Available online at http://scik.org
J. Math. Comput. Sci. 11 (2021), No. 6, 7199-7208
https://doi.org/10.28919/jmcs/6517
ISSN: 1927-5307

UNIQUENESS OF DIFFERENTIAL DIFFERENCE POLYNOMIALS OF L-FUNCTIONS AND MEROMORPHIC FUNCTIONS SHARING A POLYNOMIAL

M. T. SOMALATHA ${ }^{1, *}$, N. SHILPA ${ }^{2}$, TOUQEER AHMED ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government Science College, Bangalore - 560 001, Karnataka, India
${ }^{2}$ Department of Mathematics, Presidency University, Itgalpura, Bangalore, 560 064, Karnataka, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this article, we study the uniqueness of Differential difference polynomials of L-function and Differential difference polynomials of a meromorphic function concerning weighted sharing of a polynomial. Our result improves and generalizes results of Abhijit Banerjee, Saikat Bhattacharyya [1], N. Mandal, N. K. Datta [5].

Keywords: Nevanlinna theory; meromorphic function; L-function; differential difference polynomial; weighted sharing.

2010 AMS Subject Classification: 30D35, 11M36.

1. Introduction

We presume that the reader is aware of Value Distribution of Nevanlinna theory [$9,10,13]$. It was Selberg who introduced the class called Selberg class. It is the set of all Dirichlet series. This class satisfies some axioms which leads to the definition of of L -function. In this paper, we make use of the definition of L -function and we redirect the reader to refer [1] to see more about the definition of L -function.

We define $\psi=\left\{g_{1}: g_{1}\right.$ is nonconstant meromorphic function $\}$, where nonconstant meromorphic functions are defined over C. In 19th century, Lahiri posed the inquiry regarding the

[^0]relationship between f and g when two differential polynomials are expressed interms of f and g sharing non-zero complex values, refer([3]).

As an affirmative answer, Liu-Li-Yi obtained the condition of the uniqueness results for for $F=\left(f^{n}\right)^{(k)}-\alpha(z)$ and $L=\left(L^{n}\right)^{(k)}-\alpha(z)$ share $(0, \infty)$, refer ([4], Theorem A].

Recently, in 2018, to improve above theorem and to relax the nature of sharing the values, Sahoo and Halder used the concept of weighted sharing to prove uniqueness of F and L as defined earlier and corresponding conditions for l were obtained for different values of l, refer ([7], Theorem B].

In the same year, Hao-Chen obtained chain of theorems where differential polynomials are considered in more general way which highlights the uniqueness of g_{1} and L for appropriate values of n and k sharing $(1, \infty)$, refer ([11], Theorem C, Theorem D) and also for sharing $(1,0)$, refer ([11], Theorem E, Theorem F).

Inspired by these results, we prove the results as stated in section 3 .

2. Preliminaries

If L is an L-function, then
(1) the relation between the characteristic function of L-function and the degree of L function 'd' can be seen as follows

$$
\begin{equation*}
T(r, L)=\frac{d}{\pi} r \log r+O(r) \tag{2.1}
\end{equation*}
$$

refer([8]).
(2) The counting function for the poles of an L-function can be defined with the following relation

$$
\begin{equation*}
N(r, \infty, L)=S(r, L)=O(\log r), \tag{2.2}
\end{equation*}
$$

refer([5]).
Also, if $g_{1} \in \psi$,
(1) the relation between g_{1} and an L-function when they share $(\infty, 0)$ can be seen as

$$
\begin{equation*}
\bar{N}\left(r, \infty ; g_{1}\right)=S(r, L)=O(\log r) \tag{2.3}
\end{equation*}
$$

refer ([6]).
(2) For $k \geq Z^{+}$

$$
\begin{equation*}
T\left(r, g_{1}^{(k)}\right) \leq T\left(r, g_{1}\right)+k \bar{N}\left(r, \infty ; g_{1}\right)+S\left(r, g_{1}\right), \tag{2.4}
\end{equation*}
$$

refer ([9]).
(3) Let $a_{0}, a_{1} \ldots a_{n}$ be finite complex numbers such that $a_{n} \neq 0$, then

$$
\begin{equation*}
T\left(r, a_{n} g_{1}^{n}+a_{n-1} g_{1}^{n-1}+\ldots+a_{1} g_{1}+a_{0}\right)=n T(r, f)+S(r, f), \tag{2.5}
\end{equation*}
$$

