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Abstract: In this paper, we present composition of the pathway fractional integral  𝑃0+
(𝜂,𝜎)
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Mittag-Leffler (M-L) function. We also find out some special cases of the main results with those earlier ones. 
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1. INTRODUCTION 

Mittag-Leffler (M-L) functions play a vital role in determining the solutions of fractional 

differential and integral equations which are associated with an extensive variety of problems in 

diverse areas of mathematics and mathematical physics. Some functions which defined via power 

series in the whole complex plane ℂ are popularly known as Mittag-Leffler (M-L) functions. The 

M-L functions are generalization of the exponential functions. 

The Swedish mathematician Mittag-Leffler [11] introduced the so-called Mittag-Leffler function 
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                                    𝐸𝛼(𝑧) = ∑
𝑧𝑛

Г(𝛼𝑛+1)
∞
𝑛=0   ,   (𝛼, 𝑧 ∈ ℂ;ℜ(𝛼) > 0)                                    (1.1)

 A generalization of 𝐸𝛼(𝑧) was studied by Wiman [18] and known as generalized Mittag-Leffler 

function or Wiman's function in the following form 

                                   𝐸∝,𝛽(𝑧) = ∑
𝑧𝑛

Г(𝛼𝑛+𝛽) 
∞
𝑛=0  ,    (𝑧, 𝛼, 𝛽 ∈ ℂ;ℜ(𝛼) > 0,ℜ(𝛽) > 0)           (1.2) 

In 1971, Prabhakar [14] introduced the Mittag-Leffler function  𝐸∝,𝛽
𝛾 (𝑧) in the form 

                                   𝐸∝,𝛽
𝛾 (𝑧) = ∑

(𝛾)𝑛 

Г(𝛼𝑛+𝛽)
 
𝑧𝑛

𝑛!
∞
𝑛=0   ,                                                                    (1.3) 

where 𝑧, 𝛼, 𝛽, 𝛾 ∈ ℂ;  ℜ(𝛼) > 0,ℜ(𝛽) > 0  and (𝛾)𝑛  the Pochhammer symbol given by 

                                   (𝛾)𝑛 = 𝛾(𝛾 + 1)(𝛾 + 2)… (𝛾 + 𝑛 − 1) =
Г(𝛾+𝑛)

Г(𝛾)
 

In 2007, Shukla & Prajapati [17] established the function as  

                                   𝐸∝,𝛽
𝛾,𝑞(𝑧) = ∑

(𝛾)𝑛𝑞 

Г(𝛼𝑛+𝛽)
 
𝑧𝑛

𝑛!
∞
𝑛=0                                                                       (1.4) 

where 𝑧, ∝, 𝛽, 𝛾 ∈ ℂ ;  ℜ(∝) > 0 , ℜ(𝛽) > 0, ℜ(𝛾) >  0 and 𝑞𝜖(0,1) ∪ 𝑁. 

Another generalization of the Mittag-Leffler function called k-Mittag-Leffler function has been 

introduced by Dorrego & Cerutti [2] defined as  

                         𝐸𝑘,∝,𝛽
𝛾 (𝑧) = ∑

(𝛾)𝑛,𝑘 

  Г𝑘 (∝𝑛+𝛽) 
∞
𝑛=0

𝑧𝑛

𝑛!
                                                                (1.5) 

where 𝑘 > 0;  𝛼, 𝛽, 𝛾, 𝑧 ∈ ℂ;  ℜ(𝛼) > 0,ℜ(𝛽) > 0 and (𝛾)𝑛,𝑘  the Pochhammer k-symbol given 

by Diaz & Pariguan [1] as 

          (𝛾)𝑛,𝑘 = 𝛾(𝛾 + 𝑘)(𝛾 + 2𝑘)… (𝛾 + (𝑛 − 1)𝑘) =  
𝛤𝑘(𝛾+𝑛𝑘)

𝛤𝑘(𝛾)
                      (1.6) 

and 𝛤𝑘 the k-Gamma function given by 

                             𝛤𝑘(𝑧) = ∫ 𝑡𝑧−1 𝑒− 
𝑡𝑘

𝑘
∞

0
  𝑑𝑡   , (ℜ(𝑧)  >  0).     

