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1. INTRODUCTION

In what follows, we assume that the reader is familiar with standard notations and main results

of Nevanlinna theory [37]. As usual the abbrevation CM means “Counting Multiplicity”, while

IM stands for “Ignoring Multiplicity”.

Let f and g are two non constant meromorphic functions. Let k be a positive integer or infinity

and a ∈ C∪{∞}. Set E(a, f ) = {z : f (z)−a = 0}, where a zero point of f with multiplicity k

is counted k times in the set. If these zeros are only once counted, then we denote the set by

E(a, f ). If E(a, f ) = E(a,g), so that f and g share the value a CM, and f and g share a IM if

E(a, f ) = E(a,g).
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For a complex number a ∈C∪∞, we denote by Ek(a, f ) the set of all a-points of f where an

a-point with multiplicity m is counted m times if m≤ k and k+1 times if m > k. If Ek(a, f ) =

Ek(a,g) for a complex number a ∈ C∪∞ we say that f and g share the value a with weight k

([16], page 195).

The definition implies that if f and g share a value a with weight k , then z0 is a zero of f −a

with multiplicity m(≤ k) if and only if it is a zero of g−a with multiplicity m(≤ k) and z0 is a

zero of f −a with multiplicity m(> k) if and only if it is a zero of g−a with multiplicity n(> k),

where m is not necessarily equal to n. We write f and g share (a,k) to mean that f and g share

the value a with weight k. Clearly if f and g share (a,k) then f and g share (a, p) for all integer

p, 0≤ p≤ k. Also we note that f and g share a value a IM or CM if and only if f and g share

(a,0) or (a,∞) respectively.

We denotes Ek)(a, f ) the set of all a points of f with multiplicities not exceeding k, where an

a point is counted accordingly and the set of distinct a points of f with multiplicities not greater

than k is Ek)(a, f ).

And Nk)(r,
1

( f−a)) the counting function for zeros of f − a with multiplicity less than or

equal to k, and by Nk)(r,
1

( f−a)) the corresponding one for which multiplicity is not counted.

Let N(k(r,
1

( f−a)) be the counting function for zeros of f − a with multiplicity at least k and

N(k(r,
1

( f−a)) the corresponding one for which multiplicities is not counted.

Meromorphic functions sharing values with their derivatives has become a subject of great

interest in uniqueness theory. The paper by Rubel and Yang is the starting point of this topic,

along with the following.

2. PRELIMINARIES AND LEMMAS

Theorem 2.1. ([33], page 101) Let f be a non-constant entire function. If f and f ′ share two

distinct finite values CM, then f = f ′.

The function f = eez z∫
0

e−et
(1− et)dt from [4] shows clearly that f and f ′ share 1 CM but

f 6= f ′. In a special case, we recall a well-known conjecture by Brück:
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Conjecture 2.1. ([4], page 22) Let f be a non-constant entire function such that hyper-order

ρ2( f ) := limsupr→∞
loglogT (r, f )

logr is not a positive integer or infinity. If f and f ′ share the finite

value a CM, then f ′−a
f−a = c, where c is nonzero constant.

The conjecture has been verified in the special cases when a = 0 [4], or when f is of finite

order [12], or when ρ2( f )< 1
2 [7]. Many results have been obtained for this and related topics

(See [1, 5, 11, 17, 18],[23]-[28],[34, 35, 38, 39, 41, 43],[45]-[48], and the references therein).

Heittokangas et al. considered analogues of Brück’s conjecture for meromorphic functions

concerning their shifts, and proved the following theorem.

Theorem 2.2. ([15], Theorem 1, page 353) Let f be a meromorphic function of order

ρ( f ) := lim
r→∞

sup
logT (r, f )

logr
< 2

and let c ∈ C. If f (z) and f (z+ c) share the values a ∈ C and ∞ CM, then

f (z+ c)−a
f (z)−a

= τ,

Since then, many mathematicians considered this topic (See [6, 8, 10, 19, 22, 30, 42] and the

references therein). In 2018, Qi, Li and Yang considered the value sharing problem related to

f ′(z) and f (z+ c), where c is a complex number. They obtained the following result.

Theorem 2.3. ([29], Theorem 1.5, page 570) Let f be a non-constant meromorphic function

of finite order and n ≥ 9 be an integer. If [ f ′(z)]n and f n(z+ c) share a(6= 0) and ∞ CM, then

f ′(z) = t f (z+ c), for a constant t that satisfies tn = 1.

It is natural to ask whether the f ′ can be extended to f (k) in Theorem 2.3. Here f n denotes the

nth power of the function f and f (k) stands for the kth derivative of f , where k is a non-negative

integer. Considering this question, C. Meng and G. Liu proved the following results.