refer ([10])
(4) For $\alpha(\not \equiv 0, \infty)$ be a small function of g_{1} then we have

$$
\begin{align*}
T\left(r, g_{1}\right) \leq \bar{N}\left(r, \infty ; g_{1}\right) & +N\left(r, 0 ; g_{1}\right)+N\left(r, 0 ; g_{1}^{(k)}-\alpha\right) \\
& -N\left(r, 0 ;\left(\frac{g_{1}^{(k)}}{\alpha}\right)^{\prime}\right)+S(r, f) \tag{2.6}
\end{align*}
$$

refer ([11]).
For h_{1} being a transcendental meromorphic function of finite order then we have

$$
\begin{equation*}
T\left(r, h_{1}(z+c)\right)=T\left(r, h_{1}\right)+S\left(r, h_{1}\right) \tag{2.7}
\end{equation*}
$$

refer ([2])
Suppose f and g be two transcendental meromorphic function and
(1) $H \not \equiv 0$. We have

$$
\begin{array}{r}
\frac{1}{2}[T(r, f)+T(r, g)] \leq\left(\frac{k}{2}+2\right)[\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)] \\
+N_{k+2}(r, 0 ; f)+N_{k+2}(r, 0 ; g)-\left(l-\frac{3}{2}\right) \bar{N}_{*}(r, 1 ; F, G) \tag{2.8}\\
+S(r, f)+S(r, g)
\end{array}
$$

where $F=\frac{f^{(k)}}{Q}$ and $G=\frac{g^{(k)}}{Q}, \operatorname{refer}$ ([1])
(2) Either $f^{(k)} g^{(k)} \equiv Q^{2}$ or $f \equiv g$, whenever f and g satisfies one of the following conditions,
(i) $l \geq 2$ and

$$
\begin{equation*}
\Delta_{1}=\left(\frac{k}{2}+2\right)\{\Theta(\infty, f)+\Theta(\infty, g)\}+\delta_{k+2}(0, f)+\delta_{k+2}(0, g)>k+5 \tag{2.9}
\end{equation*}
$$

(ii) $l=1$ and

$$
\begin{array}{r}
\Delta_{2}=\left(\frac{3 k}{4}+\frac{9}{4}\right)\{\Theta(\infty, f)+\Theta(\infty, g)\}+\delta_{k+2}(0, f)+\delta_{k+2}(0, g) \tag{2.10}\\
+ \\
\frac{1}{4}\left\{\delta_{k+1}(0, f)+\delta_{k+1}(0, g)\right\}>\frac{3 k}{2}+6 .
\end{array}
$$

(ii) $l=0$ and

$$
\begin{array}{r}
\Delta_{3}=\left(2 k+\frac{7}{2}\right)\{\Theta(\infty, f)+\Theta(\infty, g)\}+\delta_{k+2}(0, f)+\delta_{k+2}(0, g) \tag{2.11}\\
+\frac{3}{2}\left\{\delta_{k+1}(0, f)+\delta_{k+1}(0, g)\right\}>4 k+11
\end{array}
$$

refer ([1]).

3. MAiN RESUlTS

Theorem 1. Let $g_{1} \in \psi, L$ be an L-function, m, d, k and $v_{j}(j=1,2, \ldots, d)$ be nonnegative integers and $c_{j}\left(j=1,2, \ldots, d\right.$ be distinct finite complex numbers. Suppose that $\left[g_{1}^{n}(f-\right.$ $\left.1)^{m} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}-\eta^{(z)}$ and $\left[L^{n}(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}-\eta^{(z)}$ share ($0, l$). If $l \geq 2$ and

$$
(m+n)>\frac{5 k}{2}+6+2 m_{2}(k+2)+2 m_{1}+\sigma
$$

or $l=1$ and

$$
(m+n)>\frac{13 k}{4}+\frac{27}{4}+\left(\frac{5 k}{2}+\frac{9}{2}\right) m_{2}+\frac{5}{2} m_{1}+\frac{3}{2} \sigma
$$

or $l=0$ and

$$
(m+n)>7 k+\frac{21}{2}+(5 k+7) m_{2}+5 m_{1}+4 \sigma .
$$

Then one of the following two cases holds
(i) $\left[g_{1}^{n}(f-1)^{m} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}\left[L^{n}(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}=\eta^{2}(z)$.
(ii) $\left[g_{1}^{n}(f-1)^{m} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right]=\left[L^{n}(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right]$,
or $g_{1}=t L$ for a constant t satisfying $g_{1}^{m+n}=1$.