Nisar et al. [13] introduce the generalized k-Mittag-Leffler function as  

                                         𝐸𝑘,∝,𝛽,𝛿
𝛾,𝑞 (𝑧) = ∑

(𝛾)𝑛𝑞,𝑘 
  Г𝑘 (∝𝑛+𝛽) 

∞
𝑛=0

𝑧𝑛

(𝛿)𝑛 
                                                    (1.7) 

Where 𝑘 ∈ ℜ ;  𝛼, 𝛽, 𝛾, 𝛿, 𝑧 ∈ ℂ;ℜ(∝) > 0 , ℜ(𝛽) > 0 , ℜ(𝛾) >  0 , 𝛿 ≠ 0,−1,…  and 𝑛𝑞  is a 

positive integer. 
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A new generalization of the k-Mittag –Leffler function has been defined by Gehlot [3] as given 

below: 

                                       𝐺𝐸𝑘,∝,𝛽
𝛾,𝑞

 (𝑧) = ∑
(𝛾)𝑛𝑞,𝑘 

Г(𝛼𝑛+𝛽)
 
𝑧𝑛

𝑛!
∞
𝑛=0                                                            (1.8) 

where 𝑘 ∈ ℜ; 𝛼, 𝛽, 𝛾, 𝑧 ∈ ℂ;ℜ(∝) > 0,ℜ(𝛽) > 0,ℜ(𝛾) > 0;𝑞𝜖(0,1) ∪ 𝑁 and (𝛾)𝑛𝑞,𝑘 is defined 

as (1.6) and the generalized Pochammer symbol (𝛾)𝑛𝑞 defined as  

                                       (𝛾)𝑛𝑞 =  
𝛤(𝛾+𝑛𝑞)

𝛤(𝛾)
 =   𝑞𝑞𝑛  ∏ (

𝛾+𝑟−1

𝑞
)
𝑛

𝑞
𝑟=1  , if  𝑞𝜖𝑁 

Gehlot [5] introduced the p-k Mittag –Leffler function which is defined as 

                                         𝐸𝑘,∝,𝛽
𝛾,𝑞

 (𝑧) = ∑
𝑝
(𝛾)𝑛𝑞,𝑘 

𝑝Г𝑘 (𝛼𝑛+𝛽)
∞
𝑛=0

𝑧𝑛

𝑛!
    𝑝

                                                      (1.9) 

where   𝑘, 𝑝 ∈ ℜ
+ − {0} ;  𝑧 ∈ ℂ ; 𝛼, 𝛽, 𝛾 ∈ ℂ/𝑘𝑍− with   ℜ(∝) > 0, ℜ(𝛽) > 0 ,   ℜ(𝛾) > 0 ; 

𝑞𝜖(0,1) ∪ 𝑁 and 𝑝(𝛾)𝑛𝑞,𝑘 is Pochammer (p-k)symbol and  𝑝Г𝑘 (𝑥)  gamma function is defined by 

Gehlot [4] as 

                           𝑝(𝛾)𝑛,𝑘 = [
𝛾𝑝

𝑘
] [
𝛾𝑝

𝑘
+ 𝑝]… [

𝛾𝑝

𝑘
+ (𝑛 − 1)𝑝] = ∏ [

𝛾𝑝

𝑘
+ 𝑖𝑝]𝑛−1

𝑖=0                        (1.10)  

and 𝑝Г𝑘 (𝑥) gamma function is defined as   

                                                                  𝑝Г𝑘 (𝑥) =  
1

𝑘
lim
𝑛→∞

𝑛!𝑝𝑛+1(𝑛𝑝)
𝑥
𝑘 
−1

 𝑝(𝑥)𝑛,𝑘  
                                                                                (1.11)                

                                         𝑝Г𝑘 (𝑥) = (
𝑝

𝑘
)
𝑥 𝑘⁄

Г𝑘 (𝑥) =
(𝑝)𝑥 𝑘⁄

𝑘
𝛤 (

𝑥

𝑘
)                                                         (1.12) 

Luque [7] introduced the L-Mittag-Leffler function defined for 𝑧 ∈ ℂ ;  𝛼, 𝛽, 𝛾 ∈ ℂ;ℜ(∝) > 0, 