Theorem 2.4. Let f be a non-constant meromorphic function of finite order and n be a positive

integer. If one of the following conditions is satisfied:

(I) [ f (k)(z)]n and f n(z+ c) share (1,2),(∞,0) and n≥ 2k+8;

(II) [ f (k)(z)]n and f n(z+ c) share (1,2),(∞,∞) and n≥ 2k+7;

(III) [ f (k)(z)]n and f n(z+ c) share (1,0),(∞,0) and n≥ 3k+14;
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then f (k)(z) = t f (z+ c), for a constant t that satisfies tn = 1.

If they consider entire function instead of meromorphic function, the counting functions re-

lated to the poles of [ f (k)(z)]n and f n(z+ c) can be neglected. Arguing similarly as in Theorem

2.4, one can see that k is not related to the coefficient of Nk+1

(
r, 1

f

)
. So obtained the following

corollary.

Corollary 2.1. Let f be a non-constant entire function of finite order and n ≥ 5 be an integer.

If [ f (k)(z)]n and f n(z+ c) share (1,2), then f (k)(z) = t f (z+ c), for a constant t that satisfies

tn = 1.

If the shifts f (z+ c) in Theorem 2.3 and 2.4 are replaced by q-difference f (qz), where q ∈

C\{0}, they obtained:

Theorem 2.5. Let f be a non-constant meromorphic function of zero order and n be a positive

integer. If one of the following conditions is satisfied:

(I) [ f (k)(z)]n and f n(qz) share (1,2),(∞,0) and n≥ 2k+8;

(II) [ f (k)(z)]n and f n(qz) share (1,2),(∞,∞) and n≥ 2k+7;

(III) [ f (k)(z)]n and f n(qz) share (1,0),(∞,0) and n≥ 3k+14;

then f (k)(z) = t f (qz), for a constant t that satisfies tn = 1.

Corollary 2.2. Let f be a non-constant entire function of zero order and n≥ 5 be an integer. If

[ f (k)(z)]n and f n(qz) share (1,2), then f (k)(z) = t f (qz), for a constant t that satisfies tn = 1.

We present some lemmas which will be needed later on. We will denote by H the following

function:

H =

(
F ′′

F ′
− 2F ′

F−1

)(
G′′

G′
− 2G′

G−1

)
where F and G are non-constant meromorphic functions. From above, it can be easily calculated

that the possible poles of H occur at (i) multiple zeros of F and G, (ii) those 1 points of F and G

whose multiplicities are different, (iii) those poles of F and G whose multiplicities are different,
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(iv) zeros of F ′ which are not the zeros of F(F−1) and zeros of G′ which are not the zeros of

G(G−1). And we define the following notations which are used in the proof.

N2

(
r,

1
f

)
= N

(
r,

1
f

)
+N(2

(
r,

1
f

)
,

where a simple zero point of f is counted once and a multiple zero point of f is counted twice.

Let z0 be a zero of f − 1 of multiplicity p and a zero of g− 1 of multiplicity q. We denote by

N1)
E

(
r, 1

f−1

)
the counting function of those 1-points of f where p = q = 1; by NL

(
r, 1

f−1

)
the

counting function of the 1-points of f whose multiplicities are greater than 1-points of g; each

point in these counting functions is counted only once. We are ignoring g in the notations above

only because the reader can interpret from the context with which function g we are comparing

the function f .

Lemma 2.1. . ([2], Lemma 2.13, page 13) Let F, G be two non-constant meromorphic functions.

If F, G share (1,2) and (∞,k), where 0≤ k ≤ ∞, and H 6≡ 0, then

T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)+N∗(r,∞;F,G)+S(r,F)+S(r,G),

where N∗(r,∞;F,G) denotes the reduced counting function of those poles of F whose multiplic-

ities differ from the multiplicities of the corresponding poles of G.

Lemma 2.2. ([36], Lemma 2, page 108) Let f be a non-constant meromorphic function, and let

a1,a2, ...,an be finite complex numbers, an 6= 0. Then

T (r,an f n + ...+a2 f 2 +a1 f +a0) = nT (r, f )+S(r, f ).

Lemma 2.3. ([19], Theorem 2.1, page 109) Let f be a meromorphic function of finite order

ρ( f ), and let c be a nonzero constant. Then

T (r, f (z+ c)) = T (r, f (z))+O(rρ( f )−1+ε)+O(logr),

for an arbitrary ε > 0.