Proof. We set the functions F_{1} and G_{1} as follows

$$
F_{1}=\frac{F^{(k)}}{\eta(z)}, \quad G_{1}=\frac{G^{(k)}}{\eta(z)},
$$

where,

$$
\begin{gathered}
F=\left[g_{1}^{n}\left(g_{1}-1\right)^{m} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right], \\
G=\left[L^{n}(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right] .
\end{gathered}
$$

Obviously as $F^{(k)}-\eta(z), G^{(k)}-\eta(z)$ share $(0, l)$, therefore F_{1}, G_{1} share $(1, l)$ and an L-function has at most one pole $z=1$ in the complex plane, we deduce by (2.5), (2.6) and ValironMokhonko's lemma (see [12]) that,

$$
\begin{array}{r}
(n+m+\sigma) T(r, L)+S\left(r, g_{1}\right)=T(r, G), \\
\leq \bar{N}(r, \infty ; G)+N(r, 0 ; G)+\bar{N}\left(r, 1 ; G_{1}\right)-N\left(r, 0 ; G_{1}^{\prime}\right)+S\left(r, g_{1}\right), \\
\leq \bar{N}(r, \infty ; G)+N_{k+1}(r, 0 ; G)+\bar{N}\left(r, 1 ; G_{1}\right)-N_{0}\left(r, 0 ; G_{1}^{\prime}\right)+S\left(r, g_{1}\right), \\
\leq \bar{N}(r, \infty ; L)+(k+1) \bar{N}(r, 0 ; G)+\bar{N}\left(r, 1 ; G_{1}\right)+S\left(r, g_{1}\right), \\
\leq(k+1)(n+m+\sigma) T(r, L)+\bar{N}\left(r, 1 ; F_{1}\right)+S\left(r, g_{1}\right) . \\
-k(n+m+\sigma) T(r, L) \leq T\left(r, F^{(k)}\right)+S\left(r, g_{1}\right) \tag{3.1}
\end{array}
$$

By (2.1), we see that L is a transcendental meromorphic function, combining this with (3.1), ([13],Theorem 1.5) and the assumption of the lower bound of $(m+n)$, we deduce that $F^{(k)}$ and so g_{1} is a transcendental meromorphic function.

Using (2.5), we have

$$
\begin{align*}
\Theta(\infty, F) & =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, \infty ; F)}{T(r, F)}, \\
& =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, \infty ; F)}{(m+n+\sigma) T(r, F)+O(1)}, \tag{3.2}\\
& \geq 1-\frac{1}{m+n+\sigma}
\end{align*}
$$

$$
\begin{align*}
\delta_{k+2}(0, F) & =1-\limsup _{r \rightarrow \infty} \frac{N_{k+2}(r, 0 ; F)}{T(r, F)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{N_{k+2}\left(r, 0 ; g_{1}^{n}\right)+N_{k+2}\left(r, 0 ;\left(g_{1}-1\right)^{m}\right)+N_{k+2}(r, 0 ; \phi)}{(m+n+\sigma) T(r, F)+O(1)} \tag{3.3}\\
& \geq 1-\frac{(k+2)+m_{2}(k+2)+m_{1}+\sigma}{m+n+\sigma}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \delta_{k+2}(0, G) \geq 1-\frac{(k+2)+m_{2}(k+2)+m_{1}+\sigma}{m+n+\sigma} \tag{3.4}\\
& \delta_{k+1}(0, F) \geq 1-\frac{(k+1)+m_{2}(k+1)+m_{1}+\sigma}{m+n+\sigma} \tag{3.5}\\
& \delta_{k+1}(0, G) \geq 1-\frac{(k+1)+m_{2}(k+1)+m_{1}+\sigma}{m+n+\sigma} \tag{3.6}
\end{align*}
$$

Since an L-function has at most one pole at $z=1$ in the complex plane, we have

$$
N(r, L) \leq \log r+O(1)
$$

So using (2.1) we deduce that

$$
\begin{equation*}
\Theta(\infty, G)=1 \tag{3.7}
\end{equation*}
$$

Case 1: Let $l \geq 2$
By using (2.9), (3.2)-(3.4) and (3.7), we obtain

$$
(m+n)>\frac{5 k}{2}+6+2 m_{2}(k+2)+2 m_{1}+\sigma
$$

We have $\Delta_{1}>k+5$. Thus by (2.9), we get either $F^{(k)} G^{(k)}=\eta^{2}(z)$ or $F \equiv G$. Let $F \equiv G$, i.e,

$$
\begin{equation*}
g_{1}^{n}\left(g_{1}-1\right)^{m} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}=L^{n}(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}} \tag{3.8}
\end{equation*}
$$