ℜ(𝛽) > 0, ℜ(𝛾) >  0, 𝑗𝜖𝑁0 by the series 

                                            𝐿∝,𝛽
𝛾,𝑗 (𝑧) = ∑

(𝛾)𝑛+𝑗

𝛤(𝛼𝑛+𝛽)
∞
𝑛=0

𝑧𝑛

(𝑛+𝑗)!
                                                      (1.13) 

Gehlot [6] investigated the j-generalized p-k Mittag-Leffler function as  

                                            𝐸𝑘,∝,𝛽
𝛾,𝑞

𝑝
𝑗 (𝑧) = ∑

𝑝
(𝛾)(𝑛+𝑗)𝑞,𝑘

𝑝Г𝑘 (𝛼𝑛+𝛽)
∞
𝑛=0

𝑧𝑛

(𝑛+𝑗)!
                                              (1.14) 

where 𝑘, 𝑝 ∈ ℜ
+ − {0};𝑧 ∈ ℂ; 𝛼, 𝛽, 𝛾 ∈ ℂ/𝑘𝑍−with ℜ(∝) > 0,ℜ(𝛽) > 0,ℜ(𝛾) > 0;𝑞𝜖(0,1) ∪ 𝑁; 

𝑗𝜖𝑁0 and 𝑝(𝛾)𝑛𝑞,𝑘 is two parameter Pochammer symbol given by (1.10) and  𝑝Г𝑘 (𝑥) is the two 

parameter gamma function given by (1.11) and (1.12). 
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 The fractional calculus is a field of applied mathematics that deals with the fractional 

derivatives and fractional integrals of arbitrary orders. During the last few decades, many 

researchers have applied fractional calculus to all fields of science such as engineering and 

mathematics. The researchers have developed significant contributions in the field of fractional 

calculus such as fractional derivatives of constant and variable orders, global existence solution of 

differential equations; an alternative method for solving generalized differential equations of 

fractional order, a new type of fractional derivative formula containing the normalized sine 

function without singular kernel.  

 The pathway model is introduced by Mathai [8] and further studied by Mathai & Haubold [9] 

& [10]. Recently, pathway function integral operator introduced by Nair [12]. 

 Let 𝑓(𝑥) ∈ 𝐿(𝑎, 𝑏), 𝜂 ∈ ℂ,ℜ(𝜂) > 0, 𝑎 > 0 and the pathway parameter 𝜎 < 1, then the 

pathway fractional integral operator is given as follows: 

                                   ( 𝑃0+
(𝜂,𝜎)

𝑓) (𝑥) = 𝑥𝜂 ∫ [1 −
𝑎(1−𝜎)𝑡

𝑥
]

𝜂

1−𝜎
𝑓(𝑡) d𝑡

[
𝑥

𝑎(1−𝜎)
]

0
                         (1.15) 

For real scalar 𝜎, the pathway model for scalar random variables is represented by the following 

probability density function (p.d.f): 

                                    𝑓 (𝑥) = 𝑐 |𝑥|𝜈−1 [ 1 − 𝑎 (1 − 𝜎)|𝑥|𝜉]
𝜆

(1−𝜎)                                           (1.16) 

assigned that−∞ < 𝑥 <  ∞, 𝜉 >  0 , 𝜆 ≥ 0, [1 − 𝑎(1 − 𝜎)|𝑥|𝜉] > 0 and 𝜈 > 0, where 𝑐  and 𝜎 

denotes the normalizing constant and pathway parameter respectively. For real 𝜎, the normalizing 

constant 𝑐 is as follows: 

𝑐 =

{
 
 
 
 
 

 
 
 
 
 

 
1

2

ξ[𝑎(1 − σ)]
ν
ξ Γ (

ν
ξ
+

𝜆
1 − σ

+ 1)

Γ (
ν
ξ
 )Γ (

𝜆
1 − σ

 + 1)
  , ( σ < 1).

 
1

2

𝜉[𝑎(𝜎 − 1)]
𝜈
𝜉Γ (

𝜆
𝜎 − 1)

Γ (
𝜈
𝜉
)  Γ (

𝜆
𝜎 − 1 − 

𝜈
𝜉
)
  , (

1

σ− 1
−
𝑣

𝜉
> 0, 𝜎 > 1)

1

2

ξ(𝑎𝜆 )
𝜈
𝜉

Γ ( 
𝜈
𝜉
 )
   (𝜎 → 1).

