F(t))≤ limsupt→r ψ(F(t))− liminft→r φ(F(t)),

which implies that

0 < ψ(F(r))≤ ψ(F(r))−φ(F(r)).

Since r > 0, we have φ(r)> 0. Hence

ψ(F(r))≤ ψ(F(r))−φ(F(r))< ψ(F(r)),

a contradiction. Hence limn→∞[d(xn,xn+1)+ϕ(xn)+ϕ(xn+1)] = 0, which implies that

(3.16) lim
n→∞

d(xn,xn+1) = 0

and

(3.17) lim
n→∞

ϕ(xn) = 0.
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Next, we show that {xn} is a Cauchy sequence. If {xn} is not Cauchy, then by Lemma 2.1 there

exist ε > 0 and subsequence {xm(k)} and {xn(k)} of {xn} such that (2.1) and (2.2) hold.

From (3.4), we have

mS,T (xn(k),xm(k),ϕ)(3.18)

= max{d(xn(k),xm(k))+ϕ(xn(k))+ϕ(xm(k)),d(xn(k),Sxn(k))+ϕ(xn(k))

+ϕ(Sxn(k)),d(xm(k),T xm(k))+ϕ(xm(k))+ϕ(T xm(k))+
1
2
[d(xn(k),T xm(k))

+ϕ(xn(k))+ϕ(T xm(k))+d(xm(k),Sxn(k))+ϕ(xm(k))+ϕ(Sxn(k))]}

= max{d(xn(k),xm(k))+ϕ(xn(k))+ϕ(xm(k)),d(xn(k),xn(k)+1)+ϕ(xn(k))

+ϕ(xn(k)+1),d(xm(k),xm(k)+1)+ϕ(xm(k))+ϕ(xm(k)+1)+
1
2
[d(xn(k),xm(k)+1)

+ϕ(xn(k))+ϕ(xm(k)+1)+d(xm(k),xn(k)+1)+ϕ(xm(k))+ϕ(xn(k)+1)]}.

Letting k→ ∞ in (3.18) and using Lemma 2.1, (3.16) and (3.17), it follows that

(3.19) mS,T (xn(k),xm(k),ϕ) = max{ε,0, 1
2
[0+0]}= ε.

It follows from (3.5) that

lS,T (xn(k),xm(k),ϕ)

= max{d(xn(k),xm(k))+ϕ(xn(k))+ϕ(xm(k)),d(xn(k),Sxn(k))+ϕ(xn(k))

+ϕ(Sxn(k)),d(xm(k),T xm(k))+ϕ(xm(k))+ϕ(T xm(k))}

= max{d(xn(k),xm(k))+ϕ(xn(k))+ϕ(xm(k)),d(xn(k),xn(k)+1)+ϕ(xn(k))

+ϕ(xn(k)+1),d(xm(k),xm(k)+1)+ϕ(xm(k))+ϕ(xm(k)+1)}.

Hence

(3.20) lS,T (xn(k),xm(k),ϕ) = max{ε,0,0}= ε.

From (3.3) we have

ψ(F(d(Sxn(k),T xm(k))+ϕ(Sxn(k))+ϕ(T xm(k))))(3.21)

≤ ψ(F(mS,T (xn(k),xm(k),ϕ)))−φ(F(lS,T (xn(k),xm(k),ϕ))).
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Letting k→∞ in (3.22), by Lemma 2.1, the continuity of ψ , the lower semicontinuity of φ , and

(3.19), (3.20) and (3.22), we have

ψ(F(ε))≤ ψ(F(ε))−φ(F(ε))< ψ(F(ε)),

which is contradiction because φ(F(ε))> 0.

Hence, the sequence {xn} is Cauchy sequence and hence it is convergent by the completeness

of X . Denote limn→∞ xn = q. Since ϕ is lower semicontinuos,

ϕ(q)≤ liminfn→∞ ϕ(xn)≤ limn→∞ ϕ(xn) = 0,

which implies that

(3.22) ϕ(q) = 0.

Finally, we prove that q is a unique common fixed point of S and T .

It follows from (3.4) that

mS,T (xn,q,ϕ)(3.23)

= max{d(xn,q)+ϕ(xn)+ϕ(q),d(xn,Sxn)+ϕ(xn)

+ϕ(Sxn),d(q,T q)+ϕ(q)+ϕ(T q)+
1
2
[d(xn,T q)

+ϕ(xn)+ϕ(T q)+d(q,Sxn)+ϕ(q)+ϕ(Sxn)]}.

So, we have

lim
n→∞

mS,T (xn,q,ϕ) = d(q,T q)+ϕ(q)+ϕ(T q)(3.24)

= d(q,T q)+ϕ(T q).

Also, we have

lS,T (xn,q,ϕ)(3.25)

= max{d(xn,q)+ϕ(xn)+ϕ(q),d(xn,Sxn)+ϕ(xn)+ϕ(Sxn),

d(q,T q)+ϕ(q)+ϕ(T q)},
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so

lim
n→∞

lS,T (xn,q,ϕ) = d(q,T q)+ϕ(q)+ϕ(T q)(3.26)

= d(q,T q)+ϕ(T q).