Now, we set

$$
\begin{equation*}
H=\frac{g_{1}}{L} . \tag{3.9}
\end{equation*}
$$

If H is a nonconstant meromorphic function, then we get (3.8). Suppose H is a constant i,e. $H=t=\frac{g_{1}}{L}$. Then from (3.9), we get

$$
\begin{array}{r}
(t L)^{n}(t L-1)^{m} \prod_{j=1}^{d}(t L)\left(z+c_{j}\right)^{v_{j}}=L^{n}(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}} \\
t^{n+\sigma}\left[t^{m} L^{m}+\binom{m}{1}(-1) t^{m-1} L^{m-1}+\binom{m}{2}(-1)^{2} t^{m-2} L^{m-2}+\ldots+(-1)^{m}\right] \\
=\left[L^{m}+\binom{m}{1}(-1) L^{m-1}+\binom{m}{2}(-1)^{2} L^{m-2}+\ldots+(-1)^{m}\right], \\
t^{n+m+\sigma}=t^{n+m-1+\sigma}=t^{n+m-2+\sigma}=\ldots=t^{n+\sigma}=1 .
\end{array}
$$

So we know $t=1$, then $g_{1}=t L$ for a constant t satisfying $t^{n+m+\sigma}=1$.
Case 2: Let $l=1$.
By using (2.10), (3.2)-(3.7), we have

$$
\begin{gather*}
\Delta_{2}=\left(\frac{3 k}{4}+\frac{9}{4}\right)\{\Theta(\infty, F)+\Theta(\infty, G)\}+\delta_{k+2}(0, F), \\
+\delta_{k+2}(0, G)+\frac{1}{4}\left\{\delta_{k+1}(0, F)+\delta_{k+1}(0, G)\right\}, \\
\Delta_{2} \geq \frac{3 k}{4}+7-\frac{\left(\frac{3 k}{4}+\frac{9}{4}\right)+\frac{5 k}{2}+\frac{9}{2}+\left(\frac{5 k}{2}+\frac{9}{2}\right) m_{2}+\frac{5}{2} m_{1}+\frac{5}{2} \sigma}{m+n+\sigma} . \tag{3.10}
\end{gather*}
$$

By (3.10) and the assumption

$$
(m+n)>\frac{13 k}{4}+\frac{27}{4}+\left(\frac{5 k}{2}+\frac{9}{2}\right) m_{2}+\frac{5}{2} m_{1}+\frac{3}{2} \sigma .
$$

We have $\Delta_{2}>\frac{3 k}{2}+6$. Thus by (2.10) we get either $F^{(k)} G^{(k)}=\eta^{2}(z)$ or $F \equiv G$. Proceeding in the same manner as done in the case 1 , we get conclusion.

Case 3: Let $l=0$. By using (2.11), (3.2)-(3.7), we have

$$
\begin{equation*}
\Delta_{3} \geq 4 k+12-\frac{\left(2 k+\frac{7}{2}\right)+5 k+7+(5 k+7) m_{2}+5 m_{1}+5 \sigma}{m+n+\sigma} \tag{3.11}
\end{equation*}
$$

by (3.11) and the assumption

$$
(m+n)>7 k+\frac{21}{2}+(5 k+7) m_{2}+5 m_{1}+4 \sigma .
$$

We have $\Delta_{3}>4 k+11$. Thus by (2.11), we get either $F^{(k)} G^{(k)}=\eta^{2}(z)$ or $F \equiv G$. Proceeding in the same manner as done in case 1 , we get conclusion.

For $n=0$, we obtain following result.