                                              (1.17) 
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It is noted that if 𝜎 < 1, we have [1 − 𝑎(1 − 𝜎)|𝑥|𝜉] > 0 and (1.16) can be considered as member 

of the extended generalized type-1 beta family. Also, the extended type-1 beta density, the 

triangular density, the uniform density and many other p.d.f. are particular case of the pathway 

density function in (1.16), for  𝜎 < 1. 

For instance, 𝜎 > 1  settion (1 − 𝜎) =  −(𝜎 − 1) in (1.15) gives 

                                    (𝑃0+
(𝜂,𝜎)

𝑓) (𝑥) =  𝑥𝜂 ∫ [1 +
𝑎(𝜎−1)𝑡

𝑥
]
 

𝜂

−(𝜎−1)[
𝑥

−𝑎(𝜎−1)
]

0
𝑓(𝑡) d𝑡                  (1.18) 

and   

                                        𝑓(𝑥) = 𝑐|𝑥|𝜈−1 [ 1 + 𝑎 (𝜎 − 1)|𝑥|𝜉]
− 

𝜆

(𝜎−1)                                     (1.19) 

provided that −∞ < 𝑥 <  ∞, 𝜉 >  0 , 𝜆 ≥ 0, and 𝜎 > 1 which represents the extended generalized 

type-2 beta model for real 𝑥. Further the type-2 beta density, the F density, the student-t density 

and many other density functions are particular cases of the density function defined in (1.19). 

Moreover, if 𝜎 → 1, then the operator (1.15) reduces to the Laplace integral transform. Similarly, 

if 𝜎 = 0, 𝑎 = 1 and 𝜆 is replaced by 𝜆 − 1, then pathway operator (1.15) reduces to the well-

known Riemann-Liouville fractional integral operator. 

The main objective of this study is to obtain pathway fractional integral operators associated 

with j-generailzed p-k Mittag-Leffler functions.  

 

2. PATHWAY FRACTIONAL INTEGRATION OF j-GENERALIZED p-k MITTAG-LEFFLER 

FUNCTION 

In this section, we derive the pathway integration formulas involving the j-generalizd p-k Mittag-

Leffler function from (1.14). 

Theorem 2.1. Let  𝜌, 𝛽, 𝜂, 𝑧 ∈ ℂ; 𝛼, 𝛽, 𝛾 ∈ ℂ/𝑘𝑍−; 𝑘, 𝑝 ∈ ℜ
+ − {0}, {ℜ(∝),ℜ(𝛽),ℜ(𝛾)} > 0, 

𝑞𝜖(0,1) ∪ 𝑁; 𝑗𝜖𝑁0;ℜ (1 +
𝜂

1−𝜎
) > 0, 𝜎 < 1. Then the following formula holds true:  

𝑃0+
(𝜂,𝜎)

[𝑡
𝛽

𝑘
−1 𝐸𝑘,∝,𝛽

𝛾,𝑞
𝑝
𝑗

(ω𝑡
∝

𝑘)] (𝑥) =  𝑥𝜂+
𝛽

𝑘
Γ(1+

𝜂

1−𝜎
)  𝑝

( 1+ 
𝜂

1−𝜎 
)

[𝑎(1−𝜎)]
𝛽
𝑘

𝐸
𝑘,∝,𝛽+𝑘( 1+ 

𝜂

1−𝜎
 )

𝛾,𝑞
𝑝
𝑗

[𝜔 (
𝑥

𝑎(1−𝜎)
)

∝

𝑘
]    (2.1) 

Proof: By applying (1.15), we have 
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𝑃0+
(𝜂,𝜎)

[𝑡
𝛽
𝑘
−1 𝐸𝑘,∝,𝛽,𝛿

𝛾,𝑞
𝑝
𝑗

(ω𝑡
∝
𝑘)] =  𝑥𝜂∫ 𝑡

𝛽
𝑘
−1 [1 −

𝑎(1 − 𝜎)𝑡

𝑥
]

𝜂
1−𝜎[

𝑥
𝑎(1−𝜎)

]

