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Abstract. In this article, we study the uniqueness of Differential difference polynomials of L-function and Differ-

ential difference polynomials of a meromorphic function concerning weighted sharing of a polynomial. Our result

improves and generalizes results of Abhijit Banerjee, Saikat Bhattacharyya [1], N. Mandal, N. K. Datta [5].
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1. INTRODUCTION

We presume that the reader is aware of Value Distribution of Nevanlinna theory [9, 10, 13].

It was Selberg who introduced the class called Selberg class. It is the set of all Dirichlet series.

This class satisfies some axioms which leads to the definition of of L−function. In this paper,

we make use of the definition of L−function and we redirect the reader to refer [1] to see more

about the definition of L−function.

We define ψ = {g1 : g1 is nonconstant meromorphic function}, where nonconstant mero-

morphic functions are defined over C. In 19th century, Lahiri posed the inquiry regarding the
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relationship between f and g when two differential polynomials are expressed interms of f and

g sharing non-zero complex values, refer([3]).

As an affirmative answer, Liu-Li-Yi obtained the condition of the uniqueness results for for

F = ( f n)(k)−α(z) and L = (Ln)(k)−α(z) share (0,∞), refer ([4], Theorem A].

Recently, in 2018, to improve above theorem and to relax the nature of sharing the values,

Sahoo and Halder used the concept of weighted sharing to prove uniqueness of F and L as

defined earlier and corresponding conditions for l were obtained for different values of l, refer

([7], Theorem B].

In the same year, Hao-Chen obtained chain of theorems where differential polynomials are

considered in more general way which highlights the uniqueness of g1 and L for appropriate

values of n and k sharing (1,∞), refer ([11], Theorem C, Theorem D) and also for sharing

(1,0), refer ([11], Theorem E, Theorem F).

Inspired by these results, we prove the results as stated in section 3.

2. PRELIMINARIES

If L is an L-function, then

(1) the relation between the characteristic function of L-function and the degree of L-

function ‘d’ can be seen as follows

(2.1) T (r,L) =
d
π

rlogr+O(r),

refer([8]).

(2) The counting function for the poles of an L-function can be defined with the following

relation

(2.2) N(r,∞,L) = S(r,L) = O(logr),

refer([5]).

Also, if g1 ∈ ψ ,

(1) the relation between g1 and an L-function when they share (∞,0) can be seen as

(2.3) N(r,∞;g1) = S(r,L) = O(logr),
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refer ([6]).

(2) For k ≥ Z+

(2.4) T (r,g(k)1 )≤ T (r,g1)+ kN(r,∞;g1)+S(r,g1),

refer ([9]).

(3) Let a0, a1 . . .an be finite complex numbers such that an 6= 0, then

(2.5) T (r,angn
1 +an−1gn−1

1 + . . .+a1g1 +a0) = nT (r, f )+S(r, f ),

refer ([10])

(4) For α(6≡ 0,∞) be a small function of g1 then we have

T (r,g1)≤ N(r,∞;g1)+N(r,0;g1)+N(r,0;g(k)1 −α)

−N

r,0;

(
g(k)1
α

)′+S(r, f ),
(2.6)

refer ([11]).

For h1 being a transcendental meromorphic function of finite order then we have

(2.7) T (r,h1(z+ c)) = T (r,h1)+S(r,h1),

refer ([2])

Suppose f and g be two transcendental meromorphic function and

(1) H 6≡ 0. We have

1
2
[T (r, f )+T (r,g)]≤

(
k
2
+2
)
[N(r,∞; f )+N(r,∞;g)]

+Nk+2(r,0; f )+Nk+2(r,0;g)−
(

l− 3
2

)
N∗(r,1;F,G)

+S(r, f )+S(r,g),

(2.8)

where F = f (k)
Q and G = g(k)

Q , refer ([1])

(2) Either f (k)g(k)≡Q2 or f ≡ g, whenever f and g satisfies one of the following conditions,
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(i) l ≥ 2 and

(2.9) ∆1 =

(
k
2
+2
)
{Θ(∞, f )+Θ(∞,g)}+δk+2(0, f )+δk+2(0,g)> k+5.

(ii) l = 1 and

∆2 =

(
3k
4
+

9
4

)
{Θ(∞, f )+Θ(∞,g)}+δk+2(0, f )+δk+2(0,g)

+
1
4
{δk+1(0, f )+δk+1(0,g)}>

3k
2
+6.

(2.10)

(ii) l = 0 and

∆3 =

(
2k+

7
2

)
{Θ(∞, f )+Θ(∞,g)}+δk+2(0, f )+δk+2(0,g)

+
3
2
{δk+1(0, f )+δk+1(0,g)}> 4k+11,

(2.11)

refer ([1]).

