Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 1, 32-37

ISSN: 1927-5307

SPHERICAL INVOLUTES OF THE FIXED POLE CURVE (C^{*}) ON THE TIMELIKE BERTRAND CURVE COUPLE

SÜLEYMAN ŞENYURT**, ÖMER FARUK ÇALIŞKAN

Ordu Univercity, Faculty of Arts and Sciences „Department of Mathematics,, Ordu/ TURKEY, 52200

Abstract

In this paper, it has been showed that every single indicatrix of tangents and indicatrix of binormals of the curve, α^{*} are spherical involutes of the fixed pole curve, $\left(C^{*}\right)$ by finding a transition link of the timelike Bertrand curve couple through Frenet frames.

Keywords: Lorentz Space, Timelike Bertrand Curve Couple, Spherical Involutes
2000 AMS Subject Classification: 53A04, 53B30

1.Preliminaries

Let Minkowski 3 -space $I R_{1}^{3}$ be the vector space $I R^{3}$ equipped with the Lorentzian inner product g given by

$$
g(X, X)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}
$$

where $X=\left(x_{1}, x_{2}, x_{3}\right) \in I R^{3}$. A vector $X=\left(x_{1}, x_{2}, x_{3}\right) \in I R^{3}$ is said to be timelike if $g(X, X)<0$, spacelike if $g(X, X)>0$ and lightlike (or null) if $g(X, X)=0$. Similarly, an arbitrary curve $\alpha=\alpha(s)$ in $I R_{1}^{3}$ where s is a arclength parameter, can locally be timelike, spacelike or null (lightlike), if all of its velocity vectors $\alpha^{\prime}(s)$ are respectively timelike, spacelike or null (lightlike) for every $s \in I R$. The norm of a vector $X \in I R_{1}^{3}$ is defined by [2]

$$
\|X\|=\sqrt{|g(X, X)|}
$$

We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve α. Let α be a timelike curve with curvature κ and torsion τ. Let frenet vector fields of α be $\{T, N, B\}$.

[^0]Received October 8, 2012

In this trihedron, T is timelike vector field, N and B are spacelike vector fields. Then Frenet formulas are given by [3]

$$
\begin{equation*}
T^{\prime}=\kappa N, N^{\prime}=\kappa T-\tau B, B^{\prime}=\tau N . \tag{1}
\end{equation*}
$$

Let α be a timelike vector, the frenet vectors T timelike, N and B are spacelike vector, respectively, such that

$$
T \times N=-B, \quad \mathrm{~N} \times B=T, B \times T=-N
$$

and the frenet instantaneous rotation vector is given by [5]

$$
W=\tau T-\kappa B, \quad\|W\|=\sqrt{\left|\kappa^{2}-\tau^{2}\right|} .
$$

Let φ be the angle between W and $-B$ vectors and if W is a spacelike vector, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \cosh \varphi \tag{2}\\
\tau=\|W\| \sinh \varphi
\end{array}, \quad \mathrm{C}=\sinh \varphi T-\cosh \varphi B\right.
$$

and if W is a timelike vector, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \sinh \varphi \tag{3}\\
\tau=\|W\| \cosh \varphi
\end{array}, \quad C=\cosh \varphi T-\sinh \varphi B .\right.
$$

Let $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$ be the vectors in $I R_{1}^{3}$. The cross product of X and Y is defined by [1]

$$
X \wedge Y=\left(x_{3} y_{2}-x_{2} y_{3}, x_{1} y_{3}-x_{3} y_{1}, x_{1} y_{2}-x_{2} y_{1}\right)
$$

The curvatures drawn by unit speed non-null curve, $\alpha: I \rightarrow I R_{1}^{3}$ at the point $\alpha(s)$ with the frenet vectors T, N, B and the unit Darboux vector C over the Lorentzian unit sphere $S_{1}{ }^{2}$ or Hyperbolic unit sphere $H_{0}{ }^{2}$ are named respectively as indicatrix of tangents, indicatrix of principal normals , indicatrix of binormals and fixed pole curve. These curvatures are indicated in order as $(T),(N),(B)$ and (C) [4].

Let $\alpha: I \rightarrow I R_{1}^{3}$ and $\alpha^{*}: I \rightarrow I R_{1}^{3}$ be two timelike curves and if the tangent of α, $\alpha(s)$ posses through the point $\alpha^{*}(s)$ and $\left\langle T^{*}(s), T(s)\right\rangle=0$, then the curve α^{*} is said to be the involute of α [6].

2. Spherical Involutes of the Fixed Pole Curve $\left(C^{*}\right)$ on the Timelike Bertrand Curve Couple

Definition 2.1: Let $\{T, N, B\}$ and $\left\{T^{*}, N^{*}, B^{*}\right\}$ be respectively the frenet frames of the timelike curves, $\alpha: I \rightarrow I L^{3}$ and $\alpha^{*}: I \rightarrow I L^{3}$ at points $\alpha(s)$ and $\alpha^{*}(s)$. If the principal normal vectors N and N^{*} are linearly dependent, then the pair $\left(\alpha, \alpha^{*}\right)$ is said to be timelike Bertrand curve couple.