0

 𝐸𝑘,∝,𝛽
𝛾,𝑞

𝑝
𝑗

(ω𝑡
∝
𝑘)  d𝑡 

For convenience, we assume that 𝔍1 in the place of the left hand integral of the above term and 

also using (1.14), it gives 

𝔍1 = 𝑥
𝜂 ∫ 𝑡

𝛽
𝑘
−1 [1 −

𝑎(1 − 𝜎)𝑡

𝑥
]

𝜂
1−𝜎[

𝑥
𝑎(1−𝜎)

]

0

 {∑
𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

𝑝Г𝑘 (𝛼𝑛+𝛽)

∞

𝑛=0

(ω𝑡
∝
𝑘)

𝑛

(𝑛 + 𝑗)!
}  d𝑡 

After interchanging the order of integration and summation which is permissible under the 

conditions stated in the theorem, we get 

𝔍1 = 𝑥
𝜂∑

𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

𝑝Г𝑘 (𝛼𝑛+𝛽)

∞

𝑛=0

(ω)𝑛

(𝑛 + 𝑗)!
∫ [1 −

𝑎(1 − 𝜎)𝑡

𝑥
]

𝜂
1−𝜎[

𝑥
𝑎(1−𝜎)

]

0

 𝑡
𝛽
𝑘
+
∝𝑛
𝑘
−1 d𝑡 

Now, we simplify the above equation with help of well-known beta function formula and using p-

k Gamma function equation (1.11), we have 

𝔍1 = 𝑥
𝜂∑

𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

𝑝Г𝑘 (𝛼𝑛+𝛽)

∞

𝑛=0

(ω)𝑛

(𝑛 + 𝑗)!
 [

𝑥

𝑎(1 − 𝜎)
]

𝛽
𝑘
+
∝𝑛
𝑘
Γ ( 1 +

𝜂
1 − 𝜎)Γ

(
𝛽
𝑘
+
∝ 𝑛
𝑘
)

Γ (
𝛽
𝑘
+
∝ 𝑛
𝑘
+  1 + 

𝜂
1 − 𝜎

)
 

= 
𝑥𝜂+

𝛽
𝑘

[𝑎(1 − 𝜎)]
𝛽
𝑘

∑
𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

(𝑛 + 𝑗)!   𝑝Г𝑘 (𝛼𝑛+𝛽) 

∞

𝑛=0
[ω (

𝑥

𝑎(1 − 𝜎)
)

𝜌
𝑘
]

𝑛

 
Γ ( 1 +

𝜂
1 − 𝜎) Γ

(
𝛽
𝑘
+
∝ 𝑛
𝑘
)

Γ (
𝛽
𝑘
+
∝ 𝑛
𝑘
+  1 + 

𝜂
1 − 𝜎

)
 

=
𝑥𝜂+

𝛽
𝑘   Γ ( 1 +

𝜂
1 − 𝜎)

[𝑎(1 − 𝜎)]
𝛽
𝑘

∑
𝑘 𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

(𝑛 + 𝑗)!  𝑝
𝛼𝑛+𝛽
𝑘  

×

[ω (
𝑥

𝑎(1 − 𝜎)
)

∝
𝑘
]

𝑛

Γ (
𝛽
𝑘
+
∝ 𝑛
𝑘
+  1 + 

𝜂
1 − 𝜎

)

∞

𝑛=0
 

Again, on applying (1.14), we get the desired results of Theorem 2.1. 

Corollary 2.2. If we put 𝑝 = 𝑘, 𝑗 = 0 in Theorem 2.1, then we get the following known result 

given by Ram and Choudhary [16] contains generalized k-Mittag-Leffler function defined in (1.8): 

         𝑃0+
(𝜂,𝜎)

[𝑡
𝛽

𝑘
−1 𝐺𝐸𝑘,∝,𝛽

𝛾,𝑞
(ω𝑡

∝

𝑘)] (𝑥) =  𝑥𝜂+
𝛽

𝑘
 Γ(1+

𝜂

1−𝜎
) 𝑘

( 1+ 
𝜂

𝜎−1 
)

[𝑎(1−𝜎)]
𝛽
𝑘

 𝐺𝐸
𝑘,∝,𝛽+𝑘( 1+ 

𝜂

1−𝜎
 )

𝛾,𝑞
[𝜔 (

𝑥

𝑎(1−𝜎)
)