3. MAIN RESULTS

Theorem 1. Let g1 ∈ ψ , L be an L-function, m,d,k and v j ( j = 1,2, . . . ,d) be nonnega-

tive integers and c j ( j = 1,2, . . . ,d be distinct finite complex numbers. Suppose that [gn
1( f −

1)m
d
∏
j=1

g1(z+ c j)
v j ](k)−η(z) and [Ln(L−1)m

d
∏
j=1

L(z+ c j)
v j ](k)−η(z) share (0, l). If

l ≥ 2 and

(m+n)>
5k
2
+6+2m2(k+2)+2m1 +σ ,

or l = 1 and

(m+n)>
13k
4

+
27
4
+

(
5k
2
+

9
2

)
m2 +

5
2

m1 +
3
2

σ ,

or l = 0 and

(m+n)> 7k+
21
2
+(5k+7)m2 +5m1 +4σ .

Then one of the following two cases holds

(i) [gn
1( f −1)m

d

∏
j=1

g1(z+ c j)
v j ](k)[Ln(L−1)m

d

∏
j=1

L(z+ c j)
v j ](k) = η

2(z).

(ii) [gn
1( f −1)m

d

∏
j=1

g1(z+ c j)
v j ] = [Ln(L−1)m

d

∏
j=1

L(z+ c j)
v j ],

or g1 = tL for a constant t satisfying gm+n
1 = 1.
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Proof. We set the functions F1 and G1 as follows

F1 =
F(k)

η(z)
, G1 =

G(k)

η(z)
,

where,

F =

[
gn

1(g1−1)m
d

∏
j=1

g1(z+ c j)
v j

]
,

G =

[
Ln(L−1)m

d

∏
j=1

L(z+ c j)
v j

]
.

Obviously as F(k)−η(z), G(k)−η(z) share (0, l), therefore F1, G1 share (1, l) and an L-function

has at most one pole z = 1 in the complex plane, we deduce by (2.5), (2.6) and Valiron-

Mokhonko’s lemma (see [12]) that,

(n+m+σ)T (r,L)+S(r,g1) = T (r,G),

≤ N(r,∞;G)+N(r,0;G)+N(r,1;G1)−N(r,0;G′1)+S(r,g1),

≤ N(r,∞;G)+Nk+1(r,0;G)+N(r,1;G1)−N0(r,0;G′1)+S(r,g1),

≤ N(r,∞;L)+(k+1)N(r,0;G)+N(r,1;G1)+S(r,g1),

≤ (k+1)(n+m+σ)T (r,L)+N(r,1;F1)+S(r,g1).

(3.1) −k(n+m+σ)T (r,L)≤ T (r,F(k))+S(r,g1)

By (2.1), we see that L is a transcendental meromorphic function, combining this with (3.1),

([13],Theorem 1.5) and the assumption of the lower bound of (m+n), we deduce that F(k) and

so g1 is a transcendental meromorphic function.

Using (2.5), we have

Θ(∞,F) = 1− limsup
r→∞

N(r,∞;F)

T (r,F)
,

= 1− limsup
r→∞

N(r,∞;F)

(m+n+σ)T (r,F)+O(1)
,

≥ 1− 1
m+n+σ

(3.2)
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δk+2(0,F) = 1− limsup
r→∞

Nk+2(r,0;F)

T (r,F)
,

≥ 1− limsup
r→∞

Nk+2(r,0;gn
1)+Nk+2(r,0;(g1−1)m)+Nk+2(r,0;φ)

(m+n+σ)T (r,F)+O(1)
,

≥ 1− (k+2)+m2(k+2)+m1 +σ

m+n+σ
.

(3.3)

Similarly,

δk+2(0,G)≥ 1− (k+2)+m2(k+2)+m1 +σ

m+n+σ
,(3.4)

δk+1(0,F)≥ 1− (k+1)+m2(k+1)+m1 +σ

m+n+σ
,(3.5)

δk+1(0,G)≥ 1− (k+1)+m2(k+1)+m1 +σ

m+n+σ
.(3.6)

Since an L-function has at most one pole at z = 1 in the complex plane, we have

N(r,L)≤ logr+O(1).

So using (2.1) we deduce that

(3.7) Θ(∞,G) = 1.

Case 1: Let l ≥ 2

By using (2.9), (3.2)-(3.4) and (3.7), we obtain

(m+n)>
5k
2
+6+2m2(k+2)+2m1 +σ .

We have ∆1 > k+5. Thus by (2.9), we get either F(k)G(k) = η2(z) or F ≡ G. Let F ≡ G, i.e,

(3.8) gn
1(g1−1)m

d

∏
j=1

g1(z+ c j)
v j = Ln(L−1)m

d

∏
j=1

L(z+ c j)
v j .