It follows from (3.3) that

ψ(F(d(xn+1,T q)+ϕ(xn+1)+ϕ(T q)))(3.27)

= ψ(F(d(Sxn,T q)+ϕ(Sxn)+ϕ(T q)))

≤ ψ(F(mS,T (xn,q,ϕ)))−φ(F(lS,T (xn,q,ϕ))).

By taking the limit as n→ ∞ in (3.27) and using the continuity of ψ , the lower semicontinuity

of φ , (3.24) and (3.26), we have

ψ(F(d(q,T q)+ϕ(T q)))(3.28)

≤ ψ(F(d(q,T q)+ϕ(T q)))−φ(F(d(q,T q)+ϕ(T q))).

So, we have

φ(F(d(q,T q)+ϕ(T q))) = 0,

which implies that

F(d(q,T q)+ϕ(T q)) = 0,

or

d(q,T q)+ϕ(T q) = 0.

Hence, we get d(q,T q) = 0 implies that q = T q and ϕ(T q) = 0.

From (3.23) and (3.25), we get

mS,T (q,q,ϕ)(3.29)

= max{d(q,q)+ϕ(q)+ϕ(q),d(q,Sq)+ϕ(q)+ϕ(Sq),d(q,T q)+ϕ(q)+ϕ(T q),

1
2
[d(q,T q)+ϕ(q)+ϕ(T q)+d(q,Sq)+ϕ(q)+ϕ(Sq)]}

= d(q,Sq)+ϕ(q)+ϕ(Sq)
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and

lS,T (q,q,ϕ)(3.30)

= max{d(q,q)+ϕ(q)+ϕ(q),d(q,Sq)+ϕ(q)+ϕ(Sq),d(q,T q)+ϕ(q)+ϕ(T q)}

= d(q,Sq)+ϕ(q)+ϕ(Sq).

Suppose that Sq = q. By (3.21), (3.29) and (3.30), we obtain

0 < ψ(F(d(Sq,q)+ϕ(Sq)+ϕ(q)))(3.31)

= ψ(F(d(Sq,T q)+ϕ(Sq)+ϕ(T q)))

≤ ψ(F(mS,T (q,q,ϕ)))−φ(F(lS,T (q,q,ϕ)))

= ψ(F(d(q,Sq)+ϕ(q)+ϕ(Sq)))−φ(F(d(q,Sq)+ϕ(q)+ϕ(Sq)))

< ψ(F(d(q,Sq)+ϕ(q)+ϕ(Sq))),

which is contradiction. This q = Sq = T q. For uniqueness, we assume that there exists another

point p ∈ X such that T p = Sp = p 6= q = Sq = T q. So d(p,q) 6= 0. Observe that

0 < ψ(F(d(p,q)+ϕ(p)+ϕ(q)))

= ψ(F(d(Sp,T q)+ϕ(Sp)+ϕ(T q)))

≤ ψ(F(mS,T (p,q,ϕ)))−φ(F(lS,T (p,q,ϕ)))

= ψ(F(d(p,q)+ϕ(p)+ϕ(q)))−φ(F(d(p,q)+ϕ(p)+ϕ(q)))

< ψ(F(d(p,q)+ϕ(p)+ϕ(q))),

which implies that

0 < ψ(F(d(p,q)))

≤ ψ(F(d(p,q)))−φ(F(d(p,q)))

< ψ(F(d(p,q))).

This is contradiction. Hence p = q. The proof is completed. �
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Corollary 3.1. Let (X ,d) be a complete metric space and Suppose that S,T satisfies the follow-

ing condition:

ψ(F(d(Sx,Ty)+ϕ(Sx)+ϕ(Ty)))

≤ ψ(F(mS,T (x,y,ϕ)))−φ(F(mS,T (x,y,ϕ))),

for all x,y ∈ X, F ∈F ,ψ ∈Ψ and ϕ ∈Φ. Then there exists a unique common fixed point of S

and T .

Corollary 3.2. Let (X ,d) be a complete metric space and Suppose that S,T satisfies the follow-

ing condition:

ψ(F(d(Sx,Ty)+ϕ(Sx)+ϕ(Ty)))

≤ ψ(F(d(x,y)+ϕ(x)+ϕ(y)))−φ(F(d(x,y)+ϕ(x)+ϕ(y))),

for all x,y ∈ X, F ∈F ,ψ ∈Ψ and ϕ ∈ Φ. Then there exists a unique common fixed point of S

and T .

Corollary 3.3. Let (X ,d) be a complete metric space and Suppose that S,T satisfies the follow-

ing condition:

ψ(F(d(Skx,T ky)+ϕ(Skx)+ϕ(T ky)))

≤ ψ(F(mSk,T k(x,y,ϕ)))−φ(F(lSk,T k(x,y,ϕ))),

for all x,y ∈ X, F ∈F ,ψ ∈ Ψ, ϕ ∈ Φ and k is a positive integer. Then there exists a unique

common fixed point of S and T .
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