∝

𝑘
] 
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Corollary 2.3. If we substitute 𝑝 = 𝑘, 𝑞 = 1, 𝑗 = 0 in Theorem 2.1, then we get the following 

known result given by Nisar et al. [13] contains k- Mittag-Leffler function defined in (1.5): 

𝑃0+
(𝜂,𝜎)

[𝑡
𝛽
𝑘
−1 𝐸𝑘,∝,𝛽

𝛾
(ω𝑡

∝
𝑘)] (𝑥)

=  𝑥𝜂+
𝛽
𝑘
Γ (1 +

𝜂
1 − 𝜎)𝑘

( 1+ 
𝜂
𝜎−1

 )

[𝑎(1 − 𝜎)]
𝛽
𝑘

 𝐸
𝑘,∝,𝛽+𝑘( 1+ 

𝜂
1−𝜎

 )

𝛾
[𝜔 (

𝑥

𝑎(1 − 𝜎)
)

∝
𝑘
] 

Corollary 2.4. If we take 𝑝 = 𝑘 = 1, 𝑗 = 0 in Theorem 2.1, then we get the following known 

result derived by Rahman et al. [15]: 

𝑃0+
(𝜂,𝜎)

[𝑡𝛽−1 𝐸∝,𝛽
𝛾,𝑞(ω𝑡∝)] (𝑥) =  𝑥𝜂+𝛽

Γ (1 +
𝜂

1 − 𝜎)

[𝑎(1 − 𝜎)]𝛽
 𝐸
∝,𝛽+( 1+ 

𝜂
1−𝜎

 )

𝛾,𝑞
[𝜔 (

𝑥

𝑎(1 − 𝜎)
)
∝

] 

Corollary 2.5. If we take 𝑝 = 𝑘 = 𝑞 = 1, 𝑗 = 0 in Theorem 2.1, then we get the following known 

result given by Nair [12]: 

𝑃0+
(𝜂,𝜎)

[𝑡𝛽−1 𝐸∝,𝛽
𝛾 (ω𝑡∝)] (𝑥) =  𝑥𝜂+𝛽

Γ (1 +
𝜂

1 − 𝜎)

[𝑎(1 − 𝜎)]𝛽
 𝐸
∝,𝛽+( 1+ 

𝜂
1−𝜎

 )

𝛾
[𝜔 (

𝑥

𝑎(1 − 𝜎)
)
∝

] 

In the similar manner, we can find several other new and known results by substituting 

different values of parameters. 

 Now, we establish the following theorem by assuming the case that λ > 1 and using equation 

(1.18)  

Theorem 2.6. Let 𝜌, 𝛽, 𝜂, 𝑧 ∈ ℂ; 𝛼, 𝛽, 𝛾 ∈ ℂ/𝑘𝑍−; 𝑘, 𝑝 ∈ ℜ
+ − {0} ,  {ℜ(∝),ℜ(𝛽),ℜ(𝛾)} > 0, 

𝑞𝜖(0,1) ∪ 𝑁; 𝑗𝜖𝑁0;ℜ (1 +
𝜂

1−𝜎
) > 0, 𝜎 > 1. Then the following formula holds true:  

𝑃0+
(𝜂,𝜎)

[𝑡
𝛽
𝑘
−1 𝐸𝑘,∝,𝛽

𝛾,𝑞
𝑝
𝑗

(ω𝑡
∝
𝑘)] (𝑥)

=  𝑥𝜂+
𝛽
𝑘
Γ (1 −

𝜂
𝜎 − 1) 𝑝

( 1− 
𝜂
𝜎−1

 )

[−𝑎(𝜎 − 1)]
𝛽
𝑘

𝐸
𝑘,∝,𝛽+𝑘( 1− 

𝜂
𝜎−1

 )

𝛾,𝑞
𝑝
𝑗

[𝜔 (
𝑥

−𝑎(𝜎 − 1)
)

∝
𝑘
] 

Proof: By applying (1.15), we have 

𝑃0+
(𝜂,𝜎)

[𝑡
𝛽
𝑘
−1 𝐸𝑘,∝,𝛽,𝛿

𝛾,𝑞
𝑝
𝑗

(ω𝑡
∝
𝑘)] =  𝑥𝜂∫ 𝑡

𝛽
𝑘
−1 [1 +

𝑎(𝜎 − 1)𝑡

𝑥
]