Now, we set

(3.9) H =
g1

L
.
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If H is a nonconstant meromorphic function, then we get (3.8). Suppose H is a constant i,e.

H = t = g1
L . Then from (3.9), we get

(tL)n(tL−1)m
d

∏
j=1

(tL)(z+ c j)
v j = Ln(L−1)m

d

∏
j=1

L(z+ c j)
v j

tn+σ

[
tmLm +

(
m
1

)
(−1)tm−1Lm−1 +

(
m
2

)
(−1)2tm−2Lm−2 + . . .+(−1)m

]
=

[
Lm +

(
m
1

)
(−1)Lm−1 +

(
m
2

)
(−1)2Lm−2 + . . .+(−1)m

]
,

tn+m+σ = tn+m−1+σ = tn+m−2+σ = . . .= tn+σ = 1.

So we know t = 1, then g1 = tL for a constant t satisfying tn+m+σ = 1.

Case 2: Let l = 1.

By using (2.10), (3.2)-(3.7), we have

∆2 =

(
3k
4
+

9
4

)
{Θ(∞,F)+Θ(∞,G)}+δk+2(0,F),

+δk+2(0,G)+
1
4
{δk+1(0,F)+δk+1(0,G)} ,

∆2 ≥
3k
4
+7−

(3k
4 + 9

4

)
+ 5k

2 + 9
2 +
(5k

2 + 9
2

)
m2 +

5
2m1 +

5
2σ

m+n+σ
.(3.10)

By (3.10) and the assumption

(m+n)>
13k
4

+
27
4
+

(
5k
2
+

9
2

)
m2 +

5
2

m1 +
3
2

σ .

We have ∆2 >
3k
2 + 6. Thus by (2.10) we get either F(k)G(k) = η2(z) or F ≡ G. Proceeding in

the same manner as done in the case 1, we get conclusion.

Case 3: Let l = 0. By using (2.11), (3.2)-(3.7), we have

∆3 ≥ 4k+12−
(
2k+ 7

2

)
+5k+7+(5k+7)m2 +5m1 +5σ

m+n+σ
,(3.11)

by (3.11) and the assumption

(m+n)> 7k+
21
2
+(5k+7)m2 +5m1 +4σ .

We have ∆3 > 4k+11. Thus by (2.11), we get either F(k)G(k) = η2(z) or F ≡G. Proceeding in

the same manner as done in case 1, we get conclusion. �
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For n = 0, we obtain following result.

Corollary 1. Let g1 ∈ψ , L be an L-function, m,d,k and v j ( j = 1,2, . . . ,d) be nonnegative inte-

gers and c j ( j = 1,2, . . . ,d be distinct finite complex numbers. Suppose that [(g1−1)m
d
∏
j=1

g1(z+

c j)
v j ](k)−η(z) and [(L−1)m

d
∏
j=1

L(z+ c j)
v j ](k)−η(z) share (0, l). If

l ≥ 2 and

m >
k
2
+2+2m2(k+2)+2m1 +σ ,

or l = 1 and

m >
3k
4
+

9
4
+

(
5k
2
+

9
2

)
m2 +

5
2

m1 +
3
2

σ ,

or l = 0 and

m > 2k+
7
2
+(5k+7)m2 +5m1 +4σ .

Then one of the following two cases holds

(i) [(g1−1)m
d

∏
j=1

g1(z+ c j)
v j ](k)[(L−1)m

d

∏
j=1

L(z+ c j)
v j ](k) = η

2(z).

(ii) [(g1−1)m
d

∏
j=1

g1(z+ c j)
v j ] =

[
(L−1)m

d

∏
j=1

L(z+ c j)
v j

]
.

or g1 = tL for a constant t satisfying tm+σ = 1.

For m = 0, we obtain the following result.

Corollary 2. Let g1 ∈ ψ , L be an L-function, m,d,k and v j ( j = 1,2, . . . ,d) be nonnegative

integers and c j ( j = 1,2, . . . ,d be distinct finite complex numbers. Suppose that [gn
1

d
∏
j=1

g1(z+

c j)
v j ](k)−η(z) and [(Ln

d
∏
j=1

L(z+ c j)
v j ](k)−η(z) share (0, l). If

l ≥ 2 and

n >
5k
2
+6+σ ,

or l = 1 and

n >
13k
4

+
27
4
+

3
2

σ ,

or l = 0 and

n > 7k+
21
2
+4σ .
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Then one of the following two cases holds

(i) [gn
1

d

∏
j=1

g1(z+ c j)
v j ](k)[Ln

d

∏
j=1

L(z+ c j)
v j ](k) = η

2(z).

(ii) [gn
1

d

∏
j=1

g1(z+ c j)
v j ] =

[
Ln

d

∏
j=1

L(z+ c j)
v j

]
.

or g1 = tL for a constant t satisfying tn+σ = 1.
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