We mention that Lemma 2.3 holds also for c = 0 as in the case T (r, f (z+ c)) = T (r, f (z)).
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Lemma 2.4. ([48], Lemma 2.1, page 4) Let f be a non-constant meromorphic function, p, k be

positive integers, then

Np

(
r,

1
f (k)

)
≤ Np+k

(
r,

1
f

)
+ kN(r, f )+S(r, f ),

where Np

(
r, 1

f (k)

)
denotes the counting function of the zeros of f (k) where a zero of multiplicity

m is counted m times if m≤ p and p times if m > p.

We point out that in Lemma 2.4 one obviously has that N
(

r, 1
f (k)

)
= N1

(
r, 1

f (k)

)
Lemma 2.5. ([13], Theorem 2.1, page 465) Let f be a non-constant meromorphic function of

finite order, and let c ∈ C and δ ∈ (0,1). Then

m
(

r,
f (z+ c)

f (z)

)
+m

(
r,

f (z)
f (z+ c)

)
= o
(

T (r, f )
rδ

)
= S(r, f ).

Lemma 2.6. ([43], Lemma 3.3, page 349) Suppose that two non-constant meromorphic func-

tions F and G share 1 and ∞ IM. Let H be given as above. If H 6≡ 0, then

T (r,F)+T (r,G)≤3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N1)

E

(
r,

1
F−1

)
+2N(2

E

(
r,

1
F−1

)
+3NL

(
r,

1
F−1

)
+3NL

(
r,

1
G−1

)
+S(r,F)+S(r,G).

Lemma 2.7. ([44], Theorem 1.1, page 538) Let f be a zero-order meromorphic function, and

q ∈ C\{0}. Then

T (r, f (qz)) = (1+o(1))T (r, f (z))

and

N(r, f (qz)) = (1+o(1))N(r, f (z))

on a set of lower logarithmic density 1.

Lemma 2.8. ([3], Theorem 1.1, page 457) Let f be a zero-order meromorphic function, and

q ∈ C\{0}. Then

m
(

r,
f (qz)
f (z)

)
= S(r, f )

on a set of logarithmic density 1.
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3. MAIN RESULTS

In this paper, by considering the difference operator ∆cF in Theorem 2.4 and 2.5, we obtain

analogous results which are more general.

Theorem 3.1. Let f be a non-constant meromorphic function of finite order and n be a positive

integer. If one of the following conditions is satisfied:

(I) [ f (k)(z)]n and ∆cF share (1,2),(∞,0) and n≥ k+6;

(II) [ f (k)(z)]n and ∆cF share (1,2),(∞,∞) and n≥ k+5;

(III) [ f (k)(z)]n and ∆cF share (1,0),(∞,0) and n≥ 2k+12;

where ∆cF = f n(z+n)− f (n)(z) then f (k)(z) = t f (z+ c), for a constant t that satisfies tn = 1
2 .

proof. Let

(1) F = ∆cF = f n(z+n)− f n(z)

(I). Suppose [ f (k)(z)]n and ∆cF share (1,2), (∞,0) and n≥ 2k+8. Then it follows directly from

the assumption of the theorem that F and G share (1,2) and (∞,0). Let H be defined as above.

Suppose that H 6= 0. It follows from Lemma 2.1 that

(2) T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)+N∗(r,∞;F,G)+S(r,F)+S(r,G).

According to Lemma 2.2 and Lemma 2.3, we have

(3) T (r,F) = nT (r, f (z+η))+nT (r, f (z))+S(r, f ) = 2nT (r, f )+O(rρ( f )−1+ε)+S(r, f ).

It is obvious that

N2

(
r,

1
F

)
=2N

(
r,

1
f n(z+η)− f n(z)

)
≤2N

(
r,

1
f (z+η)

)
+2N

(
r,

1
f (z)

)
≤4T (r, f )+O(rρ( f )−1+ε)+S(r, f ).

(4)

N(r,F) =N(r, f n(z+η)− f n(z))

≤2T (r, f )+O(rρ( f )−1+ε)+S(r, f ).
(5)
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(6) N∗(r,∞;F,G)≤ N(r,F)≤ 2T (r, f )+O(rρ( f )−1+ε)+S(r, f ).

Since E(∞, f (k)) = E(∞, f ), we have

(7) N(r,G) = N(r, [ f (k)(z)]n) = N(r, f (k)(z)) = N(r, f )≤ T (r, f ).

Lemma 2.4 gives

N2

(
r,

1
G

)
=2N

(
r,

1
f (k)

)
≤ 2Nk+1

(
r,

1
f

)
+2kN(r, f )+S(r, f )

≤(2+2k)T (r, f )+S(r, f ).