𝜂
−(𝜎−1)[

𝑥
−𝑎(𝜎−1)

]

0

 𝐸𝑘,∝,𝛽
𝛾,𝑞

𝑝
𝑗

(ω𝑡
∝
𝑘)  d𝑡 
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For convenience, we assume that 𝔍2 in the place of the left hand integral of the above term and 

also using (1.14), it gives 

𝔍2 = 𝑥
𝜂 ∫ 𝑡

𝛽
𝑘
−1 [1 +

𝑎(𝜎 − 1)𝑡

𝑥
]

𝜂
−(𝜎−1)[

𝑥
−𝑎(𝜎−1)

]

0

 {∑
𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

𝑝Г𝑘 (𝛼𝑛+𝛽)

∞

𝑛=0

(ω𝑡
∝
𝑘)

𝑛

(𝑛 + 𝑗)!
}  d𝑡 

After interchanging the order of integration and summation which is permissible under the 

conditions stated in the theorem, we get 

𝔍2 = 𝑥
𝜂∑

𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

𝑝Г𝑘 (𝛼𝑛+𝛽)

∞

𝑛=0

(ω)𝑛

(𝑛 + 𝑗)!
∫ [1 +

𝑎(𝜎 − 1)𝑡

𝑥
]

𝜂
−(𝜎−1)[

𝑥
−𝑎(𝜎−1)

]

0

 𝑡
𝛽
𝑘
+
∝𝑛
𝑘
−1 d𝑡 

Now, we simplify the above equation with help of well-known beta function formula and using p-

k Gamma function equation (1.11), we have 

𝔍2 = 𝑥
𝜂∑

𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

𝑝Г𝑘 (𝛼𝑛+𝛽)

∞

𝑛=0

(ω)𝑛

(𝑛 + 𝑗)!
 [

𝑥

−𝑎(𝜎 − 1)
]

𝛽
𝑘
+
∝𝑛
𝑘
Γ ( 1 −

𝜂
𝜎 − 1) Γ

(
𝛽
𝑘
+
∝ 𝑛
𝑘
)

Γ (
𝛽
𝑘
+
∝ 𝑛
𝑘
+  1 − 

𝜂
𝜎 − 1

)
 

= 
𝑥𝜂+

𝛽
𝑘

[−𝑎(𝜎 − 1)]
𝛽
𝑘

∑
𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

(𝑛 + 𝑗)!   𝑝Г𝑘 (𝛼𝑛+𝛽) 

∞

𝑛=0
[ω (

𝑥

−𝑎(𝜎 − 1)
)

𝜌
𝑘
]

𝑛

 
Γ ( 1 −

𝜂
𝜎 − 1) Γ

(
𝛽
𝑘
+
∝ 𝑛
𝑘
)

Γ (
𝛽
𝑘
+
∝ 𝑛
𝑘
+  1 − 

𝜂
𝜎 − 1

)
 

=
𝑥𝜂+

𝛽
𝑘   Γ ( 1 +

𝜂
1 − 𝜎)

[−𝑎(𝜎 − 1)]
𝛽
𝑘

∑
𝑘 𝑝(𝛾)(𝑛+𝑗)𝑞,𝑘

(𝑛 + 𝑗)!  𝑝
𝛼𝑛+𝛽
𝑘  

×

[ω (
𝑥

−𝑎(𝜎 − 1)
)

∝
𝑘
]

𝑛

Γ (
𝛽
𝑘
+
∝ 𝑛
𝑘
+  1 − 

𝜂
𝜎 − 1

)

∞

𝑛=0
 

Again, on applying (1.14), we get the desired results of Theorem 2.6. 

 A number of several other results of Theorem 2.6 can also be obtained in a similar manner 

by putting some specific values of parameters. 

 

3. CONCLUSION  

In this paper, we have discussed two pathway integration formulae associated with j-

generalized p-k Mittag-Leffler function in its kernel. Some known special cases are also described 

as corollaries. Numerous results concerning images of generalized k-Mittag-Leffler function under 
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pathway operator can be obtained by suitably specializing the parameters of j-generalized k-

Mittag-Leffler function but for lake of space they are not presented. 
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