Theorem 2.1: There is a connection between timelike Bertrand curve couple and Frenet frames that are written as followings

$$
\left\{\begin{array}{l}
T^{*}=-\cosh \theta T+\sinh \theta B \\
N^{*}=N \\
B^{*}=-\sinh \theta T+\cosh \theta B
\end{array}\right.
$$

Here, the angle θ is the angle between T and T^{*}.
Proof: By taking the derivative of $\alpha^{*}(s)=\alpha(s)+\lambda N(s)$ with respect to arc lenght s and using the equation, we get

$$
\begin{equation*}
T^{*} \frac{d s^{*}}{d s}=T(1+\lambda \kappa)-\lambda \tau B \tag{4}
\end{equation*}
$$

The inner products of the above equation with respect to T and B are respectively defined as

$$
\left\{\begin{array}{l}
-\cosh \theta \frac{d s^{*}}{d s}=1+\lambda \kappa \\
-\sinh \theta \frac{d s^{*}}{d s}=\lambda \tau
\end{array}\right.
$$

and substituting these present equations in (4) we obtain

$$
\begin{equation*}
T^{*}=-\cosh \theta T+\sinh \theta B \tag{5}
\end{equation*}
$$

Here, by finding the derivative of (4) and using (1) we get

$$
N^{*}=N .
$$

Firstly, we can write

$$
\begin{equation*}
B^{*}=-\sinh \theta T+\cosh \theta B \tag{6}
\end{equation*}
$$

by availing the equation $B^{*}=-\left(T^{*} \times N^{*}\right)$.
By the derivative of $\alpha_{T^{*}}\left(s_{T^{*}}\right)=T^{*}(s)$ with respect to arc-lenght $s_{T^{*}}$ parameter, we get

$$
T_{T^{*}}=\frac{d T^{*}}{d s} \cdot \frac{d s}{d s_{T^{*}}}
$$

Afterwards, by some algebraic manipulations and substituting (5) in $T_{T^{*}}$, the following result can be achieved

$$
\begin{equation*}
T_{T^{*}}=\mp N . \tag{7}
\end{equation*}
$$

Similarly, by taking the derivative of $\alpha_{B^{*}}\left(s_{B^{*}}\right)=B^{*}(s)$ with respect to arc-lenght $s_{B^{*}}$ parameter, we get

$$
T_{B^{*}}=\frac{d B^{*}}{d s} \cdot \frac{d s}{d s_{B^{*}}}
$$

By using the equation (6), we write down

$$
\begin{equation*}
T_{B^{*}}=\mp N . \tag{8}
\end{equation*}
$$

Lastly, by taking the derivative of $\alpha_{C^{*}}\left(s_{C^{*}}\right)=C^{*}(s)$ with respect to arc-lenght $s_{C^{*}}$ parameter, we obtain

$$
T_{C^{*}}=\frac{d C^{*}}{d s} \cdot \frac{d s}{d s}
$$

If W^{*} is spacelike, then by considering (2) and with some algebraic operation we get

$$
\begin{equation*}
T_{C^{*}}=\cosh \varphi^{*} T^{*}-\sinh \varphi^{*} B^{*} \tag{9}
\end{equation*}
$$

if W^{*} is timelike, then then by considering (3) and with some algebraic operation we get

$$
\begin{equation*}
T_{C^{*}}=\sinh \varphi^{*} T^{*}-\cosh \varphi^{*} B^{*} \tag{10}
\end{equation*}
$$

Theorem 2.2: Let $\left(\alpha, \alpha^{*}\right)$ be timelike Bertrand curve couple. Tach of the indicatrix of tangents $\left(T^{*}\right)$ and the indicatrix of binormals $\left(B^{*}\right)$ of α^{*} curve is a spherical involute of the fixed pole curve $\left(C^{*}\right)$.

Proof: In order to show that $\left(T^{*}\right)$ and $\left(B^{*}\right)$ of the α^{*} curve is each a spherical involute of $\left(C^{*}\right)$, we need to prove the following statements

$$
\left\langle\frac{d T^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=0
$$

and

$$
\left\langle\frac{d B^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=0 .
$$

If W^{*} is spacelike, by taking into account (7) and (9) we write down

$$
\left\langle\frac{d T^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=\left\langle N, \cosh \varphi^{*} T^{*}-\sinh \varphi^{*} B^{*}\right\rangle
$$

Next, by using (5) and (6) and doing required manipulations, the following result can be obtained

$$
\left\langle\frac{d T^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=0
$$

Furthermore, by exploiting the equations (5),(6),(8) and (9), we do the similar calculations to get

$$
\left\langle\frac{d B^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=0
$$

If W^{*} is timelike, we use (7) and (10) to reach

$$
\left\langle\frac{d T^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=\left\langle N, \sinh \varphi^{*} T^{*}-\cosh \varphi^{*} B^{*}\right\rangle .
$$

Here, by substitution of (5) and (6) in the above the formula, we write

$$
\left\langle\frac{d T^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=0
$$

Once again, when the given relations (5),(6),(8) and (10) are taken into consideration, we get

$$
\left\langle\frac{d B^{*}}{d s}, \frac{d C^{*}}{d s}\right\rangle=0
$$

REFERENCES

[1] Akutagawa, K. and Nishikawa S., The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-space, Töhoko Math., 1990, J. 42, 67-82.
[2] O'neill, B., Semi Riemann Geometry, 1983, Academic Press, New York, London.
[3] Woestijne, V.D.I., Minimal Surfaces of the 3-dimensional Minkowski space. ,Proc. Congres Geometrie differentielle et aplications Avignon (30 May 1988), Wold Scientific Publishing. Singapore. 344-369, 1990.
[4] Hacısalioğlu, H.H., Differencial Geometry, 1983, İnönü Univercity, Faculty of Arts and Sciences, Math. no.7, Malatya.
[5] Uğurlu, H.H., On the Geometry of Timelike Surfaces, 1997, Commun. Fac. Sci. Ank. Series A1 V.46.pp. 211-223.
[6] Sabuncuoğlu, A., Differancial Geometry, 2006, Nobel Press, Ankara.

[^0]: *Corresponding author