(8)

Combining (2)-(8), we deduce

T (r,F)≤N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)

+N∗(r,∞;F,G)+S(r, f )+S(r,g),

2nT (r, f )≤4T (r, f )+(2+2k)T (r, f )+2T (r, f )+T (r, f )

+2T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

2nT (r, f )≤(2k+11)T (r, f )+O(rρ( f )−1+ε)+S(r, f ).

(9) (2n−2k−11)T (r, f )≤ O(rρ( f )−1+ε)+S(r, f ),

which contradicts n≥ 2k+12
2 ≥ k+6. Therefore H ≡ 0, that is

F ′′

F ′
− 2F ′

F−1
=

G′′

G′
− 2G′

G−1
.

By integrating twice, we get

(10)
1

F−1
=

A
G−1

+B,

where A 6= 0 and B are constants. From (10) we have

(11) G =
(B−A)F +(A−B−1)

BF− (B+1)

Suppose that B 6= 0,−1. From (11), we have

(12) N
(

r,
1

F− B+1
B

)
= N(r,G)
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From the second fundamental theorem and Lemma 2.3, we have

2nT (r, f ) =T (r,F)+S(r, f )

≤N(r,F)+N
(

r,
1
F

)
+N

(
r,

1
F− B+1

B

)
+S(r, f )

≤N(r,∆c f )+N
(

r,
1

∆c f

)
+N(r, f )+S(r, f )

≤2T (r, f )+2T (r, f )+T (r, f )+S(r, f )

≤5T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

(13)

which contradicts n≥ k+6. Suppose that B =−1. From (11) we have

(14) G =
(A+1)F−A

F

If A 6=−1, we obtain from (14) that

(15) N
(

r,
1

F− A
A+1

)
= N

(
r,

1
G

)
From the second fundamental theorem, Lemma 2.3 and Lemma 2.4, we have

2nT (r, f ) =T (r,F)+S(r, f )≤ N(r,F)+N
(

r,
1
F

)
+N

(
r,

1
F− A

A+1

)
+S(r, f )

≤N(r,∆c f )+N
(

r,
1

∆c f

)
+N

(
r,

1
f (k)

)
+S(r, f )

≤N(r,∆c f )+N
(

r,
1

∆c f

)
+Nk+1

(
r,

1
f

)
+ kNr, f +S(r, f )

(16) ≤ (k+5)T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

which contradicts with n≥ k+6. Hence A =−1. From (14) we get FG = 1, that is

(17) [ f n(z+η)− f n(z)] [ f (k)(z)]n = 1

Since [ f (k)(z)]n and [ f (z+η)− f n(z)] share (∞,0), from (17) we get

(18) N(r, f (k)) = 0, T (r, f (k)) = T (r, f (z+η))+S(r, f ),

and

(19) [ f (k)(z)]2n =
[ f (k)(z)]n

f n(z+η)− f n(z)
=

[ f (k)(z)]n

f n(z)
f n(z+η)− f n(z)

f n(z)

.
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From Lemma 2.5 and logarithmic derivative lemma, we get

2nT (r, f (k)) = T (r, [ f (k)]2n) = m(r, [ f (k)]2n)+N(r, [ f (k)]2n) = m(r, [ f (k)(z)]2n) = S(r, f ).

that is

(20) T (r, f (k)) = S(r, f )

By (18) and (20), we know that

(21) T (r, f (z+η)) = T (r, f (k)) = S(r, f ).

which is a contradiction with Lemma 2.3.

Suppose that B = 0. From (11), we have

(22) G = AF− (A−1)

If A 6= 1, from (22) we obtain

(23) N
(

r,
1

F− A−1
A

)
= N

(
r,

1
G

)
.

From the second fundamental theorem, Lemma 2.3 and Lemma 2.4, we have

2nT (r, f ) =T (r,F)+S(r, f )

≤N(r,F)+N
(

r,
1
F

)
+N

(
r,

1
F− A−1

A

)
+S(r, f )

≤N(r,∆c f )+N
(

r,
1

∆c f

)
+N

(
r,

1
f (k)

)
++S(r, f )

≤N(r,∆c f )+N
(

r,
1

∆c f

)
+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f )

(24) ≤ (k+5)T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

which contradicts with n ≥ k + 6. Thus A = 1. From (22) we have F = G, that is

f n(z+η)− f n(z) = [ f (k)(z)]n. Hence f (k)(z) = t f (z+η), for a constant t with tn = 1
2 . We can

get the conclusion of Theorem 3.1.