Corollary 1. Let $g_{1} \in \psi$, L be an L-function, m, d, k and $v_{j}(j=1,2, \ldots, d)$ be nonnegative integers and $c_{j}\left(j=1,2, \ldots, d\right.$ be distinct finite complex numbers. Suppose that $\left[\left(g_{1}-1\right)^{m} \prod_{j=1}^{d} g_{1}(z+\right.$ $\left.\left.c_{j}\right)^{v_{j}}\right]^{(k)}-\eta^{(z)}$ and $\left[(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}-\eta^{(z)}$ share $(0, l)$. If
$l \geq 2$ and

$$
m>\frac{k}{2}+2+2 m_{2}(k+2)+2 m_{1}+\sigma
$$

or $l=1$ and

$$
m>\frac{3 k}{4}+\frac{9}{4}+\left(\frac{5 k}{2}+\frac{9}{2}\right) m_{2}+\frac{5}{2} m_{1}+\frac{3}{2} \sigma,
$$

or $l=0$ and

$$
m>2 k+\frac{7}{2}+(5 k+7) m_{2}+5 m_{1}+4 \sigma
$$

Then one of the following two cases holds

$$
\begin{gathered}
(i)\left[\left(g_{1}-1\right)^{m} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}\left[(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}=\eta^{2}(z) . \\
(i i)\left[\left(g_{1}-1\right)^{m} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right]=\left[(L-1)^{m} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right] .
\end{gathered}
$$

or $g_{1}=t L$ for a constant t satisfying $t^{m+\sigma}=1$.

For $m=0$, we obtain the following result.

Corollary 2. Let $g_{1} \in \psi, L$ be an L-function, m, d, k and $v_{j}(j=1,2, \ldots, d)$ be nonnegative integers and $c_{j}\left(j=1,2, \ldots\right.$, d be distinct finite complex numbers. Suppose that $\left[g_{1}^{n} \prod_{j=1}^{d} g_{1}(z+\right.$ $\left.\left.c_{j}\right)^{v_{j}}\right]^{(k)}-\eta^{(z)}$ and $\left[\left(L^{n} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}-\eta^{(z)}\right.$ share $(0, l)$. If
$l \geq 2$ and

$$
n>\frac{5 k}{2}+6+\sigma
$$

or $l=1$ and

$$
n>\frac{13 k}{4}+\frac{27}{4}+\frac{3}{2} \sigma,
$$

or $l=0$ and

$$
n>7 k+\frac{21}{2}+4 \sigma
$$

Then one of the following two cases holds

$$
\begin{aligned}
& \text { (i) }\left[g_{1}^{n} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}\left[L^{n} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right]^{(k)}=\eta^{2}(z) . \\
& \text { (ii) }\left[g_{1}^{n} \prod_{j=1}^{d} g_{1}\left(z+c_{j}\right)^{v_{j}}\right]=\left[L^{n} \prod_{j=1}^{d} L\left(z+c_{j}\right)^{v_{j}}\right] .
\end{aligned}
$$

or $g_{1}=t L$ for a constant t satisfying $t^{n+\sigma}=1$.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] A. Banerjee, S. Bhattacharyya, Uniqueness of certain differential polynomial of L-functions and meromorphic functions sharing a polynomial, ArXiv:2008.09350 [Math]. (2020).
[2] Y.M. Chiang, S.J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, J. Ramanujan, 16 (2008), 105-129.
[3] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J. 44 (1997), 147-156.
[4] F. Liu, X.M. Li, H.X. Yi, Value distribution of L-functions concerning shared values and certain differential polynomials, Proc. Japan. Acad. Ser. A, 93 (2017), 41-46.
[5] N. Mandal, N.K. Datta, Uniqueness of L-function and its certain differential monomial concerning small functions, J. Math. Comput. Sci. 10 (2020), 2155-2163.
[6] N. Mandal, N.K. Datta, Small functions and uniqueness of Difference Differential polynomials of Lfunctions, Int. J. Differ. Equ. 10 (2020), 151-163.
[7] P. Sahoo, S. Halder, Uniqueness results related to L-functions and certain differential polynomials, Tbilisi Math. J. 11 (2018), 67-78.
[8] J. Steuding, Value distribution of L-functions, Springer, Berlin, (2007).
[9] C.C. Yang, H.X. Yi, Uniqueness Theory of Meromorphic functions, Kluwer Academic Publishers, Dordrecht, Science Press, Beijing, (1995).
[10] C.C. Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972), 107-112.
[11] J.W. Hao, J.F. Chen, Uniqueness of L-functions concerning certain differential polynomials, Dis. Dyn. Nat. Soc. 2018 (2018), Art ID 4673165.
[12] A.Z. Mokhon'ko, The Nevanlinna characteristics of certain meromorphic functions, Theory Funct. Annal. Appl. 14 (1971), 83-87, .
[13] C.C. Yang and H.X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, Dordrecht, (2003).

[^0]: *Corresponding author
 E-mail address: somalatha71@gmail.com
 Received July 15, 2021