(II). Suppose [ f (k)(z)]n and f n(z + η)− f n(z) share (1,2),(∞,∞) and n ≥ 2k + 7. Then
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it follows directly from the assumption of the theorem that F and G share (1,2) and (∞,∞). Let

H be defined as above. Suppose that H 6≡ 0. It follows from Lemma 2.1 that

(25) T (r,F)≤ N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N(r,F)+N(r,G)+N∗(r,∞;F,G)+S(r,F)+S(r,G).

According to Lemma 2.2 and Lemma 2.3, we have

(26) T (r,F) = nT (r, f (z+η))+nT (r, f (z))+S(r, f ) = 2nT (r, f )+O(rρ( f )−1+ε)+S(r, f ).

It is obvious that

(27) N2

(
r,

1
F

)
= 4T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

(28) N(r,F) = 2T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

(29) N(r,G) = N(r, f )≤ T (r, f ),

(30) N∗(r,∞;F,G) = 0

Lemma 2.4 gives

(31) N2

(
r,

1
G

)
= (2k+2)T (r, f )+S(r, f ).

Combining (25)-(31), we deduce

(32) (2n−2k−9)T (r, f )≤ O(rρ( f )−1+ε)+S(r, f ),

which contradicts with n ≥ k+5. Therefore H ≡ 0. Similar to the proof in (I), we can get the

conclusion of Theorem 3.1.

(III). Suppose [ f (k)(z)]n and f n(z+η)− f n(z) share (1,0),(∞,0) and n ≥ 3k + 14. Then it

follows directly from the assumption of the theorem that F and G share (1,0) and (∞,0). Let
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H be defined as above. Suppose that H 6≡ 0. It follows from Lemma 2.6 that

T (r,F)+T (r,G)≤3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+N1)

E

(
r,

1
F−1

)
+2N(2

E

(
r,

1
F−1

)
+3NL

(
r,

1
F−1

)
+3NL

(
r,

1
G−1

)
+S(r,F)+S(r,G).

(33)

Since

N1)
E

(
r,

1
F−1

)
+2N(2

E

(
r,

1
F−1

)
+NL

(
r,

1
F−1

)
+2NL

(
r,

1
G−1

)
≤N
(

r,
1

G−1

)
≤ T (r,G)+O(1),

(34)

we get from (33) and (34) that

T (r,F)≤3N(r,F)+N2

(
r,

1
F

)
+N2

(
r,

1
G

)
+2NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+S(r,F)+S(r,G).

(35)

According to Lemma 2.2 and Lemma 2.3, we have

T (r,F) = 2nT (r, f )+O(rρ( f )−1+ε)+S(r, f ).(36)

It is obvious that

(37) N(r,F) = 2T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

(38) N2

(
r,

1
F

)
= 4T (r, f )+O(rρ( f )−1+ε)+S(r, f ),

NL

(
r,

1
F−1

)
≤N
(

r,
F
F ′

)
≤ N

(
r,

F ′

F

)
+S(r, f )

≤N(r,F)+N
(

r,
1
F

)
+S(r, f )

=N(r,∆c f )+N
(

r,
1

∆c f

)
+S(r, f )

(39) ≤ 4T (r, f )+O(rρ( f )−1+ε)+S(r, f ).
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Lemma 2.4 gives

(40) N2

(
r,

1
G

)
≤ (2k+2)T (r, f )+S(r, f ),

NL

(
r,

1
G−1

)
≤N
(

r,
G
G′

)
≤ N

(
r,

G′

G

)
+S(r, f )

≤N(r,G)+N
(

r,
1
G

)
+S(r, f )

≤N(r, f )+N
(

r,
1

f (k)

)
+S(r, f )

≤N(r, f )+Nk+1

(
r,

1
f

)
+ kN(r, f )+S(r, f )

(41) ≤ (k+2)T (r, f )+S(r, f ).

Combining (35)-(41), we deduce

(42) (2n−3k−22)T (r, f )≤ O(rρ( f )−1+ε)+S(r, f ).

which contradicts with n ≥ 3k+23
2 ≥ 2k+ 12. Therefore H ≡ 0. Similar to the proof of (I), we

can get the conclusion of Theorem 3.1. �

Corollary 3.1. Let f be a non-constant meromorphic function of zero order and n be a positive

integer. If one of the following conditions is satisfied:

(I) [ f (k)(z)]n and ∆c f (qz) share (1,2),(∞,0) and n≥ k+6;

(II) [ f (k)(z)]n and ∆c f (qz) share (1,2),(∞,∞) and n≥ k+5;

(III) [ f (k)(z)]n and ∆c f (qz) share (1,0),(∞,0) and n≥ 2k+12;

where ∆cF = f n(qz+n)− f (n)(qz) then f (k)(z) = t f (qz), for a constant t that satisfies tn = 1
2 .
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